The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Analysis of CQDs and CQDs-PIL-Eu3+
2.2. Fluorescence Properties of CQDs and CQDs-PIL-Eu3+
2.3. Sensing Performance of CQDs-PIL-Eu3+
2.4. Possible Sensing Mechanism Analysis
3. Experimental Methods
3.1. Reagents and Apparants
3.2. Synthesis of Carbon Quantum Dots (CQDs)
3.3. Synthesis of Polyionic Liquid (PIL)
3.4. Synthesis of Ratiometric Fluorescent Probe CQDs-PIL-Eu3+
3.5. Fluorescence Sensing Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhou, Q.; Fang, Y.; Li, J.; Hong, D.; Zhu, P.; Chen, S.; Tan, K. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Talanta 2021, 222, 121548. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.; Zhu, M.; Zhang, Y.; Yao, W.; Kosinova, M.; Fedin, V.; Wu, S.; Gao, E. Three novel metal-organic frameworks with different coordination modes for trace detection of anthrax biomarkers. Dalton Trans. 2022, 51, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, Z.; Qian, D. Ratiometric fluorescence detection of anthrax biomarker based on terbium (III) functionalized graphitic carbon nitride nanosheets. Talanta 2021, 230, 122311. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, E.; Lee, K.; Jang, J. A graphene quantum dots based fluorescent sensor for anthrax biomarker detection and its size dependence. J. Mater. Chem. B 2015, 3, 4865–4870. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xie, Y.; Kirillov, A.M.; Liu, L.; Yu, M.; Liu, W.; Tang, Y. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 2015, 51, 5036–5039. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Ko, J.; Cha, K.; Jeon, J.; Rhie, G.; Choi, J.; Mello, A.; Choo, J. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosens. Bioelectron. 2015, 72, 230–236. [Google Scholar] [CrossRef]
- Das, R.; Goel, A.; Sharma, M.; Upadhyyay, S. Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons. Biosens. Bioelectron. 2015, 74, 939–946. [Google Scholar] [CrossRef]
- Fichtel, J.; Sass, H.; Rullkötter, J. Assessment of spore contamination in pepper by determination of dipicolinic acid with a highly sensitive HPLC approach. Food Control 2008, 19, 1006–1010. [Google Scholar] [CrossRef]
- Li, D.; Truong, T.; Bills, T.; Holt, B.; VanDerwerken, D.; Williams, J.; Acharya, A.; Robison, R.; Tolley, D.; Lee, M. GC/MS method for positive detection of Bacillus anthracis endospores. Anal. Chem. 2012, 84, 1637–1644. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, S.; Wang, L.; Guan, X. Nanopore back titration analysis of dipicolinic acid. Electrophoresis 2015, 36, 467–470. [Google Scholar] [CrossRef]
- Xing, K.; Fan, R.; Gai, S.; Zheng, X.; Wang, P.; Yang, Y. Europium-functionalized flexible luminescent zeolite-like supramolecular assembly for ratiometric anthrax biomarker determination. ACS Appl. Mater. Interfaces 2019, 11, 36081–36089. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xue, S.; Chen, Z.; Ma, S.; Zhang, S.; Shi, G.; Zhang, M. Dual lanthanide-doped complexes: The development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens. Bioelectron. 2017, 94, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Tong, C. Europium (III)-modified silver nanoparticles as ratiometric colorimetric and fluorescent dual-mode probes for selective detection of dipicolinic acid in bacterial spores and lake waters. ACS Appl. Nano Mater. 2021, 4, 5469–5477. [Google Scholar] [CrossRef]
- Shen, M.; Liu, B.; Xu, L.; Jiao, H. Ratiometric fluorescence detection of anthrax biomarker 2,6-dipicolinic acid using hetero MOF sensors through ligand regulation. J. Mater. Chem. C 2020, 8, 4392–4400. [Google Scholar] [CrossRef]
- Chen, L.; Liu, D.; Zheng, L.; Yi, S.; He, H. A structure-dependent ratiometric fluorescence sensor based on metal-organic framework for detection of 2,6-pyridinedicarboxylic acid. Anal. Bioanal. Chem. 2021, 413, 4227–4236. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Z.; Lu, X.; Guo, J.; Cheng, R.; Zhu, L.; Wang, C.; Chen, S. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale 2020, 12, 5494–5500. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.Z.; Liu, Z.K.; Shen, X.Y.; Wang, L. One-Pot synthesis of orange emissive carbon quantum dots for all-Type high color rendering index white light-emitting diodes. ACS Sustain. Chem. Eng. 2022, 10, 8289–8296. [Google Scholar] [CrossRef]
- Song, D.Q.; Guo, H.Z.; Huang, K.; Zhang, H.Y.; Chen, J.; Wang, L.; Lian, C.; Wang, Y. Carboxylated carbon quantum dot-induced binary metal–organic framework nanosheet synthesis to boost the electrocatalytic performance. Mater. Today 2022, 54, 42–51. [Google Scholar] [CrossRef]
- Han, Y.; Tang, B.J.; Wang, L.; Bao, H.; Lu, Y.H.; Guan, C.T.; Zhang, L.; Le, M.Y.; Liu, Z.; Wu, M.H. Machine learning driven synthesis of carbon dots with enhanced quantum yield. ACS Nano 2020, 14, 14761–14768. [Google Scholar] [CrossRef]
- Gan, Z.Y.; Hu, X.T.; Huang, X.W.; Li, Z.; Zou, X.; Shi, J.; Zhang, W.; Li, Y.; Xu, Y. A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with europium (III) complexes. Sens. Actuators B. Chem. 2021, 328, 128997–129005. [Google Scholar] [CrossRef]
- Tian, X.; Fan, Z. One-step ratiometric fluorescence sensing of ascorbic acid in food samples by carbon dots-referenced lanthanide probe. J. Photochem. Photobiol. A Chem. 2021, 413, 113261. [Google Scholar] [CrossRef]
- Wang, S.N.; Li, S.; Zhang, J.Y.; Cao, Y. Highly fluorescent nitrogen-doped carbon dots for the determination and the differentiation of the rare earth element ions. Talanta 2019, 198, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, Y.; Gu, X.; Li, D.; Zhang, D.; Zhang, D.; Huang, H.; Mao, B.; Kang, Z.; Shi, W. Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu-In-Zn-S QDs/MoS2 photocatalysts. Appl. Catal. B Environ. 2022, 301, 120755. [Google Scholar] [CrossRef]
- Hao, C.; Bai, Y.; Chen, Z.; Geng, F.; Qin, J.; Zhou, T.; Feng, F. Ultralong lifetime room-temperature phosphorescence in aqueous medium from silica confined polymer carbon dots for auto luminescence-free bioimaging and multilevel information encryption. Dye. Pigment. 2022, 197, 109890. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, Z.; Zhao, H.; Jiao, Y.; Li, J.; Shuang, S.; Dong, C. Facile synthesis of multifunctional carbon dots with 54.4% orange emission for label-free detection of morin and endogenous/exogenous hypochlorite. J. Hazard. Mater. 2022, 424, 127289. [Google Scholar] [CrossRef]
- Hu, X.; Guo, Y.; Wang, T.; Liu, C.; Yang, Y.; Fang, G. A selectivity-enhanced ratiometric fluorescence imprinted sensor based on synergistic effect of covalent and non-covalent recognition units for ultrasensitive detection of ribavirin. J. Hazard. Mater. 2022, 421, 126748. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.; Li, H.; Shao, J.; Chi, Y.; Lin, X.; Chen, G. Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 2012, 50, 2810–2815. [Google Scholar] [CrossRef]
- Dang, V.; Ganganboina, A.; Doong, R. Bipyridine- and copper-functionalized N-doped carbon dots for fluorescence turn off-on detection of ciprofloxacin. ACS Appl. Mater. Interfaces 2020, 12, 32247–32258. [Google Scholar] [CrossRef]
- Xu, F.; Tang, H.; Yu, J.; Ge, J. A Cu2+-assisted fluorescence switch biosensor for detecting of coenzyme A employing nitrogen-doped carbon dots. Talanta 2021, 224, 121838. [Google Scholar] [CrossRef]
- Yang, J.; Jin, X.; Cheng, Z.; Zhou, H.; Gao, L.; Jiang, D.; Jie, X.; Ma, Y.; Chen, W. Facile and green synthesis of bifunctional carbon dots for detection of Cu2+ and ClO− in aqueous solution. ACS Sustain. Chem. Eng. 2021, 9, 13206–13214. [Google Scholar] [CrossRef]
- Koo, T.M.; Ko, M.J.; Park, B.C. Fluorescent detection of dipicolinic acid as a biomarker in bacterial spores employing terbium ion-coordinated magnetite nanoparticles. J. Hazard. Mater. 2021, 408, 124870. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Yang, H.; Zhao, W.Y. A weakly luminescent Tb-MOF-based “turn-on” sensor for the highly selective and sensitive sensing of an anthrax biomarker. Dalton Trans. 2021, 50, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Gu, J.; Chen, Y. Europium functionalized silicon quantum dots nanomaterials for ratiometric fluorescence detection of Bacillus anthrax biomarker. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 88–93. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, D. Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores. Mikrochim. Acta 2018, 185, 435. [Google Scholar] [CrossRef] [PubMed]
Lanthanide Fluorescent Probe | Detection Limit | Advantages | Reference |
---|---|---|---|
Magnetic Fe3O4–Tb | 5.4 nM | Detection limit is extremely low | [31] |
MOF–Tb | 2.4 μM | Excellent anti-interference capability | [32] |
SiQDs–Eu | 1.02 μM | No background and self-calibration | [33] |
HAP–NPs–Eu | 77 nM | Detection is fast and cost is low | [34] |
CQDs–PIL–Eu3+ | 32 nM | Ratio type, green non-toxic, water soluble and biocompatible, high sensitivity | In this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Jia, D.; Fang, Z.; Min, H.; Xu, X.; Li, Y. The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid. Molecules 2023, 28, 6557. https://doi.org/10.3390/molecules28186557
Zhang D, Jia D, Fang Z, Min H, Xu X, Li Y. The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid. Molecules. 2023; 28(18):6557. https://doi.org/10.3390/molecules28186557
Chicago/Turabian StyleZhang, Dongliang, Dongsheng Jia, Zhou Fang, Hua Min, Xiaoyi Xu, and Ying Li. 2023. "The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid" Molecules 28, no. 18: 6557. https://doi.org/10.3390/molecules28186557
APA StyleZhang, D., Jia, D., Fang, Z., Min, H., Xu, X., & Li, Y. (2023). The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid. Molecules, 28(18), 6557. https://doi.org/10.3390/molecules28186557