Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Biology
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. General Procedure for the Synthesis of Thienopyrimidinones
- General procedure for synthesis of compounds 10–12, 19–22, 24, 25, 27 and 28.
4.1.2. Characterization Data
- 2-(2,3-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (10). Yield (%) = 87. 1H NMR (600 MHz, DMSO) δ 12.14 (bs, 1H), 7.60 (d, J = 8.1 Hz, 1H), 6.98 (dd, J = 13.3, 7.3 Hz, 1H), 6.78 (t, J = 7.9 Hz, 1H), 2.41 (s, 3H), 2.37 (s, 3H) ppm. 13C NMR (151 MHz, DMSO) δ 158.51, 147.35, 146.72, 130.02, 129.32, 121.97, 119.51, 118.85, 118.83, 115.90, 13.29, 13.09 ppm. HRMS calculated for C14H12N2O3S 288.0569 found 288.0570.
- 2-(2-hydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (11). Yield (%) = 90. 1H NMR (600 MHz, DMSO) δ 12.14 (bs, 1H), 8.11 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 2.42 (s,3H), 2.39 (s, 3H) ppm. 13C NMR (151 MHz, DMSO) δ 160.84, 158.09, 153.26, 140.98, 133.63, 129.21, 119.95, 117.90, 111.57, 13.31, 13.12 ppm. HRMS calculated for C14H12N2O2S 272.0620 found 272.0621.
- 2-(2,4-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (12). Yield (%) = 88. 1H NMR (600 MHz, DMSO) δ 12.15 (s, 1H), 8.48 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.47 (s, J = 8.5 Hz, 1H), 2.40 (s, 3H), 2.36 (s, 3H) ppm. 13C NMR (151 MHz, DMSO) δ 62.96, 162.61, 157.42, 147.02, 132.93, 132.15, 130.42, 127.63, 112.70, 103.69, 102.90, 13.30, 13.08. HRMS calculated for C14H12N2O3S 288.0620 found 288.0619.
- 2-(3,4-dihydroxyphenyl)-5-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (19). Yield (%) = 82. 1H NMR (600 MHz, DMSO) δ 12.15 (bs, 1H), 9.63 (bs, 1H), 9.22 (bs, 1H), 7.58 (d, J = 2.2 Hz, 1H), 7.50 (dd, J = 8.7, 2.2 Hz, 1H), 6.81 (d, J = 8.7 Hz, 1H), 2.84–2.59 (m, 2H), 1.82 (s, 4H), 1.66 (d, J = 11.8 Hz, 1H), 1.25 (d, J = 6.9 Hz, 3H) ppm. 13C NMR (151 MHz, DMSO) δ 163.59, 160.32, 145.94, 145.83, 143.77, 137.71, 134.62, 134.12, 122.54, 121.29, 120.86, 115.44, 31.95, 30.36, 26.57, 25.80, 22.25 ppm. HRMS calculated for C17H16N2O3S 328.0882 found 328.0880.
- 2-(3,4-dihydroxyphenyl)-5-isobutylthieno[2,3-d]pyrimidin-4(3H)-one (20). Yield (%) = 80. 1H NMR (600 MHz, DMSO) δ 12.33 (bs, 1H), 9.72 (bs, 1H), 9.29 (bs, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 6.85–6.79 (m, 1H), 3.00 (d, J = 7.1 Hz, 2H), 2.09–2.01 (m, 1H), 0.93 (d, J = 6.5 Hz, 6H) ppm. 13C NMR (151 MHz, DMSO) δ 168.66, 159.34, 155.61, 150.41, 149.41, 143.77, 137.71, 134.62, 123.41, 119.99, 115.95, 115.84, 35.40, 27.66, 23.90 ppm. HRMS calculated for C16H16N2O3S 316.0882 found 316.0881.
- 2-(furan-2-yl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (21). Yield (%) = 92. 1H NMR (600 MHz, DMSO) δ 12.46 (s, 1H), 7.97 (d, J = 3.5 Hz, 1H), 7.58 (d, J = 3.5 Hz, 1H), 6.76–6.71 (m, 1H), 2.41 (s, 3H), 2.37 (s, 3H) ppm. 13C NMR (151 MHz, DMSO) δ162.53, 158.94, 156.49, 149.47, 144.38, 135.38, 129.37, 121.80, 116.11, 113.10, 109.52, 103.74, 13.32, 13.10 ppm. HRMS calculated for C12H10N2O2S 260.0463 found 260.0466.
- 5,6-dimethyl-2-(5-methylfuran-2-yl)thieno[2,3-d]pyrimidin-4(3H)-one (22). Yield (%) = 91. 1H NMR (600 MHz, DMSO) δ 12.33, 7.50, 7.50, 6.36, 6.36, 3.41, 2.52, 2.51, 2.51, 2.51, 2.50, 2.40, 2.39, 2.36 ppm. 13C NMR (151 MHz, DMSO) δ 162.53, 158.94, 156.49, 144.38, 144.14, 129.58, 129.37, 121.80, 116.11, 109.52, 13.99, 13.32, 13.10 ppm. HRMS calculated for C13H12N2O2S 260.0619 found 260.0621.
- 5,6-dimethyl-2-(thiophen-2-yl)thieno[2,3-d]pyrimidin-4(3H)-one (24). Yield (%) = 86. 1H NMR (600 MHz, DMSO) δ 12.61 (bs, 1H), 8.21 (d, J = 3.8 Hz, 1H), 7.85 (d, J = 5.1 Hz, 1H), 7.22 (ddd, J = 5.1, 3.8, 1.5 Hz, 1H), 2.41 (s, 3H), 2.37 (s, 3H) ppm. 13C NMR (151 MHz, DMSO) δ 155.26, 148.04, 147.97, 132.09, 132.03, 130.53, 130.18, 125.02, 122.61, 117.66,13.38, 13.27 ppm. HRMS calculated for C17H16N2OS3 360.0425 found 360.0428.
- 5,6-dimethyl-2-(5-nitrothiophen-2-yl)thieno[2,3-d]pyrimidin-4(3H)-one (25). Yield (%) = 93. 1H NMR (600 MHz, DMSO) δ 7.84 (d, J = 4.0 Hz, 1H), 7.80 (d, J = 4.1 Hz, 1H), 2.41 (s, 3H), 2.39 (s, 3H) ppm. 13C NMR (151 MHz, DMSO) δ13C NMR (151 MHz, DMSO) δ 169.86, 163.66, 150.00, 143.74, 133.73, 131.06, 111.07, 103.24, 13.30, 13.10 ppm. HRMS calculated for C12H9N3O3S2 307.0085 found 307.0088.
- 5,6-dimethyl-2-(1H-pyrrol-2-yl)thieno[2,3-d]pyrimidin-4(3H)-one (27). Yield (%) = 84. 1H NMR (600 MHz, DMSO) δ 12.13 (bs, 1H), 11.78 (bs, 1H), 7.28 (d, J = 3.8 Hz, 1H), 7.00 (d, J = 3.4 Hz, 1H), 6.20 (d, J = 3.4 Hz, 1H), 2.47–2.29 (m, 6H) ppm. 13C NMR (151 MHz, DMSO) δ 162.54, 158.95, 147.97, 134.24, 133.80, 129.26, 129.13, 125.28, 125.02, 13.11, 12.14 ppm. HRMS calculated for C17H17N3OS2 343.0813 found 343.0816.
- 5,6-dimethyl-2-(1-methyl-1H-pyrrol-2-yl)thieno[2,3-d]pyrimidin-4(3H)-one (28). Yield (%) = 81. 1H NMR (600 MHz, DMSO) δ 12.40 (bs, 1H), 7.16 (d, J = 13.2 Hz, 1H), 7.06 (d, J = 13.2 Hz, 1H), 6.13 (d, J = 3.2 Hz, 1H), 3.62 (s, 3H), 2.50 (s, 3H), 2.36 (s, 3H) ppm. 13C NMR (151 MHz, DMSO) δ 166.82, 152.52, 145.94, 145.83, 134.62, 134.12, 120.54, 119.99, 118.83, 115.84, 41.13, 12.07 ppm. HRMS calculated for C18H19N3OS2 357.0970 found 357.0973.
4.2. Biology
4.2.1. Expression and Purification of HIV-1 Integrase and LEDGF/p75 Proteins
4.2.2. HTRF LEDGF-Dependent Assays
4.2.3. MgCl2 Coordination Assay
4.2.4. RNase H inibitory Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Data on the Size of the HIV Epidemic. Available online: https://www.who.int/data/gho/data/themes/hiv-aids/data-on-the-size-of-the-hiv-aids-epidemic (accessed on 16 September 2023).
- Anthony, N.J. HIV-1 integrase: A target for new AIDS chemotherapeutics. Curr. Top. Med. Chem. 2004, 4, 979–990. [Google Scholar] [CrossRef]
- Dyda, F.; Hickman, A.B.; Jenkins, T.M.; Engelman, A.; Craigie, R.; Davies, D.R. Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases. Science 1994, 266, 1981–1986. [Google Scholar] [CrossRef]
- Esposito, D.; Craigie, R. HIV integrase structure and function. Adv. Virus Res. 1999, 52, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, L.; Engelman, A. Retroviral integrase proteins and HIV-1 DNA integration. J. Biol. Chem. 2012, 287, 40858–40866. [Google Scholar] [CrossRef]
- Kassahun, K.; McIntosh, I.; Cui, D.; Hreniuk, D.; Merschman, S.; Lasseter, K.; Azrolan, N.; Iwamoto, M.; Wagner, J.A.; Wenning, L.A. Metabolism and disposition in humans of Raltegravir (MK-0518), an anti-AIDS drug targeting the human immunodeficiency virus 1 integrase enzyme. Drug Metab. Dispos. 2007, 35, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.; Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D.J.; et al. Discovery of Raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 2008, 51, 5843–5855. [Google Scholar] [CrossRef]
- Marchand, C. The Elvitegravir Quad pill: The first once-daily dual-target anti-HIV tablet. Expert Opin. Investig. Drugs 2012, 21, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Mercadel, C.J.; Skelley, J.W.; Kyle, J.A.; Elmore, L.K. Dolutegravir: An integrase strand transfer inhibitor for the treatment of human immunodeficiency virus 1 in adults. J. Pharm. Technol. 2014, 30, 216–226. [Google Scholar] [CrossRef]
- Taki, E.; Soleimani, F.; Asadi, A.; Ghahramanpour, H.; Namvar, A.; Heidary, M. Cabotegravir/Rilpivirine: The last FDA-approved drug to treat HIV. Expert Rev. Anti Infect. Ther. 2022, 20, 1135–1147. [Google Scholar] [CrossRef]
- Spagnuolo, V.; Castagna, A.; Lazzarin, A. Bictegravir. Curr. Opin. HIV AIDS 2018, 13, 326–333. [Google Scholar] [CrossRef]
- Cherepanov, P.; Maertens, G.; Proost, P.; Devreese, B.; Van Beeumen, J.; Engelborghs, Y.; De Clercq, E.; Debyse, Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 2003, 278, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Busschots, K.; Vercammen, J.; Emiliani, S.; Benarous, R.; Engelborghs, Y.; Christ, F.; Debyser, Z. The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. J. Biol. Chem. 2005, 280, 17841–17847. [Google Scholar] [CrossRef]
- Cherepanov, P.; Ambrosio, A.L.; Rahman, S.; Ellenberger, T.; Engelman, A. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc. Natl. Acad. Sci. USA 2005, 102, 17308–17313. [Google Scholar] [CrossRef] [PubMed]
- Ciuffi, A.; Llano, M.; Poeschla, E.; Hoffmann, C.; Leipzig, J.; Shinn, P.; Ecker, J.R.; Bushman, F. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 2005, 11, 1287–1289. [Google Scholar] [CrossRef] [PubMed]
- Llano, M.; Saenz, D.T.; Meehan, A.; Wongthida, P.; Peretz, M.; Walker, W.H.; Teo, W.; Poeschla, E.M. An essential role for LEDGF/p75 in HIV integration. Science 2006, 314, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Shun, M.C.; Raghavendra, N.K.; Vandegraaff, N.; Daigle, J.E.; Hughes, S.; Kellam, P.; Cherepanov, P.; Engelman, A. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 2007, 21, 1767–1778. [Google Scholar] [CrossRef]
- Ferris, A.L.; Wu, X.; Hughes, C.M.; Stewart, C.; Smith, S.J.; Milne, T.A.; Wang, G.G.; Shun, M.C.; Allis, C.D.; Engelman, A.; et al. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc. Natl. Acad. Sci. USA 2010, 107, 3135–3140. [Google Scholar] [CrossRef]
- Kessl, J.J.; Jena, N.; Koh, Y.; Taskent-Sezgin, H.; Slaughter, A.; Feng, L.; de Silva, S.; Wu, L.; Le Grice, S.F.J.; Engelman, A.; et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem. 2012, 287, 16801–16811. [Google Scholar] [CrossRef]
- Jurado, K.A.; Engelman, A. Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors. Expert Rev. Mol. Med. 2013, 15, e14. [Google Scholar] [CrossRef]
- Jurado, K.A.; Wang, H.; Slaughter, A.; Feng, L.; Kessl, J.J.; Koh, Y.; Wang, W.; Ballandras-Colas, A.; Patel, P.A.; Fuchs, J.R.; et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc. Natl. Acad. Sci. USA 2013, 110, 8690. [Google Scholar] [CrossRef]
- Shkriabai, N.; Dharmarajan, V.; Slaughter, A.; Kessl, J.J.; Larue, R.C.; Feng, L.; Fuchs, J.R.; Griffin, P.R.; Kvaratskhelia, M. A critical role of the C-terminal segment for allosteric inhibitor-induced aberrant multimerization of HIV-1 integrase. J. Biol. Chem. 2014, 289, 26430–26440. [Google Scholar] [CrossRef] [PubMed]
- Koneru, P.C.; Francis, A.C.; Deng, N.; Rebensburg, S.V.; Hoyte, A.C.; Lindenberger, J.; Adu-Ampratwum, D.; Larue, R.C.; Wempe, M.F.; Engelman, A.N.; et al. HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors. eLife 2019, 8, e46344. [Google Scholar] [CrossRef]
- Feng, L.; Sharma, A.; Slaughter, A.; Jena, N.; Koh, Y.; Shkriabai, N.; Larue, R.C.; Patel, P.A.; Mitsuya, H.; Kessl, J.J.; et al. The A128T Resistance Mutation Reveals Aberrant Protein Multimerization as the Primary Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors. J. Biol. Chem. 2013, 288, 15813–15820. [Google Scholar] [CrossRef] [PubMed]
- Adu-Ampratwum, D.; Pan, Y.; Koneru, P.C.; Antwi, J.; Hoyte, A.C.; Kessl, J.; Griffin, P.R.; Kvaratskhelia, M.; Fuchs, J.R.; Larue, R.C. Identification and Optimization of a Novel HIV-1 Integrase Inhibitor. ACS Omega 2022, 7, 4482–4491. [Google Scholar] [CrossRef] [PubMed]
- Andrae-Marobela, K.; Ghislain, F.W.; Okatch, H.; Majinda, R.R. Polyphenols: A diverse class of multi-target anti-HIV-1 agents. Curr. Drug Metab. 2013, 14, 392–413. [Google Scholar] [CrossRef] [PubMed]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Ngoutane Mfopa, A.; Corona, A.; Eloh, K.; Tramontano, E.; Frau, A.; Boyom, F.F.; Caboni, P.; Tocco, G. Uvaria angolensis as a promising source of inhibitors of HIV-1 RT-associated RNA-dependent DNA polymerase and RNase H functions. Nat. Prod. Res. 2018, 32, 640–647. [Google Scholar] [CrossRef]
- Esposito, F.; Tintori, C.; Martini, R.; Christ, F.; Debyser, Z.; Ferrarese, R.; Cabiddu, G.; Corona, A.; Ceresola, E.R.; Calcaterra, A.; et al. Kuwanon-L as a New Allosteric HIV-1 Integrase Inhibitor: Molecular Modeling and Biological Evaluation. Chembiochem 2015, 16, 2507–2512. [Google Scholar] [CrossRef]
- Masaoka, T.; Chung, S.; Caboni, P.; Rausch, J.W.; Wilson, J.A.; Taskent-Sezgin, H.; Beutler, J.A.; Tocco, G.; Le Grice, S.F. Exploiting drug-resistant enzymes as tools to identify thienopyrimidinone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H. J. Med. Chem. 2013, 56, 5436–5445. [Google Scholar] [CrossRef]
- Corona, A.; Masaoka, T.; Tocco, G.; Tramontano, E.; Le Grice, S.F. Active site and allosteric inhibitors of the ribonuclease H activity of HIV reverse transcriptase. Future Med. Chem. 2013, 5, 2127–2139. [Google Scholar] [CrossRef]
- Tocco, G.; Esposito, F.; Caboni, P.; Laus, A.; Beutler, J.; Wilson, J.; Corona, A.; Le Grice, S.F.J.; Tramontano, E. Scaffold hopping and optimisation of 3′,4′-dihydroxyphenyl- containing thienopyrimidinones: Synthesis of quinazolinone derivatives as novel allosteric inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H. J. Enzym. Inhib. Med. Chem. 2020, 35, 1953–1963. [Google Scholar] [CrossRef]
- Abdelaziz, O.A.; El Husseiny, W.M.; Selim, K.B.; Eisa, H.M. Synthesis, Antitumor Activity, and In Silico Drug Design of New Thieno[2,3-d]Pyrimidine-4-One Derivatives as Nonclassical Lipophilic Dihydrofolate Reductase Inhibitors. ACS Omega 2022, 7, 45455–45468. [Google Scholar] [CrossRef]
- Mustière, R.; Lagardère, P.; Hutter, S.; Deraeve, C.; Schwalen, F.; Amrane, D.; Masurier, N.; Azas, N.; Lisowski, V.; Verhaeghe, P.; et al. Pd-catalyzed C-C and C-N cross-coupling reactions in 2-aminothieno[3,2-d]pyrimidin-4(3H)-one series for antiplasmodial pharmacomodulation. RSC Adv. 2022, 12, 20004–20021. [Google Scholar] [CrossRef] [PubMed]
- Bosson-Vanga, H.; Primas, N.; Franetich, J.F.; Lavazec, C.; Gomez, L.; Ashraf, K.; Tefit, M.; Soulard, V.; Dereuddre-Bosquet, N.; Le Grand, R.; et al. A New Thienopyrimidinone Chemotype Shows Multistage Activity against Plasmodium falciparum, Including Artemisinin-Resistant Parasites. Microbiol. Spectr. 2021, 9, e0027421. [Google Scholar] [CrossRef] [PubMed]
- Magoulas, G.E.; Kalopetridou, L.; Ćirić, A.; Kritsi, E.; Kouka, P.; Zoumpoulakis, P.; Chondrogianni, N.; Soković, M.; Prousis, K.C.; Calogeropoulou, T. Synthesis, biological evaluation and QSAR studies of new thieno[2,3-d]pyrimidin-4(3H)-one derivatives as antimicrobial and antifungal agents. Bioorg. Chem. 2021, 106, 104509. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Farghaly, A.M.; Shafik, R.M.; Elsemary, M.M.A.; Bekhit, A.E.A.; Guemei, A.A.; El-Shoukrofy, M.S.; Ibrahim, T.M. Synthesis, biological evaluation and molecular modeling of novel thienopyrimidinone and triazolothienopyrimidinone derivatives as dual anti-inflammatory antimicrobial agents. Bioorg. Chem. 2018, 77, 38–46. [Google Scholar] [CrossRef]
- Pisal, M.M.; Nawale, L.U.; Patil, M.D.; Bhansali, S.G.; Gajbhiye, J.M.; Sarkar, D.; Chavan, S.; Borate, H.B. Hybrids of thienopyrimidinones and thiouracils as anti-tubercular agents: SAR and docking studies. Eur. J. Med. Chem. 2017, 127, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef]
- Ingólfsson, H.I.; Thakur, P.; Herold, K.F.; Hobart, E.A.; Ramsey, N.B.; Periole, X.; de Jong, D.H.; Zwama, M.; Yilmaz, D.; Hall, K.; et al. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 2014, 9, 1788–1798. [Google Scholar] [CrossRef]
- Jóźwik, I.K.; Passos, D.O.; Lyumkis, D. Structural Biology of HIV Integrase Strand Transfer Inhibitors. Trends Pharmacol. Sci. 2020, 41, 611–626. [Google Scholar] [CrossRef]
- Shea, K.M. Furans and benzo[b]furans. In Palladium in Heterocyclic Chemistry. A Guide for the Synthetic Chemist; Li, J.J., Gribble, G.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 26, pp. 303–343. [Google Scholar]
- Patel, P.A.; Kvaratskhelia, N.; Mansour, Y.; Antwi, J.; Feng, L.; Koneru, P.; Kobe, M.J.; Jena, N.; Shi, G.; Mohamed, M.S.; et al. Indole-based allosteric inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett. 2016, 26, 4748–4752. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Ambrosio, F.A.; Meleddu, R.; Costa, G.; Rocca, R.; Maccioni, E.; Catalano, R.; Romeo, I.; Eleftheriou, P.; Karia, D.C.; et al. Chromenone Derivatives as a Versatile Scaffold with Dual Mode of Inhibition of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Function and Integrase Activity. Eur. J. Med. Chem. 2019, 182, 111617. [Google Scholar] [CrossRef] [PubMed]
- Sanna, C.; Rigano, D.; Corona, A.; Piano, D.; Formisano, C.; Farci, D.; Franzini, G.; Ballero, M.; Chianese, G.; Tramontano, E.; et al. Dual HIV-1 Reverse Transcriptase and Integrase Inhibitors from Limonium morisianum Arrigoni, an Endemic Species of Sardinia (Italy). Nat. Prod. Res. 2019, 33, 1798–1803. [Google Scholar] [CrossRef]
- Chung, S.; Miller, J.T.; Johnson, B.C.; Hughes, S.H.; Le Grice, S.F. Mutagenesis of human immunodeficiency virus reverse transcriptase p51 subunit defines residues contributing to vinylogous urea inhibition of ribonuclease H activity. J. Biol. Chem. 2012, 287, 4066–4075. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Wendeler, M.; Rausch, J.W.; Beilhartz, G.; Gotte, M.; O’Keefe, B.R.; Bermingham, A.; Beutler, J.A.; Liu, S.; Zhuang, X.; et al. Structure-activity analysis of vinylogous urea inhibitors of human immunodeficiency virus-encoded ribonuclease H. Antimicrob. Agents Chemother. 2010, 54, 3913–3921. [Google Scholar] [CrossRef] [PubMed]
Compound | CORE | IC50 (μM) |
---|---|---|
8 [30] | 24.4 ± 2.60 | |
10 | 12.6 ± 1.29 | |
11 | 21.96 ± 2.8 | |
12 | 22.26 ± 1.57 | |
13 | 85 ± 6.00 | |
14 | 3.7 ± 0.73 | |
RAL | 0.055 ± 0.002 |
Compound | CORE | IC50 (μM) |
---|---|---|
9 [30] | 18.3 ± 2.3 | |
15 | 24 ± 1 | |
16 | 10 ± 1.00 | |
17 | 5.65 ± 0.15 | |
18 | 3.37 ± 0.48 | |
RAL | 0.055 ± 0.002 |
Compound | STRUCTURE | IC50 (μM) |
---|---|---|
19 | 5.9 ± 0.5 | |
20 | 8.5 ± 2.5 | |
RAL | 0.055 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tocco, G.; Canton, S.; Laus, A.; Caboni, P.; Le Grice, S.F.J.; Tramontano, E.; Esposito, F. Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity. Molecules 2023, 28, 6700. https://doi.org/10.3390/molecules28186700
Tocco G, Canton S, Laus A, Caboni P, Le Grice SFJ, Tramontano E, Esposito F. Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity. Molecules. 2023; 28(18):6700. https://doi.org/10.3390/molecules28186700
Chicago/Turabian StyleTocco, Graziella, Serena Canton, Antonio Laus, Pierluigi Caboni, Stuart F. J. Le Grice, Enzo Tramontano, and Francesca Esposito. 2023. "Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity" Molecules 28, no. 18: 6700. https://doi.org/10.3390/molecules28186700
APA StyleTocco, G., Canton, S., Laus, A., Caboni, P., Le Grice, S. F. J., Tramontano, E., & Esposito, F. (2023). Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity. Molecules, 28(18), 6700. https://doi.org/10.3390/molecules28186700