Vasorelaxant Activity of Salvia hispanica L.: Involvement of the Nitric Oxide Pathway in Its Pharmacological Mechanism
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield
2.2. Pharmacological Evaluation
2.2.1. Vasorelaxant Effect
2.2.2. Mechanism of Action
2.2.3. Phytochemical Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extraction
4.2. Chemicals and Solution Preparation
4.3. Experimental Subjects
4.4. Pharmacology Assay
4.4.1. General Experimental Procedures
4.4.2. Ex Vivo Vasorelaxant Evaluation
4.4.3. Mechanism of Action Approach
4.5. Phytochemical Analysis
4.5.1. Natural Products Databases for 13C NMR Dereplication
4.5.2. 13C NMR–Based Dereplication
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef]
- Kriebel, R.; Drew, B.T.; Claßen-Bockhoff, R.; Sytsma, K.J. Evolution of anther connective teeth in sages (Salvia, Lamiaceae) under bee and hummingbird pollination. Flora 2023, 298, 152199. [Google Scholar] [CrossRef]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Ozcelik, B.; Altın, G.; Daşkaya-Dikmen, C.; Martorell, M.; Ramírez-Alarcón, K.; Alarcón-Zapata, P.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Alves Borges Leal, A.L.; et al. Salvia spp. plants—from farm to food applications and phytopharmacotherapy. Trends Food Sci. Technol. 2018, 80, 242–263. [Google Scholar] [CrossRef]
- Xiao-Dan, M.; Yan-Feng, C.; Yan-Yun, C.; LI, J.; Zhan-Peng, S.; Wen-Jing, Z.; Yan-Jiang, Q.; Jia-Yu, Z. Danshen: A phytochemical and pharmacological overview. Chin. J. Nat. Med. 2019, 17, 59–80. [Google Scholar]
- Cahil, J.P. Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Econ. Bot. 2003, 57, 604–618. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia Seed (Salvia hispanica): An Ancient Grain and a New Functional Food. Food Rev. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M.A. Dietary fiber content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- EC. Commission Implementing Decision (EU) 2017/2354 of 14 December 2017 Authorising an Extension of use of Chia Seeds (Salvia hispanica) as a Novel Food Ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council (notified under document C(2017) 8470). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017D2354&qid=1684778533012 (accessed on 31 May 2023).
- Zettel, V.; Hitzmann, B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci. 2018, 80, 43–50. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Anunciação, P.C.; Matyelka, J.C.S.; Della Lucia, C.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Marineli, R.S.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Rahman, M.J.; de Camargo, A.C.; Shahidi, F. Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. J. Funct. Foods 2017, 35, 622–634. [Google Scholar] [CrossRef]
- De Souza Ferreira, C.; de Sousa Fomes, L.F.; da Silva, G.E.S.; Rosa, G. Effect of chia seed (Salvia hispanica L.) consumption on cardiovascular risk factors in humans: A systematic review. Nutr. Hosp. 2015, 32, 1909–1918. [Google Scholar] [PubMed]
- Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984, 61, 928–931. [Google Scholar] [CrossRef]
- Vuksan, V.; Whitham, D.; Sievenpiper, J.L.; Jenkins, A.L.; Rogovik, A.L.; Bazinet, R.P.; Vidgen, E.; Hanna, A. Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: Results of a randomized controlled trial. Diabetes Care 2007, 30, 2804–2810. [Google Scholar] [CrossRef] [PubMed]
- Toscano, L.T.; Toscano, L.T.; Tavares, R.L.; da Silva, C.S.O.; Silva, A.S. Chia induces clinically discrete weight loss and improves lipid profile only in altered previous values. Nutr. Hosp. 2014, 31, 1176–1182. [Google Scholar]
- Alwosais, E.Z.M.; Al-Ozairi, E.; Zafar, T.A.; Alkandari, S. Chia seed (Salvia hispanica L.) supplementation to the diet of adults with type 2 diabetes improved systolic blood pressure: A randomized controlled trial. Nutr. Health 2021, 27, 181–189. [Google Scholar] [CrossRef]
- Toscano, L.T.; da Silva, C.S.O.; Toscano, L.T.; de Almeida, A.E.M.; da Cruz Santos, A.; Silva, A.S. Chia flour supplementation reduces blood pressure in hypertensive subjects. Plant Foods Hum. Nutr. 2014, 69, 392–398. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Aziz, A.; Rahim, M.A.; Qaisrani, T.B.; Afzal, F.; Ali, A.; Ranjha, M.M.A.N.; Khalid, M.Z.; Anjum, F.M. Chia seeds (Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Sci. Nutr. 2022, 11, 3–16. [Google Scholar] [CrossRef]
- Raddino, R.; Caretta, G.; Teli, M.; Bonadei, I.; Robba, D.; Zanini, G.; Madureri, A.; Nodari, S.; Dei Cas, L. Nitric oxide and cardiovascular risk factors. Heart Int. 2007, 3, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–140. [Google Scholar] [PubMed]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Marwah, R.G.; Fatope, M.O.; Deadman, M.L.; Al-Maqbali, Y.M.; Husband, J. Musanahol: A New Aureonitol-Related Metabolite from a Chaetomium Sp. Tetrahedron 2007, 63, 8174–8180. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, J.C.; Shim, S.H.; Lee, E.J.; Jin, W.; Bae, K.; Son, K.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharm. Res. 2006, 29, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J. Smooth muscle cell calcium activation mechanisms. J. Physiol. 2008, 586, 5047–5061. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.M.; Chitaley, K.C.; Webb, R.C. Vascular smooth muscle contraction and relaxation. In Hypertension Primer: The Essentials of High Blood Pressure; Izzo, J.L., Black, H.R., Eds.; American Heart Association: Dallas, TX, USA, 2003; pp. 97–99. [Google Scholar]
- Bian, K.; Doursout, M.F.; Murad, F. Vascular system: Role of nitric oxide in cardiovascular diseases. J. Clin. Hypertens. 2008, 10, 304–310. [Google Scholar] [CrossRef]
- Fukuo, K.; Morimoto, S.; Koh, E.; Yukawa, S.; Tsuchiya, H.; Imanaka, S.; Yamamoto, H.; Onishi, T.; Kumahara, Y. Effects of prostaglandins on the cytosolic free calcium concentration in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 1986, 136, 247–252. [Google Scholar] [CrossRef]
- Chrissobolis, S.; Sobey, C. Inwardly rectifying potassium channels in the regulation of vascular tone. Curr. Drug Targets 2003, 4, 281–289. [Google Scholar] [CrossRef]
- Milesi, V.; Aiello, E.A.; Rebolledo, A.; Gomez Alvis, A.; Grassi De Gende, A.O. Role of a Ca2+-activated K+ current in the maintenance of resting membrane potential of isolated, human, saphenous vein smooth muscle cells. Pflugers Arch. 1999, 437, 455–461. [Google Scholar]
- Hilgers, R.H.P.; Webb, R.C. Molecular aspects of arterial smooth muscle contraction: Focus on Rho. Exp. Biol. Med. 2005, 230, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.A.; Han, J.; Jung, I.D.; Park, W.S. Physiological roles of K+ channels in vascular smooth muscle cells. J. Smooth Muscle Res. 2008, 44, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Bruguière, A.; Derbré, S.; Coste, C.; Le Bot, M.; Siegler, B.; Leong, S.T.; Sulaiman, S.N.; Awang, K.; Richomme, P. 13C-NMR dereplication of Garcinia extracts: Predicted chemical shifts as reliable databases. Fitoterapia 2018, 131, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Herbert, L.A.; Bruguière, A.; Derbré, S.; Richomme, P.; Peña-Rodríguez, L.M. 13C NMR dereplication-assisted isolation of bioactive polyphenolic metabolites from Clusia flava Jacq. Nat. Prod. Res. 2022, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.; Butina, D.; Dunn, A.J.; Green, R.H.; Hajek, M.; Jones, M.M.; Lindon, J.C.; Sidebottom, P.J. A rapid and facile method for the dereplication of purified natural products. J. Nat. Prod. 2001, 64, 1541–1544. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.H.; Khalifa, T.I.; Ibrahim, M.T.; Mabry, T.J. Constituents from Salvia triloba. Fitoterapia 2001, 72, 850–853. [Google Scholar] [CrossRef] [PubMed]
- SAGARPA. Normas Oficiales Mexicanas en Materia de Salud Animal. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Gobierno | gob.mx. Available online: https://www.gob.mx/senasica/documentos/normatividad-en-materia-de-salud-animal (accessed on 20 December 2022).
- Sánchez-Recillas, A.; Navarrete-Vázquez, G.; Hidalgo-Figueroa, S.; Bonilla-Hernández, M.; Ortiz-Andrade, R.; Ibarra-Barajas, M.; Yáñez-Pérez, V.; Sánchez-Salgado, J.C. Pharmacological characterization of the cardiovascular effect of Nibethione: ex vivo, in vivo and in silico studies. J. Pharm. Pharmacol. 2020, 72, 1186–1198. [Google Scholar] [CrossRef]
- Bruguière, A.; Derbré, S.; Breárd, D.; Tomi, F.; Nuzillard, J.M.; Richomme, P. 13C NMR Dereplication Using MixONat Software: A Practical Guide to Decipher Natural Products Mixtures. Planta Med. 2021, 87, 1061–1068. [Google Scholar] [CrossRef]
- Nuzillard, J.M. Taxonomy-Focused Natural Product Databases for Carbon-13 NMR-Based Dereplication. Analytica 2021, 2, 50–56. [Google Scholar] [CrossRef]
- Available online: https://sourceforge.net/projects/mixonat/ (accessed on 27 June 2023).
- Bailey, N.T.J. Statistical Methods in Biology, 3rd ed.; Cambridge University Press: Cambridge, UK, 1995; Volume 75. [Google Scholar]
- Daniel, W.W.; Cross, C.L. Biostatistics: Basic Concepts and Methodology for the Health Sciences, 10th ed.; International Student Version; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
Sample Test | Emax (%) | EC50 (μg/mL) |
---|---|---|
HESh (E+) | 28.12 ± 6.91 | >1000 + |
HESh (E–) | 11.45 ± 2.2 | >1000 + |
DESh (E+) | 14.19 ± 7.1 | >1000 + |
DESh (E–) | 12.34 ± 3.5 | >1000 + |
MESh (E+) | 87.69 ± 0.78 | 124.74 * |
MESh (E–) | 35.1 ± 7.19 | >500 + |
Carbachol (control E+) | 99.03 ± 0.23 | 0.0041 |
Nifedipine (control E–) | 100 ± 2.15 | 0.0033 |
Rank | Name | Score (δC Match) |
---|---|---|
1 | Nonanoic acid | 1.0 (9/9 carbons) |
2 | Hexanol | 1.0 (6/6 carbons) |
3 | Capryc acid | 1.0 (10/10 carbons) |
4 | Undecanoic acid | 1.0 (11/11 carbons) |
5 | Heptanoic acid | 1.0 (7/7 carbons) |
6 | Amyl alcohol | 1.0 (5/5 carbons) |
7 | Hexanoic acid | 1.0 (6/6 carbons) |
8 | Undecane | 1.0 (11/11 carbons) |
9 | Octanol | 1.0 (8/8 carbons) |
10 | 2-hexenol | 1.0 (6/6 carbons) |
11 | 3-octenol | 1.0 (8/8 carbons) |
12 | Caprylic acid | 1.0 (8/8 carbons) |
13 | Myristoleic acid | 1.0 (14/14 carbons) |
14 | Linoleic acid | 0.1 (18/18 carbons) |
15 | A-linolenic acid | 0.1 (18/18 carbons) |
16 | Arachidonic acid | 0.95 (19/20 carbons) |
17 | Methyl linolenate | 0.95 (18/19 carbons) |
18 | Methyl octadeca-9,12,15-trienoate | 0.95 (18/19 carbons) |
19 | Hexyl octanoate | 0.93 (13/14 carbons) |
20 | Lauric acid | 0.92 (11/12 carbons) |
Rank | Name | Score (δC Match) |
---|---|---|
1 | Undecane | 1.0 (11/11 carbons) |
2 | Nonanoic acid | 1.0 (9/9 carbons) |
3 | Hexanol | 1.0 (6/6 carbons) |
4 | N-tridecanoic acid | 1.0 (13/13 carbons) |
5 | Amyl alcohol | 1.0 (5/5 carbons) |
6 | Capric acid | 1.0 (10/10 carbons) |
7 | Lauric acid | 1.0 (12/12 carbons) |
8 | Caprylic acid | 1.0 (8/8 carbons) |
9 | Undecanoic acid | 1.0 (11/11 carbons) |
10 | Myristoleic acid | 1.0 (14/14 carbons) |
11 | Hexyl octanoate | 1.0 (14/14 carbons) |
12 | Octanol | 1.0 (8/8 carbons) |
13 | Myristic acid | 1.0 (14/14 carbons) |
14 | Oleic acid | 0.1 (18/18 carbons) |
15 | Arachidonic acid | 0.1 (20/20 carbons) |
16 | Methyl linolenate | 0.95 (18/19 carbons) |
17 | Linoleic acid | 0.94 (17/18 carbons) |
18 | A-linolenic acid | 0.94 (17/18 carbons) |
19 | Pentadecanoic acid | 0.93 (14/15 carbons) |
20 | Methyl octadeca-9,12,15-trienoate | 0.89 (17/19 carbons) |
Rank | Name | Score (δC Match) |
---|---|---|
1 | Alpha-L-glucopyranose | 1.0 (6/6 carbons) |
2 | Beta-L-glucopyranose | 1.0 (6/6 carbons) |
3 | Mannitol | 1.0 (6/6 carbons) |
4 | Sucrose | 1.0 (12/12 carbons) |
5 | Caprylic acid | 1.0 (8/8 carbons) |
6 | Hexyl acetate | 0.88 (7/8 carbons) |
7 | (2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{[(1s,4r,6s)-1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-6-yl]oxy}oxane-3,4,5-triol | 0.88 (14/16 carbons) |
8 | (2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{[(1s,4r,6r)-1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-6-yl]oxy}oxane-3,4,5-triol | 0.88 (14/16 carbons) |
9 | 2-(hydroxymethyl)-6-({1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-6-yl}oxy)oxane-3,4,5-triol | 0.88 (14/16 carbons) |
10 | 5-methylhexanoic acid | 0.86 (6/7 carbons) |
11 | Heptanoic acid | 0.86 (6/7 carbons) |
12 | Hexyl octanoate | 0.86 (12/14 carbons) |
13 | Βeta-D-glucopyranose | 0.83 (5/6 carbons) |
14 | Βeta-D-glucosa | 0.83 (5/6 carbons) |
15 | 2-hexenol | 0.83 (5/6 carbons) |
16 | Hexanol | 0.83 (5/6 carbons) |
17 | Hexanoic acid | 0.83 (5/6 carbons) |
18 | Agropine | 0.82 (9/11 carbons) |
19 | Undecanoic acid | 0.82 (9/11 carbons) |
20 | (2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{[(1r,4s,6r)-1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-6-yl]oxy}oxane-3,4,5-triol | 0.81 (13/16 carbons) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herbert-Doctor, L.A.; Sánchez-Recillas, A.; Ortiz-Andrade, R.; Hernández-Núñez, E.; Araujo-León, J.A.; Coral-Martínez, T.I.; Cob-Calan, N.N.; Segura Campos, M.R.; Estrada-Soto, S. Vasorelaxant Activity of Salvia hispanica L.: Involvement of the Nitric Oxide Pathway in Its Pharmacological Mechanism. Molecules 2023, 28, 6225. https://doi.org/10.3390/molecules28176225
Herbert-Doctor LA, Sánchez-Recillas A, Ortiz-Andrade R, Hernández-Núñez E, Araujo-León JA, Coral-Martínez TI, Cob-Calan NN, Segura Campos MR, Estrada-Soto S. Vasorelaxant Activity of Salvia hispanica L.: Involvement of the Nitric Oxide Pathway in Its Pharmacological Mechanism. Molecules. 2023; 28(17):6225. https://doi.org/10.3390/molecules28176225
Chicago/Turabian StyleHerbert-Doctor, Luis A., Amanda Sánchez-Recillas, Rolffy Ortiz-Andrade, Emanuel Hernández-Núñez, Jesús Alfredo Araujo-León, Tania Isolina Coral-Martínez, Nubia Noemi Cob-Calan, Maira Rubi Segura Campos, and Samuel Estrada-Soto. 2023. "Vasorelaxant Activity of Salvia hispanica L.: Involvement of the Nitric Oxide Pathway in Its Pharmacological Mechanism" Molecules 28, no. 17: 6225. https://doi.org/10.3390/molecules28176225
APA StyleHerbert-Doctor, L. A., Sánchez-Recillas, A., Ortiz-Andrade, R., Hernández-Núñez, E., Araujo-León, J. A., Coral-Martínez, T. I., Cob-Calan, N. N., Segura Campos, M. R., & Estrada-Soto, S. (2023). Vasorelaxant Activity of Salvia hispanica L.: Involvement of the Nitric Oxide Pathway in Its Pharmacological Mechanism. Molecules, 28(17), 6225. https://doi.org/10.3390/molecules28176225