Substrate-Controlled Diversity-Oriented Synthesis of Novel Polycyclic Frameworks via [4 + 2] and [3 + 2] Annulations of Ninhydrin-Derived MBH Adducts with 3,4-Dihydroisoquinolines
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lin, W.-B.; Mou, Y.; Lu, H.-Y.; Hu, Z.-Q.; Chen, C.-F. Metal-free construction of contiguous quaternary stereocentres with a polycyclic framework. Chem. Commun. 2019, 55, 4631–4634. [Google Scholar] [CrossRef]
- Kallepu, S.; Sanjeev, K.; Chegondi, R.; Mainkar, P.S.; Chandrasekhar, S. Benzyne Insertion onto β-Keto Esters of Polycyclic Natural Products: Synthesis of Benzo Octacyclo Scaffolds. Org. Lett. 2018, 20, 7121–7124. [Google Scholar] [CrossRef] [PubMed]
- Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758. [Google Scholar] [CrossRef]
- Kandimalla, S.R.; Sabitha, G. Diversity-Oriented Synthesis of Oxacyclic Spirooxindole Derivatives through Ring-Closing Enyne Metathesis and Intramolecular Pauson–Khand [2 + 2 + 1] Cyclization of Oxindole Enynes. Adv. Synth. Catal. 2017, 359, 3444–3453. [Google Scholar] [CrossRef]
- Bietsch, J.; Chen, A.; Wang, D.; Wang, G. Synthesis of a Series of Trimeric Branched Glycoconjugates and Their Applications for Supramolecular Gels and Catalysis. Molecules 2023, 28, 6056. [Google Scholar] [CrossRef]
- Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022, 27, 8409. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-Q.; Zhao, J.-Q.; Zhang, Y.-P.; You, Y.; Wang, Z.-H.; Ge, Z.-Z.; Zhou, M.-Q.; Yuan, W.-C. Diastereoselective Formal 1,3-Dipolar Cycloaddition of Trifluoroethyl Amine-Derived Ketimines Enables the Desymmetrization of Cyclopentenediones. Molecules 2023, 28, 5372. [Google Scholar] [CrossRef] [PubMed]
- Kulagina, N.; Papon, N.; Courdavault, V. Microbial Cell Factories for Tetrahydroisoquinoline Alkaloid Production. Chembiochem 2021, 22, 639–641. [Google Scholar] [CrossRef]
- Gao, Y.; Tu, N.; Liu, X.T.; Lu, K.K.; Chen, S.Y.; Guo, J. Progress in the Total Synthesis of Antitumor Tetrahydroisoquinoline Alkaloids. Chem. Biodivers. 2023, 20, e202300172. [Google Scholar] [CrossRef]
- Le, V.H.; Inai, M.; Williams, R.M.; Kan, T. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics. Nat. Prod. Rep. 2015, 32, 328–347. [Google Scholar] [CrossRef] [PubMed]
- Estevez, V.; Villacampa, M.; Menendez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev. 2014, 43, 4633–4657. [Google Scholar] [CrossRef]
- Gumus, M.; Babacan, S.N.; Demir, Y.; Sert, Y.; Koca, I.; Gulcin, I. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch. Pharm. 2022, 355, e2100242. [Google Scholar] [CrossRef] [PubMed]
- Basha, N.J.; Basavarajaiah, S.M.; Shyamsunder, K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers. 2022, 26, 2915–2937. [Google Scholar] [CrossRef] [PubMed]
- Pigot, C.; Brunel, D.; Dumur, F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022, 27, 5976. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J.; Wu, Y. Synthesis and regiochemistry of spiro indane-1,3-dione compounds. Res. Chem. Intermed. 2012, 38, 413–420. [Google Scholar] [CrossRef]
- Bhojgude, S.S.; Bhunia, A.; Biju, A.T. Employing Arynes in Diels-Alder Reactions and Transition-Metal-Free Multicomponent Coupling and Arylation Reactions. Acc. Chem. Res. 2016, 49, 1658–1670. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, R. Recent Developments in Catalytic Asymmetric Inverse-Electron-Demand Diels-Alder Reaction. Chem. Rev. 2013, 113, 5515–5546. [Google Scholar] [CrossRef]
- Knall, A.-C.; Slugovc, C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: A (high) potential click chemistry scheme. Chem. Soc. Rev. 2013, 42, 5131–5142. [Google Scholar] [CrossRef]
- Yang, B.; Gao, S. Recent advances in the application of Diels-Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev. 2018, 47, 7926–7953. [Google Scholar] [CrossRef]
- Gaso-Sokac, D.; Stivojevic, M. Diels-Alder “Click” Reactions. Curr. Org. Chem. 2016, 20, 2211–2221. [Google Scholar] [CrossRef]
- Cao, M.-H.; Green, N.J.; Xu, S.-Z. Application of the aza-Diels-Alder reaction in the synthesis of natural products. Org. Biomol. Chem. 2017, 15, 3105–3129. [Google Scholar] [CrossRef]
- Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Formal [4 + 1] Annulation Reactions in the Synthesis of Carbocyclic and Heterocyclic Systems. Chem. Rev. 2015, 115, 5301–5365. [Google Scholar] [CrossRef] [PubMed]
- Ylijoki, K.E.O.; Stryker, J.M. [5 + 2] Cycloaddition Reactions in Organic and Natural Product Synthesis. Chem. Rev. 2013, 113, 2244–2266. [Google Scholar] [CrossRef]
- Biemolt, J.; Ruijter, E. Advances in Palladium-Catalyzed Cascade Cyclizations. Adv. Synth. Catal. 2018, 360, 3821–3871. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Wu, W.; Jiang, H. Palladium-Catalyzed Cascade Cyclization/Alkynylation Reactions. Chem. Asian J. 2019, 14, 4114–4128. [Google Scholar] [CrossRef]
- Ohno, H. Gold-Catalyzed Cascade Reactions of Alkynes for Construction of Polycyclic Compounds. Israel J. Chem. 2013, 53, 869–882. [Google Scholar] [CrossRef]
- Du, G.; Wang, G.; Ma, W.; Yang, Q.; Bao, W.; Liang, X.; Zhu, L.; Lee, C.-S. Syntheses of Diverse Natural Products via Dual-Mode Lewis Acid Induced Cascade Cyclization Reactions. Synlett 2017, 28, 1394–1406. [Google Scholar]
- Liu, T.-Y.; Xie, M.; Chen, Y.-C. Organocatalytic asymmetric transformations of modified Morita-Baylis-Hillman adducts. Chem. Soc. Rev. 2012, 41, 4101–4112. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Anwar, S.; Chen, K. Morita-Baylis-Hillman (MBH) Reaction Derived Nitroallylic Alcohols, Acetates and Amines as Synthons in Organocatalysis and Heterocycle Synthesis. Chem. Rec. 2017, 17, 363–381. [Google Scholar] [CrossRef]
- Elleuch, H.; Mihoubi, W.; Mihoubi, M.; Ketata, E.; Gargouri, A.; Rezgui, F. Potential antioxidant activity of Morita-Baylis-Hillman adducts. Bioorg. Chem. 2018, 78, 24–28. [Google Scholar] [CrossRef]
- Zhong, N.-J.; Wang, Y.-Z.; Cheng, L.; Wang, D.; Liu, L. Recent advances in the annulation of Morita-Baylis-Hillman adducts. Org. Biomol. Chem. 2018, 16, 5214–5227. [Google Scholar] [CrossRef]
- Calcatelli, A.; Cherubini-Celli, A.; Carletti, E.; Companyo, X. Unconventional Transformations of Morita-Baylis-Hillman Adducts. Synthesis 2020, 52, 2922–2939. [Google Scholar]
- Juma, W.P.; Nyoni, D.; Brady, D.; Bode, M.L. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives. Chembiochem 2022, 23, e202100527. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-C.; Chen, Z.; Du, W.; Chen, Y.-C. Transformations of Modified Morita-Baylis-Hillman Adducts from Isatins Catalyzed by Lewis Bases. Chem. Rec. 2020, 20, 541–555. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, L.; Li, E.-Q. Recent Advances in Lewis Base-Catalysed Chemo-, Diastereo- and Enantiodivergent Reactions of Electron-deficient Olefins and Alkynes. Chem. Rec. 2022, 22, e202100276. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, R.; Li, R.; He, Z. Progress in Phosphine-Promoted Annulations between Two Electrophiles. Chin. J. Org. Chem. 2014, 34, 2385–2405. [Google Scholar] [CrossRef]
- Xie, P.; Huang, Y. Morita-Baylis-Hillman adduct derivatives (MBHADs): Versatile reactivity in Lewis base-promoted annulation. Org. Biomol. Chem. 2015, 13, 8578–8595. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chen, P.; Chen, Z.-C.; Chen, Z.; Du, W.; Chen, Y.-C. A Double Deprotonation Strategy for Cascade Annulations of Palladium-Trimethylenemethanes and Morita-Baylis-Hillman Carbonates to Construct Bicyclo 3.1.0 hexane Frameworks. Angew. Chem. Int. Ed. 2021, 60, 13913–13917. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Wu, Y.-X.; Ouyang, Q.; Du, W.; Chen, Y.-C. Asymmetric Formal Nucleophilic o-Cresolylation with Morita-Baylis-Hillman Carbonates of 2-Cyclohexenones via Palladium Catalysis. J. Am. Chem. Soc. 2022, 144, 9564–9569. [Google Scholar] [CrossRef]
- Li, Y.; Chen, P.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Cooperative Tertiary Phosphine/Palladium Catalyzed Nucleophilic Allylation between Morita-Baylis-Hillman Carbonates and Alkenes. Eur. J. Org. Chem. 2022, 2022, e202200218. [Google Scholar] [CrossRef]
- He, Z.-L.; Chen, P.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Construction of Hydrodibenzo b,d furan Frameworks from Morita-Baylis-Hillman Carbonates of Isatins and o-Hydroxy Enones via Palladium and Bronsted Base Relay Catalysis. Org. Lett. 2022, 24, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, B.; Zhu, L.; Jiang, Y.; Guo, C.-L.; Gu, J.; Ouyang, Q.; Du, W.; Chen, Y.-C. Combining palladium and ammonium halide catalysts for Morita-Baylis-Hillman carbonates of methyl vinyl ketone: From 1,4-carbodipoles to ion pairs. Chem. Sci. 2021, 12, 11399–11405. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-X.; Yan, R.-J.; Ran, G.-Y.; Chen, C.; Yue, J.-F.; Yan, X.; Ouyang, Q.; Du, W.; Chen, Y.-C. pi-Lewis-Base-Catalyzed Asymmetric Vinylogous Umpolung Reactions of Cyclopentadienones and Tropone. Angew. Chem. Int. Ed. 2021, 60, 26762–26768. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.-J.; Liu, B.-X.; Hu, Y.; Du, W.; Chen, Y.-C. Generation of zwitterionic trifluoromethyl N-allylic ylides and their use in switchable divergent annulations. Chem. Commun. 2021, 57, 9056–9059. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Asymmetric [4+3] Annulations for Constructing Divergent Oxepane Frameworks via Cooperative Tertiary Amine/Transition Metal Catalysis. Org. Lett. 2021, 23, 8559–8564. [Google Scholar] [CrossRef]
- Tian, Z.; Jiang, J.; Yan, Z.-H.; Luo, Q.-Q.; Zhan, G.; Huang, W.; Li, X.; Han, B. Catalytic asymmetric [3+2] cycloaddition of pyrazolone-derived MBH carbonate: Highly stereoselective construction of the bispiro-[pyrazolone-dihydropyrrole-oxindole] skeleton. Chem. Commun. 2022, 58, 5363–5366. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Jia, Y.; Chen, X.; Li, P. Organocatalytic Regio-and Enantioselective [3 + 2]-Annulations of Ninhydrin-Derived Morita-Baylis-Hillman Carbonates with 3-Methyleneoxindoles. J. Org. Chem. 2022, 87, 3184–3194. [Google Scholar] [CrossRef]
- He, X.-H.; Fu, X.-J.; Zhan, G.; Zhang, N.; Li, X.; Zhu, H.-P.; Peng, C.; He, G.; Han, B. Organocatalytic asymmetric synthesis of multifunctionalized alpha-carboline-spirooxindole hybrids that suppressed proliferation in colorectal cancer cells. Org. Chem. Front. 2022, 9, 1048–1055. [Google Scholar] [CrossRef]
- Mei, M.-S.; Wang, Y.-J.; Zhang, G.-S.; Tang, J.-Y.; Tian, P.; Wang, Y.-H. Catalyst-Controlled Diastereoselectivity Switch in the Asymmetric [3 + 2] Annulation of Isatin-Derived MBH Carbonates and 5-Alkenylthiazol-4(5H)-ones. Org. Lett. 2021, 23, 7336–7341. [Google Scholar] [CrossRef]
- Yadav, A.; Banerjee, J.; Arupula, S.K.; Mobin, S.M.; Samanta, S. Lewis-Base-Catalyzed Domino Reaction of Morita-Baylis-Hillman Carbonates of Isatins with Enolizable Cyclic Carbonyl Compounds: Stereoselective Access to Spirooxindole-Pyrans. Asian J. Org. Chem. 2018, 7, 1595–1599. [Google Scholar] [CrossRef]
- Yan, R.-J.; Liu, B.-X.; Xiao, B.-X.; Du, W.; Chen, Y.-C. Asymmetric (4 + 3) and (4 + 1) Annulations of Isatin-derived Morita-Baylis-Hillman Carbonates to Construct Diverse Chiral Heterocyclic Frameworks. Org. Lett. 2020, 22, 4240–4244. [Google Scholar] [CrossRef] [PubMed]
- Du, J.-Y.; Ma, Y.-H.; Meng, F.-X.; Zhang, R.-R.; Wang, R.-N.; Shi, H.-L.; Wang, Q.; Fan, Y.-X.; Huang, H.-L.; Cui, J.-C.; et al. Lewis Base-Catalyzed [4 + 3] Annulation of ortho-Quinone Methides and MBH Carbonates: Synthesis of Functionalized Benzo b oxepines Bearing Oxindole Scaffolds. Org. Lett. 2019, 21, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.-L.; Liu, Q.-L.; Yang, L.-W.; Deng, S.; Song, Y. [6+3] Annulations of Morita-Baylis-Hillman carbonates and dicyanoheptafulvene. Org. Biomol. Chem. 2021, 19, 9867–9871. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Shi, M.-L.; He, Q.; Lin, W.-J.; Ouyang, Q.; Du, W.; Chen, Y.-C. Catalyst-Controlled Switch in Chemo- and Diastereoselectivities: Annulations of Morita-Baylis-Hillman Carbonates from Isatins. Angew. Chem. Int. Ed. 2016, 55, 2147–2151. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, Y.; Li, Z.M. Phosphine-catalyzed sequential annulation domino reaction: Rapid construction of bicyclo [4.1.0] heptene skeletons. Chem. Commun. 2014, 50, 5710–5713. [Google Scholar] [CrossRef] [PubMed]
- Warghude, P.K.; Dharpure, P.D.; Bhat, R.G. Cycloaddition of isatin-derived MBH carbonates and 3-methyleneoxindoles to construct diastereoselective cyclopentenyl bis-spirooxindoles and cyclopropyl spirooxindoles: Catalyst controlled [3 + 2] and [2 + 1] annulations. Tetrahedron Lett. 2018, 59, 4076–4079. [Google Scholar] [CrossRef]
- Chen, R.; Xu, S.; Fan, X.; Li, H.; Tang, Y.; He, Z. Construction of dispirocyclohexanes via amine-catalyzed [2 + 2 + 2] annulations of Morita-Baylis-Hillman acetates with exocyclic alkenes. Org. Biomol. Chem. 2015, 13, 398–408. [Google Scholar] [CrossRef]
- Xie, P.Z.; Huang, Y.; Chen, R.Y. Phosphine-Mediated Domino Benzannulation Strategy for the Construction of Highly Functionalized Multiaryl Skeletons. Chem. Eur. J. 2012, 18, 7362–7366. [Google Scholar] [CrossRef]
- Cheng, Y.; Fang, Z.; Li, W.; Li, P. Phosphine-mediated enantioselective [4 + 1] annulations between ortho-quinone methides and Morita-Baylis-Hillman carbonates. Org. Chem. Front. 2018, 5, 2728–2733. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Yoshikai, N. Zinc-Catalyzed beta-Functionalization of Cyclopropanols via Enolized Homoenolate. J. Am. Chem. Soc. 2021, 143, 18400–18405. [Google Scholar] [CrossRef]
- Cheng, Y.; Han, Y.; Li, P. Organocatalytic Enantioselective [1 + 4] Annulation of Morita-Baylis Hillman Carbonates with Electron-Deficient Olefins: Access to Chiral 2,3-Dihydrofuran Derivatives. Org. Lett. 2017, 19, 4774–4777. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.-L.; Wei, Y.; Shi, M. Phosphine-catalyzed asymmetric [4 + 1] annulation of activated alpha,beta-unsaturated ketones with Morita-Baylis-Hillman carbonates: Enantioselective synthesis of spirooxindoles containing two adjacent quaternary stereocenters. Chem. Commun. 2014, 50, 8912–8914. [Google Scholar] [CrossRef]
- Han, X.Y.; Yao, W.J.; Wang, T.L.; Tan, Y.R.; Yan, Z.Y.; Kwiatkowski, J.; Lu, Y.X. Asymmetric Synthesis of Spiropyrazolones through Phosphine-Catalyzed [4 + 1] Annulation. Angew. Chem. Int. Ed. 2014, 53, 5643–5647. [Google Scholar] [CrossRef]
- Wang, K.-K.; Li, Y.-L.; Jing, J.; Chen, R.; Zhao, N.-N.; Li, Z.-H.; Wang, M.-Y.; Ji, S.-K. Synthesis of 1,3,5-trisubstituted pyrazoles via 1,3-dipolar cycloaddition of nitrile imines with ninhydrin-derived Morita–Baylis–Hillman carbonates. Org. Biomol. Chem. 2022, 20, 6923–6930. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wu, Y.; Jiang, J.; Fang, H.; Zhou, W.-J.; Huang, W.; Zhan, G. Formal [3 + 1 + 1] Carboannulation of Morita-Baylis-Hillman Carbonates with Pyridinium Ylides: Access to Spiro-Cyclopentadiene Oxindoles. Org. Lett. 2021, 23, 8937–8941. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yuan, C.; Zeng, Y.; Wang, Q.; Wang, C.; Liu, M.; Wang, W.; Wu, Y.; Zheng, B.; Guo, H. Direct Activation of Unmodified Morita–Baylis–Hillman Alcohols through Phosphine Catalysis for Rapid Construction of Three-Dimensional Heterocyclic Compounds. Org. Lett. 2019, 21, 4882–4886. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zeng, Y.; Gao, X.; Wang, Q.; Wang, C.; Wang, B.; Wang, W.; Wu, Y.; Zheng, B.; Guo, H. A chiral squaramide-catalyzed asymmetric dearomative tandem annulation reaction through a kinetic resolution of MBH alcohols: Highly enantioselective synthesis of three-dimensional heterocyclic compounds. Chem. Commun. 2019, 55, 10464–10467. [Google Scholar] [CrossRef]
- Lokesh, K.; Kumarswamyreddy, N.; Kesavan, V. Diastereoselective Construction of Tetrahydro-Dispiro[indolinone-3,2′-pyran-5′,4″-pyrazolone] Scaffolds via an Oxa-Michael Cascade [4 + 2] Annulation Reaction. J. Org. Chem. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ouyang, X.-H.; Li, Y.; Chen, B.; Li, J.-H. Rhodium-Catalysed [4 + 2] Annulation of Aromatic Oximes with Terminal Alkenes by C-H/N-O Functionalization towards 3,4-Dihydroisoquinolines. Adv. Synth. Catal. 2019, 361, 4955–4960. [Google Scholar] [CrossRef]
- Sosnovskikh, V.Y.; Usachev, B.I.; Shklyaev, Y.V. Reactions of 1,3,3-trimethyl-3,4-dihydroisoquinolines with polyhaloalkanonitriles. Russ. Chem. B. 2004, 53, 1248–1252. [Google Scholar] [CrossRef]
- Jarvis, C.L.; Jemal, N.M.; Knapp, S.; Seidel, D. Formal [4 + 2] cycloaddition of imines with alkoxyisocoumarins. Org. Biomol. Chem. 2018, 16, 4231–4235. [Google Scholar] [CrossRef]
- Pramthaisong, C.; Worayuthakarn, R.; Pharikronburee, V.; Duangthongyou, T.; Rattanakam, R.; Ruchirawat, S.; Thasana, N. Base-Mediated Cascade Cyclization: Stereoselective Synthesis of Benzooxazocinone. Org. Lett. 2018, 20, 4015–4019. [Google Scholar] [CrossRef]
- Wang, K.-K.; Li, Y.; Zhang, W.; Chen, R.; Ma, X.; Wang, M.; Zhou, N. Facile Synthesis of Tricyclic 1,2,4-Oxadiazolines-Fused Tetrahydro-Isoquinolines from Oxime Chlorides with 3,4-Dihydroisoquinoline Imines. Molecules 2022, 27, 3064. [Google Scholar] [CrossRef]
- Wang, K.-K.; Li, Y.-L.; Wang, Z.-Y.; Ma, X.; Mei, Y.-L.; Zhang, S.-S.; Chen, R. Formal [3 + 2] cycloaddition of azomethine ylides generated in situ with unactivated cyclic imines: A facile approach to tricyclic imidazolines derivatives. J. Heterocycl. Chem. 2020, 57, 1456–1463. [Google Scholar] [CrossRef]
- Elliott, M.C.; Williams, E. Synthesis and reactions of partially reduced biisoquinolines. Org. Biomol. Chem. 2003, 1, 3038–3047. [Google Scholar] [CrossRef]
- Mbere, J.M.; Bremner, J.B.; Skelton, B.W.; White, A.H. Synthesis of new benzo[b]thieno fused ring systems via transition metal-mediated cyclisations. Tetrahedron 2011, 67, 6895–6900. [Google Scholar] [CrossRef]
- Tang, X.; Yang, M.-C.; Ye, C.; Liu, L.; Zhou, H.-L.; Jiang, X.-J.; You, X.-L.; Han, B.; Cui, H.-L. Catalyst-free [3 + 2] cyclization of imines and Morita-Baylis-Hillman carbonates: A general route to tetrahydropyrrolo [2,1-a] isoquinolines and dihydropyrrolo [2,1-a] isoquinolines. Org. Chem. Front. 2017, 4, 2128–2133. [Google Scholar] [CrossRef]
- Tang, X.; Gao, Y.-J.; Deng, H.-Q.; Lei, J.-J.; Liu, S.-W.; Zhou, L.; Shi, Y.; Liang, H.; Qiao, J.; Guo, L.; et al. Catalyst-free [3 + 2] cyclization of dihydroisoquinoline imines and isatin-derived Morita-Baylis-Hillman carbonates via 1,5-electrocyclization: Synthesis of tetrahydroisoquinoline-fused spirooxindoles. Org. Biomol. Chem. 2018, 16, 3362–3366. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-K.; Jing, J.; Zhou, W.-W.; Wang, C.; Ye, J.-W.; Zhou, R.; Wang, T.-T.; Wang, Z.-Y.; Chen, R. Divergent Synthesis of Highly Substituted Tetrahydroquinolines and Cyclopentenes via Lewis Base Catalyzed Switchable [4 + 2] and [3 + 2] Annulations of MBH-Carbonates with Activated Olefins. J. Org. Chem. 2023, 88, 5982–5996. [Google Scholar] [CrossRef]
- Wang, K.-K.; Du, W.; Zhu, J.; Chen, Y.-C. Construction of polycyclic spirooxindoles through [3 + 2] annulations of Morita-Baylis-Hillman carbonates and 3-nitro-7-azaindoles. Chin. Chem. Lett. 2017, 28, 512–516. [Google Scholar] [CrossRef]
- Wang, K.-K.; Wang, P.; Ouyang, Q.; Du, W.; Chen, Y.-C. Substrate-controlled switchable asymmetric annulations to access polyheterocyclic skeletons. Chem. Commun. 2016, 52, 11104–11107. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-K.; Jin, T.; Huang, X.; Ouyang, Q.; Du, W.; Chen, Y.-C. alpha-Regioselective Asymmetric [3 + 2] Annulations of Morita-Baylis-Hillman Carbonates with Cyclic 1-Azadienes and Mechanism Elucidation. Org. Lett. 2016, 18, 872–875. [Google Scholar] [CrossRef] [PubMed]
- CCDC 2277407 Contains the Supplementary Crystallographic Data for This Paper. Available online: http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 31 August 2023).
- CCDC 2277406 Contains the Supplementary Crystallographic Data for This Paper. Available online: http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 30 August 2023).
Entry | Substrate | Catalyst | Solvent | Time (h) | Yield (%) b |
---|---|---|---|---|---|
1 | 1a | DABCO | CH2Cl2 | 12 | 3a, 78 |
2 | 1a | TEA | CH2Cl2 | 12 | 3a, 73 |
3 | 1a | DIPEA | CH2Cl2 | 12 | 3a, 69 |
4 | 1a | DBU | CH2Cl2 | 12 | 3a, trace |
5 | 1a | Na2CO3 | CH2Cl2 | 12 | 3a, trace |
6 | 1a | NaOH | CH2Cl2 | 12 | 3a, trace |
7 | 1a | DABCO | CHCl3 | 24 | 3a, 72 |
8 | 1a | DABCO | toluene | 24 | 3a, 36 |
9 | 1a | DABCO | CH3CN | 12 | 3a, 85 |
10 | 1a | DABCO | dioxane | 24 | 3a, trace |
11 | 1a | DABCO | THF | 24 | 3a, trace |
12 | 1a | DABCO | EtOAc | 12 | 3a, 81 |
13 c | 1a | DABCO | CH3CN | 12 | 3a, 86 |
14 | 4a | DABCO | CH3CN | 6 | 5a, 75 |
15 | 4a | / | CH3CN | 6 | 5a, 78 |
16 | 4a | / | CH2Cl2 | 1 | 5a, 88 |
17 | 4a | / | CHCl3 | 1 | 5a, 85 |
18 | 4a | / | EtOAc | 12 | 5a, 80 |
19 | 4a | / | Toluene | 12 | 5a, 69 |
20 | 4a | / | THF | 6 | 5a, 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Zhou, W.; Jia, J.; Ye, J.; Yuan, M.; Yang, J.; Qi, Y.; Chen, R. Substrate-Controlled Diversity-Oriented Synthesis of Novel Polycyclic Frameworks via [4 + 2] and [3 + 2] Annulations of Ninhydrin-Derived MBH Adducts with 3,4-Dihydroisoquinolines. Molecules 2023, 28, 6761. https://doi.org/10.3390/molecules28196761
Wang K, Zhou W, Jia J, Ye J, Yuan M, Yang J, Qi Y, Chen R. Substrate-Controlled Diversity-Oriented Synthesis of Novel Polycyclic Frameworks via [4 + 2] and [3 + 2] Annulations of Ninhydrin-Derived MBH Adducts with 3,4-Dihydroisoquinolines. Molecules. 2023; 28(19):6761. https://doi.org/10.3390/molecules28196761
Chicago/Turabian StyleWang, Kaikai, Wenwen Zhou, Jun Jia, Junwei Ye, Mengxin Yuan, Jie Yang, Yonghua Qi, and Rongxiang Chen. 2023. "Substrate-Controlled Diversity-Oriented Synthesis of Novel Polycyclic Frameworks via [4 + 2] and [3 + 2] Annulations of Ninhydrin-Derived MBH Adducts with 3,4-Dihydroisoquinolines" Molecules 28, no. 19: 6761. https://doi.org/10.3390/molecules28196761
APA StyleWang, K., Zhou, W., Jia, J., Ye, J., Yuan, M., Yang, J., Qi, Y., & Chen, R. (2023). Substrate-Controlled Diversity-Oriented Synthesis of Novel Polycyclic Frameworks via [4 + 2] and [3 + 2] Annulations of Ninhydrin-Derived MBH Adducts with 3,4-Dihydroisoquinolines. Molecules, 28(19), 6761. https://doi.org/10.3390/molecules28196761