Maltodextrin as a Drying Adjuvant in the Lyophilization of Tropical Red Fruit Blend
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Red Fruit Blend Powders
2.2. Bioactive Compounds
2.3. Color Measurement
2.4. Physical Characterization
3. Materials and Methods
3.1. Raw Materials and Processing
3.2. Preparation of Formulations and Lyophilization
3.3. Characterization of Lyophilized Blend Formulation Powders
3.3.1. Physicochemical Characterization
3.3.2. Bioactive Compounds
3.3.3. Color Measurement
3.3.4. Physical Characterization
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Costa, J.N.; Nascimento, L.G.L.; Leal, A.R.; Danalache, F.; Leite, B.S.M.; Figueiredo, R.W.; Sousa, P.H.M. Effect of agar and gellan gum on structured guava (Psidium guajava L.): Rheological behavior and gastrointestinal digestion in vitro. Food Biosci. 2021, 42, 101165. [Google Scholar] [CrossRef]
- Suwanwong, Y.; Boonpangrak, S. Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in Thailand. Eur. J. Integr. Med. 2021, 42, 101290. [Google Scholar] [CrossRef]
- Qamar, H.; Rehman, S.; Chauhan, D.K. Current status and future perspective for research on medicinal plants with anticancerous activity and minimum cytotoxic value. Curr. Drug Targets 2019, 20, 1227–1243. [Google Scholar] [CrossRef]
- Cipriano, R.R.; Maia, B.H.; Deschamps, C. Chemical variability of essential oils of Eugenia uniflora L. genotypes and their antioxidant activity. An. Acad. Bras. Ciênc. 2021, 93, 1. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Devkota, H.P.; Hassan, H.A.; Ahluwalia, S.; Ramadan, M.F.; Mocan, A.; Atanasov, A.G. Phytopharmacology of acerola (Malpighia spp.) and its potential as functional food. Trends Food Sci. Technol. 2018, 74, 99–106. [Google Scholar] [CrossRef]
- Gomes, A.C.A.; Lima, M.C.; Oliveira, K.Á.R.; Lima, M.S.; Magnani, M.; Câmara, M.P.S.; Souza, E.L. Coatings with chitosan and phenolic-rich extract from acerola (Malpighia emarginata DC) or jabuticaba (Plinia jaboticaba (Vell.) Berg) processing by-product to control rot caused by Lasiodiplodia spp. in papaya (Carica papaya L.) fruit. Int. J. Food Microbiol. 2020, 331, 108694. [Google Scholar] [CrossRef] [PubMed]
- Horta, R.N.; Kahl, V.F.S.; Sarmento, M.D.S.; Nunes, M.F.S.; Porto, C.R.M.; Andrade, V.M.D.; Silva, J.D. Protective effects of acerola juice on genotoxicity induced by iron in vivo. Genet. Mol. Biol. 2016, 39, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Bochnak-Niedźwiecka, J.; Świeca, M. Quality of new functional powdered beverages enriched with lyophilized fruits: Potentially bioaccessible antioxidant properties, nutritional value, and consumer analysis. Appl. Sci. 2020, 10, 3668. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Fong-In, S.; Kawai, K. Optimum physical properties of fruit puree for freeze-drying: Effect of pulp content on freeze-concentrated glass transition temperature and yield stress of Mango puree. J. Food Eng. 2021, 307, 110649. [Google Scholar] [CrossRef]
- Rivas, J.C.; Cabral, L.M.C.; Rocha-Leão, M.H.M.D. Microencapsulation of guava pulp using prebiotic wall material. Braz. J. Food Technol. 2021, 24, 202. [Google Scholar] [CrossRef]
- Araújo, T.M.R.; Farias, M.D.L.; Afonso, M.R.A.; Costa, J.M.C.D.; Eça, K.S. Maltodextrin on the flow properties of green coconut (Cocos nucifera L.) pulp powder. Ciênc. Agrotecnol. 2020, 44, e003220. [Google Scholar] [CrossRef]
- Sturm, L.; Črnivec, I.G.O.; Istenič, K.; Ota, A.; Megušar, P.; Slukan, A.; Ulrih, N.P. Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food Bioprod. Process. 2019, 116, 196–211. [Google Scholar] [CrossRef]
- Kahraman, O.; Feng, H. Continuous-flow manothermosonication treatment of apple-carrot juice blend: Effects on juice quality during storage. LWT 2021, 137, 110360. [Google Scholar] [CrossRef]
- Barroso, A.J.R.; Almeida, F.A.C.; Silva, L.M.M.; Castro, D.S.; Figueiredo Neto, A. Influence of maltodextrin on physicochemical characteristics of lyophilized mangaba pulp. J. Agric. Sci. 2017, 9, 253–258. [Google Scholar] [CrossRef]
- Andrade, R.O.; Ferreira, N.L.B.; Lima, G.S.; Lima, A.R.C.; Figueiredo, C.F.V.; Lima, E.H.S.; Vilela, A.F. Comportamento higroscópico da polpa de Araçá-boi (Eugenia stipitata) em pó obtida pelo método de liofilização com diferentes concentrações de maltodextrina. Res. Soc. Dev. 2021, 10, e24810916515. [Google Scholar] [CrossRef]
- Rahman, M.S. Water activity and glass transition of foods. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Costa, L.O.; Lara, J.M.; Costa, J.M.C.D.; Afonso, M.R.A.; Rodrigues, S.; Wurlitzer, N.J. Stability and microstructure of powdered pulp of the Palmer mango obtained by the process of lyophilisation. Rev. Ciênc Agron. 2019, 50, 251–258. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; Pereira, T.S.; Silva, V.M.A.; Cabral, M.B.; Barros, E.R.; Souza, N.C.; Luiz, M.R.; Amorim, F.V.; Silva, L.R.I. Determinação de compostos bioativos e composição físico-química da farinha da casca de jabuticaba obtida por secagem convectiva e liofilização. Res. Soc. Dev. 2020, 9, e157911876. [Google Scholar] [CrossRef]
- Silva, M.J.S.; Rocha, A.P.T.; Santos, D.C.; Araújo, A.S.; Oliveira, M.N. Caracterização físico-química de blend de abacaxi com acerola obtido pelo método de liofilização. Rev. Verde Agroecol. Desenvolv. Sustent. 2016, 11, 110–113. [Google Scholar] [CrossRef]
- Ermis, E.; Güner, K.Ö.; Yilmaz, M.T. Characterization of hazelnut milk powders: A comparison of spray-drying and freeze-drying. Int. J. Food Eng. 2018, 14, e20180085. [Google Scholar] [CrossRef]
- Maciel, R.M.G.; Lima, S.B.; Costa, J.M.C.; Afonso, M.R.A. Influência da maltodextrina nas propriedades de escoamento do pó da polpa de cupuaçu. Braz. J. Dev. 2020, 6, 5829–5839. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilância Sanitária. Resolução RDC no. 269, de 22 de Setembro de 2005. Regulamento Técnico sobre a Ingestão Diária Recomendada (IDR) de Proteína, Vitaminas e Minerais. In Diário Oficial da República Federativa do Brasil; Poder Executivo: Brasília, DF, Brazil, 2005. [Google Scholar]
- Oliveira, J.D.S.; Silva, R.S.; Silva, M.T. Caracterização química e funcional de polpa de Cubiu (Solanun sensiflorum Dunal) liofilizada para consumo em cápsulas. Res. Soc. Dev. 2021, 10, e380101421993. [Google Scholar] [CrossRef]
- Hamid; Thakur, N.S.; Thakur, A. Microencapsulation of wild pomegranate flavedo phenolics by lyophilization: Effect of maltodextrin concentration, structural morphology, functional properties, elemental composition and ingredient for development of functional beverage. LWT 2020, 133, 110077. [Google Scholar] [CrossRef]
- Detoni, E.; Kalschne, D.L.; Bendendo, A.; Silva, N.K.; Leite, O.D.; Rodrigues, A.C. Guabijú (Myrcianthes pungens): Characterization of in natura and lyophilized Brazilian berry. Res. Soc. Dev. 2021, 10, e37810313337. [Google Scholar] [CrossRef]
- Matos, J.D.P.; Figueirêdo, R.M.F.; Queiroz, A.J.M.; Silva, L.P.F.R.; Silva, S.N.; Moraes, M.S.; Santos, F.S.; Rodrigues, L.M.S.; Gouveia, J.P.G. Drying in foam mat of mixed pulp of jambolan (Syzygium cumini L.) and acerola (Malpighia emarginata D. C.): Effect of additives and temperature. Aust. J. Crop Sci. 2022, 16, 121–127. [Google Scholar] [CrossRef]
- Souza, V.R.D.; Pereira, P.A.P.; Queiroz, F.; Borges, S.V.; Carneiro, J.D.D.S. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chem. 2012, 134, 381–386. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Tavares, I.M.C.; Castilhos, M.B.M.; Mauro, M.A.; Ramos, A.M.; Souza, R.T.; Gómez-Alonso, S.; Gomes, E.; Silva, R.; Hermosín-Gutiérrez, I.; Lago-Vanzela, E.S. BRS Violeta (BRS Rúbea x IAC 1398-21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chem. 2019, 298, e124971. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, R.M.; Figueirêdo, R.M.F.; Queiroz, A.J.M.; Silva, R.C.; Oliveira, E.N.A.; Moreira, I.S. Evaluation of lyophilized myrtle pulp powder stability during storage. J. Agric. Stud. 2020, 8, 138–152. [Google Scholar] [CrossRef]
- Menezes Filho, A.C.P.; Castro, C.F.S. Physicochemical and technological evaluation of flours obtained from fruits residues. Rev. Eixo 2020, 9, 4–16. [Google Scholar]
- Mendonça, A.P.; Silva, L.M.M.; Sousa, F.C.; Silva, J.R.; Rosa, J.C. Modelagem matemática das curvas de secagem de sementes de duas espécies de andiroba. Rev. Eng. Na Agric. 2019, 27, 293–303. [Google Scholar] [CrossRef]
- Silva, M.I.; Martins, J.N.; Alves, J.E.A.; Costa, F.F.P. Caracterização físico-química da polpa de umbu em camada de espuma. Rev. Semiárido Visu 2015, 3, 82–91. [Google Scholar] [CrossRef]
- Bhusari, S.N.; Muzaffar, K.; Kumar, P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol. 2014, 266, 354364. [Google Scholar] [CrossRef]
- Santhalakshmy, S.; Bosco, S.J.D.; Francis, S.; Sabeena, M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol. 2015, 274, 37–43. [Google Scholar] [CrossRef]
- Alves, T.B.; Afonso, M.R.A.; Costa, J.M.C. Efeitos da adição de agentes carreadores sobre o pó da polpa de pitaia vermelha (H. polyrhizus) liofilizada. Res. Soc. Dev. 2020, 9, e950986105. [Google Scholar] [CrossRef]
- Mar, J.M.; Silva, L.S.; Lira, A.C.; Kinupp, V.F.; Yoshida, M.I.; Moreira, W.P.; Bruginski, E.; Campos, F.R.; Machado, M.B.; Souza, T.P.; et al. Bioactive compounds-rich powders: Influence of different carriers and drying techniques on the chemical stability of the Hibiscus acetosella extract. Powder Technol. 2019, 360, 383–391. [Google Scholar] [CrossRef]
- Rocha, F.O.; Afonso, M.R.A.; Costa, J.M.C.; Rybka, A.C.P.; Wurlitzer, N.J. Influência da maltodextrina nas propriedades de escoamento do pó de manga. Hig. Aliment. 2017, 31, 4372–4376. [Google Scholar]
- Geldart, D.; Abdullah, E.C.; Hassanpour, A.; Nwoke, L.C.; Wouters, I. Characterization of powder flowability using measurement of angle of repose. China Particuology 2006, 4, 104–107. [Google Scholar] [CrossRef]
- Pandey, S.; Poonia, A.; Rai, S. Optimization of spray drying conditions for the production of quality ber (Zizyphus mauritiana Lamk.) fruit powder. Nutr. Food Sci. 2019, 49, 10881098. [Google Scholar] [CrossRef]
- Seerangurayar, T.A.; Manickavasaga, N.B.; Abdulrahim, M.A.; Yaseen, A.A. Effect of carrier agents on physicochemical properties of foam mat freeze dried date powder. Dry. Technol. 2018, 36, 12921303. [Google Scholar] [CrossRef]
- Ribeiro, L.C.; Costa, J.M.C.; Afonso, M.R.A. Hygroscopic behavior of lyophilized acerola pulp powder. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 269274. [Google Scholar] [CrossRef]
- Custódio, G.R.; Souza, L.F.G.; Nitz, M.; Andreola, K. A protein powder agglomeration process using açaí pulp as the binder: An analysis of the process parameters. Adv. Powder Technol. 2020, 31, 35513561. [Google Scholar] [CrossRef]
- Zotarelli, M.F.; Silva, V.M.; Durigon, A.; Hubinger, M.D.; Laurindo, J.B. Production of mango powder by spray drying and cast-tape drying. Powder Technol. 2017, 305, 447–454. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 20th ed.; AOAC: Washington, DC, SUA, 2016; p. 3100. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Oliveira, R.G.; Godoy, H.T.; Prado, M.A. Optimization of a colorimetric method to determine ascorbic acids in fruit jelly. Food Sci. Technol. 2010, 30, 244–249. [Google Scholar] [CrossRef]
- Waterhouse, A. Folin-ciocalteau micro method for total phenol in wine. Am. J. Enol. Vitic. 2006, 48, 357–363. [Google Scholar]
- Francis, F.J. Analysis of anthocyanins in foods. In Anthocyanins as Food Colors; Markakis, P., Ed.; Academic Press: New York, NY, SUA, 1982; pp. 181–207. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigment photosynthetic biomembranes. Meth. Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon. Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Schubert, H. Food particle technology. Part I: Properties of particles and particles food systems. J. Food Eng. 1993, 6, 1–30. [Google Scholar] [CrossRef]
- Aulton, M.E. Delineamento de Formas Farmacêuticas, 2nd ed.; Artmed: Porto Alegre, Brazil, 2005; 677p. [Google Scholar]
- Goula, A.M.; Karapantsios, T.D.; Achilias, D.S.; Adamopoulos, K.G. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J. Food Eng. 2008, 85, 73–83. [Google Scholar] [CrossRef]
- Tonon, R.V. Secagem por Atomização do Suco de Açaí: Influência das Variáveis de Processo, Qualidade e Estabilidade do Produto. Ph.D. Thesis, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, Brazil, 2009. [Google Scholar]
- Silva, F.A.S.; Azevedo, C.A.V. The Assistat Software version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 2016, 11, 3733–3740. [Google Scholar] [CrossRef]
Parameters | BL0 | BL10 | BL20 | BL30 |
---|---|---|---|---|
Water content 1 | 18.11 ± 0.46 a | 8.67 ± 0.23 b | 6.23 ± 0.18 c | 5.42 ± 0.20 d |
Water activity (aw) | 0.366 ± 0.04 a | 0.354 ± 0.03 b | 0.246 ± 0.01 c | 0.243 ± 0.02 c |
pH | 3.71 ± 0.04 a | 3.64 ± 0.03 b | 3.67 ± 0.02 ab | 3.69 ± 0.01 ab |
Total titratable acidity 2 | 14.36 ± 0.11 a | 7.99 ± 0.11 b | 7.32 ± 0.07 c | 7.15 ± 0.11 c |
Ashes 3 | 3.80 ± 0.10 a | 2.04 ± 0.06 b | 1.34 ± 0.02 c | 0.98 ± 0.01 d |
Total sugars 3 | 18.89 ± 0.08 d | 20.51 ± 0.92 c | 21.57 ± 0.15 b | 24.84 ± 0.24 a |
Reducing sugars 3 | 4.85 ± 0.09 a | 2.91 ± 0.04 b | 2.24 ± 0.08 c | 1.89 ± 0.07 d |
Parameters | BL0 | BL10 | BL20 | BL30 |
---|---|---|---|---|
Ascorbic acid 1 | 15,563.92 ± 4.65 a | 10,721.15 ± 2.70 b | 8993.97 ± 3.06 c | 6084.99 ± 2.03 d |
Total phenolic content 2 | 18,919.49 ± 4.06 a | 10,399.14 ± 4.93 b | 6448.62 ± 1.56 c | 3311.05 ± 5.18 d |
Flavonoids 1 | 25.83 ± 0.12 a | 21.77 ± 0.36 b | 12.22 ± 0.25 c | 10.59 ± 0.20 d |
Anthocyanins 1 | 15.32 ± 0.28 a | 11.86 ± 0.28 b | 10.33 ± 0.27 c | 8.29 ± 0.15 d |
Carotenoids 1 | 108.92 ± 0.76 a | 69.09 ± 0.76 b | 33.86 ± 0.89 c | 22.19 ± 0.76 d |
Lycopene 1 | 0.508 ± 0.005 a | 0.363 ± 0.004 b | 0.228 ± 0.005 c | 0.161 ± 0.008 d |
Parameters | BL0 | BL10 | BL20 | BL30 |
---|---|---|---|---|
Brightness (L*) | 14.60 ± 0.56 d | 25.13 ± 0.14 c | 33.85 ± 0.31 b | 41.84 ± 0.13 a |
Intensity of red (+a*) | 16.39 ± 0.23 a | 16.17 ± 0.04 a | 11.83 ± 0.08 b | 11.59 ± 0.13 b |
Intensity of yellow (+b*) | 23.30 ± 0.08 a | 14.67 ± 0.31 b | 12.85 ± 0.16 c | 9.86 ± 0.33 d |
Chroma (C*) | 28.49 ± 0.30 a | 21.83 ± 0.09 b | 17.47 ± 0.15 c | 15.21 ± 0.25 d |
Hue angle (h*) (o) | 54.88 ± 0.62 a | 42.22 ± 0.06 c | 47.37 ± 0.36 b | 40.39 ± 0.95 d |
Parameters | BL0 | BL10 | BL20 | BL30 |
---|---|---|---|---|
Hausner factor | 1.37 ± 0.00 a | 1.25 ± 0.01 b | 1.22 ± 0.01 c | 1.18 ± 0.01 d |
Carr index 1 | 27.00 ± 0.00 a | 20.25 ± 0.50 b | 18.25 ± 0.50 c | 15.50 ± 1.00 d |
Angle of repose 2 | 26.57 ± 0.00 b | 29.75 ± 0.00 a | 29.76 ± 0.00 a | 29.83 ± 0.01 a |
Solubility 1 | 49.62 ± 0.29 d | 74.10 ± 1.01 c | 90.17 ± 1.18 b | 96.05 ± 1.48 a |
Wettability 3 | 2.77 ± 0.13 a | 0.76 ± 0.01 b | 0.71 ± 0.001 b | 0.66 ± 0.01 c |
Porosity 1 | 83.99 ± 0.09 a | 66.36 ± 0.57 b | 66.07 ± 0.31 b | 61.94 ± 0.46 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiva, Y.F.; Figueirêdo, R.M.F.d.; Queiroz, A.J.d.M.; Santos, F.S.d.; Amadeu, L.T.S.; Lima, A.G.B.d.; Lima, T.L.B.d.; Silva, W.P.d.; Moura, H.V.; Silva, E.T.d.V.; et al. Maltodextrin as a Drying Adjuvant in the Lyophilization of Tropical Red Fruit Blend. Molecules 2023, 28, 6596. https://doi.org/10.3390/molecules28186596
Paiva YF, Figueirêdo RMFd, Queiroz AJdM, Santos FSd, Amadeu LTS, Lima AGBd, Lima TLBd, Silva WPd, Moura HV, Silva ETdV, et al. Maltodextrin as a Drying Adjuvant in the Lyophilization of Tropical Red Fruit Blend. Molecules. 2023; 28(18):6596. https://doi.org/10.3390/molecules28186596
Chicago/Turabian StylePaiva, Yaroslávia Ferreira, Rossana Maria Feitosa de Figueirêdo, Alexandre José de Melo Queiroz, Francislaine Suelia dos Santos, Lumara Tatiely Santos Amadeu, Antônio Gilson Barbosa de Lima, Thalis Leandro Bezerra de Lima, Wilton Pereira da Silva, Henrique Valentim Moura, Eugênia Telis de Vilela Silva, and et al. 2023. "Maltodextrin as a Drying Adjuvant in the Lyophilization of Tropical Red Fruit Blend" Molecules 28, no. 18: 6596. https://doi.org/10.3390/molecules28186596
APA StylePaiva, Y. F., Figueirêdo, R. M. F. d., Queiroz, A. J. d. M., Santos, F. S. d., Amadeu, L. T. S., Lima, A. G. B. d., Lima, T. L. B. d., Silva, W. P. d., Moura, H. V., Silva, E. T. d. V., Costa, C. C., Galdino, P. O., Gomes, J. P., & Leão, D. A. S. (2023). Maltodextrin as a Drying Adjuvant in the Lyophilization of Tropical Red Fruit Blend. Molecules, 28(18), 6596. https://doi.org/10.3390/molecules28186596