Microfluidic Analysis for the Determination of Protein Content in Different Types of Plant-Based Drinks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Total Protein Content
2.2. Protein Content of Plant-Based Milk Alternatives
2.2.1. Protein Content of Cereal-Based Plant Drinks
Oat-Based Plant Drinks
Rice-Based Plant Drinks
2.2.2. Protein Content of Legume-Based Plant Drinks
Chickpea-Based Plant Drinks
Soybean-Based Plant Drinks
2.2.3. Protein Content of Nut-Based Plant Drinks
Cashew-Based Plant Drinks
Almond-Based Plant Drinks
Coconut-Based Plant Drinks
3. Materials and Methods
3.1. Plant-Based Milk Alternative Samples
3.2. Microchip Gel Electrophoresis
3.3. Structure of the Dataset
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Singhal, S.; Baker, R.D.; Baker, S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods Hum. Nutr. 2016, 72, 26–33. [Google Scholar] [CrossRef]
- Flom, J.D.; Sicherer, S.H. Epidemiology of Cow’s Milk Allergy. Nutrients 2019, 11, 1051. [Google Scholar] [CrossRef]
- Zingone, F.; Bucci, C.; Iovino, P.; Ciacci, C. Consumption of milk and dairy products: Facts and figures. Nutrition 2017, 33, 322–325. [Google Scholar] [CrossRef]
- Escobar-Sáez, D.; Montero-Jiménez, L.; García-Herrera, P.; Sánchez-Mata, M.C. Plant-based drinks for vegetarian or vegan toddlers: Nutritional evaluation of commercial products, and review of health benefits and potential concerns. Food Res. Int. 2022, 160, 111646. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers (Ver. 01/01/2018); Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- (WHO/IUIS) Allergen Nomenclature Sub-Committee. Allergen Nomenclature. Available online: http://www.allergen.org/index.php (accessed on 28 August 2023).
- Patra, T.; Olsen, K.; Rinnan, Å. A multivariate perspective on the stability of oat-based drinks assessed by spectroscopy. Food Hydrocoll. 2022, 131, 107831. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Kratzsch, A.; Sozer, N.; Drusch, S. Oat protein as plant-derived gelling agent: Properties and potential of modification. Future Foods 2021, 4, 100053. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; Yu, G.; Li, X.; Liu, H.; Liu, T.; Zhu, J. Effect of enzymatic hydrolysis on the physicochemical and emulsification properties of rice bran albumin and globulin fractions. LWT 2022, 156, 113005. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, J.; Chen, F. Heat-induced changes in the physicochemical properties and in vitro digestibility of rice protein fractions. J. Food Sci. Technol. 2021, 58, 1368–1377. [Google Scholar] [CrossRef]
- Zhu, F.C.; Jia, R.Z.; Xu, L.; Kong, H.; Guo, Y.L.; Huang, Q.X.; Zhu, Y.J.; Guo, A.P. Genome-wide analysis of potential cross-reactive endogenous allergens in rice (Oryza sativa L.). Toxicol. Rep. 2015, 2, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- FAO. Rice Market Monitor; Division, T.a.M., Ed.; FAO: Rome, Italy, 2018; Volume 21. [Google Scholar]
- Breiteneder, H.; Ebner, C. Molecular and biochemical classification of plant-derived food allergens. J. Allergy Clin. Immun. 2000, 106, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Mulalapele, L.T.; Xi, J. Detection and inactivation of allergens in soybeans: A brief review of recent research advances. Grain Oil Sci. Technol. 2021, 4, 191–200. [Google Scholar] [CrossRef]
- Afify, A.M.R.; Rashed, M.M.; Mahmoud, E.A.; El-Beltagi, H.S. Effect of Gamma Radiation on Protein Profile, Protein Fraction and Solubility’s of Three Oil Seeds: Soybean, Peanut and Sesame. Not. Bot. Horti Agrobot. 2011, 39, 90–98. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Li, A.; Liu, R.H.; Gao, X.; Li, D.; Kou, X.; Xue, Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res. Int. 2021, 150, 110790. [Google Scholar] [CrossRef]
- Grasso, N.; Bot, F.; Roos, Y.H.; Crowley, S.V.; Arendt, E.K.; O’Mahony, J.A. The influence of protein concentration on key quality attributes of chickpea-based alternatives to cheese. Curr. Res. Food Sci. 2022, 5, 2004–2012. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Favero, B.T.; Morzelle, M.C.; Franchin, M.; Alvarez-Parrilla, E.; de la Rosa, L.A.; Geraldi, M.V.; Maróstica Júnior, M.R.; Shahidi, F.; Schwember, A.R. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int. J. Mol. Sci. 2019, 20, 2644. [Google Scholar] [CrossRef]
- De Angelis, E.; Bavaro, S.; Forte, G.; Pilolli, R.; Monaci, L. Heat and Pressure Treatments on Almond Protein Stability and Change in Immunoreactivity after Simulated Human Digestion. Nutrients 2018, 10, 1679. [Google Scholar] [CrossRef]
- Geiselhart, S.; Hoffmann-Sommergruber, K.; Bublin, M. Tree nut allergens. Mol. Immunol. 2018, 100, 71–81. [Google Scholar] [CrossRef]
- Patil, U.; Benjakul, S. Coconut Milk and Coconut Oil: Their Manufacture Associated with Protein Functionality. J. Food Sci. 2018, 83, 2019–2027. [Google Scholar] [CrossRef]
- Kwon, K.; Park, K.H.; Rhee, K.C. Fractionation and Characterization of Proteins from Coconut (Cocos nucifera L.). J. Agric. Food Chem. 1996, 44, 1741–1745. [Google Scholar] [CrossRef]
- Garcia, R.N.; Arocena, R.V.; Laurena, A.C.; Tecson-Mendoza, E.M. 11S and 7S globulins of coconut (Cocos nucifera L.): Purification and characterization. J. Agric. Food Chem. 2005, 53, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Stutius, L.M.; Sheehan, W.J.; Rangsithienchai, P.; Bharmanee, A.; Scott, J.E.; Young, M.C.; Dioun, A.F.; Schneider, L.C.; Phipatanakul, W. Characterizing the relationship between sesame, coconut, and nut allergy in children. Pediatr. Allergy Immunol. 2010, 21, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Y.; Zhang, Y.; Xu, J.; Gao, G. Antioxidant Activity of Coconut (Cocos nucifera L.) Protein Fractions. Molecules 2018, 23, 707. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Peng, Q.; Zhong, J.Z.; Liu, W.; Zhong, Y.J.; Wang, F. Molecular and Functional Properties of Protein Fractions and Isolate from Cashew Nut (Anacardium occidentale L.). Molecules 2018, 23, 393. [Google Scholar] [CrossRef]
- Arasi, S.; Nurmatov, U.; Dunn-Galvin, A.; Daher, S.; Roberts, G.; Turner, P.J.; Shinder, S.B.; Gupta, R.; Eigenmann, P.; Nowak-Wegrzyn, A.; et al. Consensus on DEfinition of Food Allergy SEverity (DEFASE) an integrated mixed methods systematic review. World Allergy Organ. J. 2021, 14, 100503. [Google Scholar] [CrossRef]
- Hueso, D.; Fontecha, J.; Gómez-Cortés, P. Comparative study of the most commonly used methods for total protein determination in milk of different species and their ultrafiltration products. Front. Nutr. 2022, 9, 925565. [Google Scholar] [CrossRef]
- Bonke, A.; Sieuwerts, S.; Petersen, I.L. Amino Acid Composition of Novel Plant Drinks from Oat, Lentil and Pea. Foods 2020, 9, 429. [Google Scholar] [CrossRef]
- Ciabotti, S.; Silva, A.C.B.B.; Juhasz, A.C.P.; Mendonca, C.D.; Tavano, O.L.; Mandarino, J.M.G.; Goncalves, C.A.A. Chemical composition, protein profile, and isoflavones content in soybean genotypes with different seed coat colors. Int. Food Res. J. 2016, 23, 621–629. [Google Scholar]
- Blazek, V.; Caldwell, R.A. Comparison of SDS gel capillary electrophoresis with microfluidic lab-on-a-chip technology to quantify relative amounts of 7S and 11S proteins from 20 soybean cultivars. Int. J. Food Sci. Technol. 2009, 44, 2127–2134. [Google Scholar] [CrossRef]
- Agilent Technologies. Quantification Strategies Using the High Sensitivity Protein 250 Assay for the Agilent 2100 Bioanalyze; Technical Note; Agilent Technologies: Santa Clara, CA, USA, 2016; 5989-8941EN. [Google Scholar]
- Mäkinen, O.E.; Sozer, N.; Ercili-Cura, D.; Poutanen, K. Protein from Oat. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017; pp. 105–119. [Google Scholar]
- Wang, F.; Robotham, J.M.; Teuber, S.S.; Tawde, P.; Sathe, S.K.; Roux, K.H. Ana o 1, a cashew (Anacardium occidental) allergen of the vicilin seed storage protein family. J. Allergy Clin. Immun. 2002, 110, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Kabasser, S.; Hafner, C.; Chinthrajah, S.; Sindher, S.B.; Kumar, D.; Kost, L.E.; Long, A.J.; Nadeau, K.C.; Breiteneder, H.; Bublin, M. Identification of Pru du 6 as a potential marker allergen for almond allergy. Allergy 2020, 76, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
Product | Measured TP | Nominal TP | |
---|---|---|---|
g/100 mL | |||
Oat (n = 6) | 2.0 (1.9–3.2) | 1.4 | |
Rice (n = 12) | 0.35 (0.25–0.4) | 0.2 | |
Chickpea (n = 6) | 2.6 (2.2–2.8) | 2.0 | |
Soy * (n = 30) | Brand 1 (n = 6) | 4.6 (3.95–5.0) | 3.6 |
Brand 2 (n = 6) | 4.7 (4.7–5.1) | 4.1 | |
Brand 3 (n = 6) | 4.3 (3.85–4.35) | 3.5 | |
Brand 4 (n = 6) | 3.8 (3.5–4.05) | 2.6 | |
Brand 5 (n = 6) | 4.2 (4.1–4.6) | 3.2 | |
Coconut (n = 6) | 2.0 (1.7–2.8) | 1.7 | |
Cashew (n = 18) | 1.8 (1.75–1.85) | 1.0 | |
Almond (n = 6) | 2.6 (1.9–2.8) | 1.1 |
Cereal-Based Plant Drinks | MW (kDa) | Migration Time (s) | % of Total TCA | |
---|---|---|---|---|
Oat (n = 6) | fraction 1 | 9.1 (8.8–9.2) | 21.4 (21.4–21.4) | 12.7 (10.9–13.0) |
fraction 2 | 24.0 (23.6–25.1) | 25.2 (24.9–25.3) | 51.8 (50.5–54.8) | |
fraction 3 | 53.6 (51.1–53.7) | 28.8 (28.8–29.2) | 35.0 (32.3–38.3) | |
Rice (n = 12) | Brand 1 (n = 6) | |||
fraction 1 | 14.4 (14.1–15.1) | 23.9 (23.7–24.2) | 83.2 (82.9–84.7) | |
fraction 2 | 38.3 (35.7–40.7) | 27.7 (27.1–28.0) | 16.9 (15.3–17.1) | |
Brand 2 (n = 6) | ||||
fraction 1 | 14.6 (14.1–14.8) | 24.0 (23.9–24.1) | 75.6 (75.0–76.2) | |
fraction 2 | 39.0 (36.3–41.0) | 27.8 (27.4–28.0) | 24.4 (21.3–25.3) |
Legume-Based Plant Drink | MW (kDa) | Migration Time (s) | % of Total TCA | |
---|---|---|---|---|
Chickpeas (n = 6) | fraction 1 | 13.5 (12.6–13.5) | 23.1 (22.7–23.1) | 2.3 (2.1–2.3) |
fraction 2 | 22.7 (22.4–22.7) | 24.7 (24.6–24.7) | 63.9 (57.1–64.5) | |
fraction 3 | 43.7 (43.6–44.5) | 27.5 (27.4–27.6) | 27.0 (24.2–29.9) | |
fraction 4 | 63.6 (62.3–64.3) | 29.8 (29.6–30.1) | 12.3 (9.1–13.4) | |
Soy (n = 30) | Brand 1 (n = 6) | |||
fraction 1 | 13.5 (13.4–13.8) | 23.1 (23.1–23.3) | 5.2 (4.1–5.8) | |
fraction 2 | 23.0 (23.0–23.9) | 24.9 (24.9–25.2) | 29.8 (27.4–31.2) | |
fraction 3 | 42.4 (41.9–42.7) | 27.6 (27.5–27.8) | 43.0 (37.0–49.4) | |
fraction 4 | 58.8 (57.7–59.5) | 29.7 (29.6–30.1) | 6.7 (5.9–6.8) | |
fraction 5 | 91.3 (88.8–93.2) | 32.5 (32.3–33.0) | 22.5 (12.7–23.3) | |
Brand 2 (n = 6) | ||||
fraction 1 | 13.8 (13.7–14.3) | 23.4 (23.3–23.5) | 2.1 (2.0–2.6) | |
fraction 2 | 24.1 (24.0–24.5) | 25.2 (25.1–25.3) | 20.7 (20.1–27.5) | |
fraction 3 | 45.7 (45.4–45.7) | 28.0 (28.0–28.2) | 36.6 (32.2–38.3) | |
fraction 4 | 59.3 (58.6–59.7) | 29.9 (29.8–30.0) | 12.6 (11.9–13.2) | |
fraction 5 | 91.4 (90.0–92.5) | 32.7 (32.6–32.9) | 24.9 (24.3–26.5) | |
Brand 3 (n = 6) | ||||
fraction 1 | 13.0 (12.8–13.4) | 23.2 (23.0–23.2) | 4.4 (4.2–5.8) | |
fraction 2 | 21.0 (20.6–22.4) | 25.0 (24.9–25.0) | 33.6 (33.3–35.3) | |
fraction 3 | 37.1 (36.2–39.2) | 27.5 (27.3–27.5) | 37.7 (36.5–38.6) | |
fraction 4 | 52.4 (51.5–55.1) | 29.7 (29.5–29.7) | 8.4 (6.7–8.5) | |
fraction 5 | 84.1 (81.4–89.2) | 32.9 (32.7–33.0) | 16.3 (13.7–17.5) | |
Brand 4 (n = 6) | ||||
fraction 1 | 13.1 (13.0–13.7) | 23.2 (23.2–23.3) | 7.8 (5.1–8.0) | |
fraction 2 | 19.9 (19.7–22.5) | 25.0 (24.8–25.1) | 26.5 (17.5–32.6) | |
fraction 3 | 38.7 (37.0–40.8) | 27.4 (27.3–27.5) | 51.6 (48.3–53.4) | |
fraction 4 | 51.0 (51.0–55.7) | 29.4 (29.2–29.6) | 6.7 (5.1–7.5) | |
fraction 5 | 73.1 (73.1–74.3) | 31.7 (31.3–31.8) | 13.6 (6.9–18.7) | |
Brand 5 (n = 6) | ||||
fraction 1 | 12.4 (12.4–12.9) | 22.8 (22.7–23.1) | 5.0 (5.0–5.3) | |
fraction 2 | 20.6 (20.6–21.9) | 24.8 (24.8–25.1) | 32.1 (31.9–39.3) | |
fraction 3 | 36.6 (36.6–38.3) | 27.4 (27.4–27.7) | 38.2 (36.5–38.5) | |
fraction 4 | 52.4 (52.2–54.5) | 29.7 (29.7–30.0) | 8.2 (8.0–9.2) | |
fraction 5 | 78.6 (75.2–82.6) | 32.7 (32.4–33.0) | 13.6 (8.0–17.0) |
Nut-Based Plant Drinks | MW (kDa) | Migration Time (s) | % of Total TCA | |
---|---|---|---|---|
Cashew (n = 6) | fraction 1 | 10.2 (9.3–10.4) | 21.9 (21.6–22.0) | 2.4 (1.4–2.5) |
fraction 2 | 12.5 (12.5–12.6) | 22.8 (22.7–22.8) | 1.9 (1.9–4.1) | |
fraction 3 | 23.7 (23.4–23.8) | 25.0 (25.0–25.1) | 68.9 (66.6–69.3) | |
fraction 4 | 42.9 (42.6–43.6) | 27.9 (27.9–27.9) | 24.0 (22.6–24.2) | |
fraction 5 | 59.1 (59.0–60.3) | 30.1 (30.1–30.1) | 4.7 (3.5–4.7) | |
Almond (n = 12) | Brand 1 (n = 6) | |||
fraction 1 | 14.0 (13.9–14.2) | 23.4 (23.3–23.4) | 1.9 (1.8–2.3) | |
fraction 2 | 21.8 (21.7–22.4) | 24.9 (24.8–25.0) | 31.3 (27.0–33.9) | |
fraction 3 | 41.6 (41.2–42.8) | 27.8 (27.7–28.0) | 17.5 (15.9–17.9) | |
fraction 4 | 52.7 (52.2–54.3) | 29.3 (29.2–29.4) | 12.4 (12.0–13.1) | |
fraction 5 | 58.3 (58.0–61.9) | 30.0 (30.0–30.2) | 38.1 (34.9–40.7) | |
Brand 2 (n = 6) | ||||
fraction 1 | 13.8 (13.8–13.9) | 23.2 (23.2–23.3) | 4.2 (3.1–4.4) | |
fraction 2 | 21.8 (21.4–21.8) | 24.7 (24.7–24.8) | 27.6 (23.9–29.4) | |
fraction 3 | 42.2 (41.9–42.4) | 27.8 (27.6–27.8) | 14.3 (13.8–14.5) | |
fraction 4 | 52.1 (52.0–53.6) | 29.1 (29.1–29.2) | 14.3 (12.9–15.3) | |
fraction 5 | 57.7 (57.4–59.4) | 29.9 (29.9–29.9) | 41.2 (37.9–45.6) | |
Coconut (n = 18) | Brand 1 (n = 6) | |||
fraction 1 | 12.2 (12.2–12.3) | 22.6 (22.5–22.6) | 1.5 (0.5–2.5) | |
fraction 2 | 21.5 (21.4–21.6) | 24.6 (24.6–4.8) | 21.5 (20.4–23.1) | |
fraction 3 | 34.5 (34.2–34.8) | 26.7 (26.6–27.0) | 23.9 (21.3–24.5) | |
fraction 4 | 75.4 (73.4–78.2) | 30.7 (30.7–30.8) | 48.3 (45.0–49.7) | |
fraction 5 | 136.5 (128.2–143.0) | 35.8 (35.7–35.8) | 5.0 (4.5–5.1) | |
Brand 2 (n = 6) | ||||
fraction 1 | 12.1 (11.7–12.3) | 22.6 (22.5–22.6) | 1.9 (1.0–2.2) | |
fraction 2 | 21.2 (19.5–22.6) | 24.7 (24.7–24.8) | 30.1 (24.3–34.3) | |
fraction 3 | 34.7 (30.9–38.2) | 26.9 (26.6–27.2) | 36,1 (33.3–43.2) | |
fraction 4 | 75.7 (57.4–74.2) | 31.0 (30.4–31.7) | 29.8 (18.5–36.1) | |
fraction 5 | 135.5 (127.0–139.9) | 35.6 (35.6–35.7) | 2.1 (1.5–3.6) | |
Brand 3 (n = 6) | ||||
fraction 1 | 12.2 (12.2–12.3) | 22.6 (22.6–22.6) | 1.6 (1.0–1.7) | |
fraction 2 | 22.5 (22.4–22.7) | 24.6 (24.6–24.7) | 23.2 (15.3–24.7) | |
fraction 3 | 38.7 (38.7–38.9) | 26.7 (26.7–26.7) | 19.0 (14.5–22.6) | |
fraction 4 | 75.7 (75.5–76.1) | 30.5 (30.5–30.6) | 44.2 (38.1–60.3) | |
fraction 5 | 138.2 (138.0–139.0) | 35.7 (35.7–35.8) | 11.9 (8.9–12.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogh-Hartmann, F.; Páger, C.; Bufa, A.; Madarászné Horváth, I.; Verzár, Z.; Marosvölgyi, T.; Makszin, L. Microfluidic Analysis for the Determination of Protein Content in Different Types of Plant-Based Drinks. Molecules 2023, 28, 6684. https://doi.org/10.3390/molecules28186684
Balogh-Hartmann F, Páger C, Bufa A, Madarászné Horváth I, Verzár Z, Marosvölgyi T, Makszin L. Microfluidic Analysis for the Determination of Protein Content in Different Types of Plant-Based Drinks. Molecules. 2023; 28(18):6684. https://doi.org/10.3390/molecules28186684
Chicago/Turabian StyleBalogh-Hartmann, Fruzsina, Csilla Páger, Anita Bufa, Ibolya Madarászné Horváth, Zsófia Verzár, Tamás Marosvölgyi, and Lilla Makszin. 2023. "Microfluidic Analysis for the Determination of Protein Content in Different Types of Plant-Based Drinks" Molecules 28, no. 18: 6684. https://doi.org/10.3390/molecules28186684
APA StyleBalogh-Hartmann, F., Páger, C., Bufa, A., Madarászné Horváth, I., Verzár, Z., Marosvölgyi, T., & Makszin, L. (2023). Microfluidic Analysis for the Determination of Protein Content in Different Types of Plant-Based Drinks. Molecules, 28(18), 6684. https://doi.org/10.3390/molecules28186684