Efficient Approach for the Synthesis of Aryl Vinyl Ketones and Its Synthetic Application to Mimosifoliol with DFT and Autodocking Studies
Abstract
:1. Introduction
2. Results
2.1. Spectroscopic Studies
2.2. Geometry Optimization
2.3. Frontier Molecular Orbital (FMO) Studies
2.4. Molecular Electrostatic Potential (MEP) Analysis
2.5. NBO Analysis
2.6. Electron Localization Function (ELF) Analysis
2.7. Localized Orbital Locator (LOL) Analysis
2.8. Reduced Density Gradient (RDG) Analysis
2.9. Fukui Functions
2.10. NLO Analysis
2.11. Drug Likeness and ADMET Analysis
2.12. Docking Analysis
3. Materials and Methods
3.1. 3-Dimethylamino-1-phenylpropan-1-one hydrochloride (14)
3.2. 3-Dimethylamino-1-(2-fluorophenyl)propan-1-one hydrochloride (16)
3.3. 1-Phenyl-propenone (27)
3.4. 1-(2-Chloro-phenyl)propenone (28)
3.5. 1-Thiophen-2-yl-propenone (32)
3.6. 1-Naphthalen-2-yl-propenone (36)
3.7. Preparation of Quinolins Using Phenyl Vinyl Ketone
3.7.1. 1-Methyl-2,3-dihydro-1H-quinolin-4-one (40)
3.7.2. 1-Benzyl-2,3-dihydro-1H-quinolin-4-one (42)
3.8. Synthesis of Mimosifoliol
3.8.1. 2-Bromo-1,4-dimethoxybenzene (45)
3.8.2. 2,5-Dimethoxy-phenol (46)
3.8.3. 3-Dimethylamino-1-phenyl-propan-1-ol (47)
3.8.4. (3-Chloro-3-phenyl-propyl)-dimethylamine (48)
3.8.5. [3-(2,5-Dimethoxyphenoxy)-3-phenylpropyl]dimethylamine (49)
3.8.6. 2-(3-Dimethylamino-1-phenylpropyl)-3,6-dimethoxyphenol (50) and 4-(3-Dimethylamino-1-phenylpropyl)-2,5-dimethoxyphenol (51)
3.8.7. Mimosifoliol (52)
3.9. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, S.J.; Deng, P.; Peng, C.E.; Ji, H.Y.; Mao, L.F.; Peng, L.Z. Extraction, structure and immunoregulatory activity of low molecular weight polysaccharide from Dendrobium officinale. Polymers 2022, 14, 2899. [Google Scholar] [CrossRef]
- Zhang, K.Q.; Deng, Q.F.; Luo, J.; Gong, C.L.; Chen, Z.G.; Zhong, W.; Hu, S.Q.; Wang, H.F. Multifunctional Ag (I)/CAAA-amidphos complex-catalyzed asymmetric [3 + 2] cycloaddition of α-substituted acrylamides. ACS Catal. 2021, 11, 5100–5107. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, T.; Qin, D.; Cheng, H.; Wang, X.; Chen, J.; Wågberg, T.; Hu, G. Hematite nanoparticle decorated MIL-100 for the highly selective and sensitive electrochemical detection of trace-level paraquat in milk and honey. Sens. Actuators B Chem. 2023, 376, 132931. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Cheprakov, A.V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 2000, 100, 3009–3066. [Google Scholar] [CrossRef]
- Dounay, A.B.; Overman, L.E. The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis. Chem. Rev. 2003, 103, 2945–2964. [Google Scholar] [CrossRef]
- Heck, R.F.; Nolley, J.P., Jr. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37, 2320–2322. [Google Scholar] [CrossRef]
- Peng, C.; Wang, Y.; Wang, J. Palladium-catalyzed cross-coupling of α-diazocarbonyl compounds with arylboronic acids. J. Am. Chem. Soc. 2008, 130, 1566–1567. [Google Scholar] [CrossRef]
- Maruoka, K.; Imoto, H.; Yamamoto, H. Exo-selective Diels-Alder reaction based on a molecular recognition approach. J. Am. Chem. Soc. 1994, 116, 12115–12116. [Google Scholar] [CrossRef]
- Udaykumar, B.; Periasamy, M. Synthesis of Propargylamines via Michael Addition Using Methyl Vinyl Ketone Derivatives, 1-Alkynes, and Secondary Amines Catalyzed by Copper (I) Halides. ACS Omega 2019, 4, 21587–21595. [Google Scholar] [CrossRef]
- Gallier, F.; Martel, A.; Dujardin, G. Enantioselective Access to Robinson Annulation Products and Michael Adducts as Precursors. Angew. Chem. Int. Ed. 2017, 56, 12424–12458. [Google Scholar] [CrossRef]
- Bala, S.; Sharma, N.; Kajal, A.; Kamboj, S.; Saini, V. Mannich bases: An important pharmacophore in present scenario. Int. J. Med. Chem. 2014, 2014, 191072. [Google Scholar] [CrossRef]
- Watuthanthrige, N.D.A.; Reeves, J.A.; Dolan, M.T.; Valloppilly, S.; Zanjani, M.B.; Ye, Z.; Konkolewicz, D. Wavelength-Controlled Synthesis and Degradation of Thermoplastic Elastomers Based on Intrinsically Photoresponsive Phenyl Vinyl Ketone. Macromolecules 2020, 53, 5199–5207. [Google Scholar] [CrossRef]
- Kong, L.; Han, X.; Jiao, P. Catalytic asymmetric Diels–Alder reactions involving aryl vinyl ketones. Chem. Comm. 2014, 50, 14113–14116. [Google Scholar] [CrossRef]
- Maegawa, T.; Mizui, R.; Urasaki, M.; Fujimura, K.; Nakamura, A.; Miki, Y. Direct Synthesis of Chalcones from Anilides with Phenyl Vinyl Ketones by Oxidative Coupling Through C–H Bond Activation. ACS Omega 2018, 3, 5375–5381. [Google Scholar] [CrossRef]
- Bianco, A.; Cavarischia, C.; Guiso, M. The Heck coupling reaction using aryl vinyl ketones: Synthesis of flavonoids. Eur. J. Org. Chem. 2004, 13, 2894–2898. [Google Scholar] [CrossRef]
- Aramendía, M.A.; Borau, V.; Jiménez, C.; Marinas, J.M.; Romero, F.J. Vapour-Phase Reaction of Acetophenone with Methanol or Dimethyl Carbonate on Magnesium Oxide and Magnesium Phosphates. J. Catal. 1999, 183, 119–127. [Google Scholar] [CrossRef]
- Bugarin, A.; Jones, K.D.; Connell, B.T. Efficient, direct α-methylenation of carbonyls mediated by diisopropylammonium trifluoroacetate. Chem. Comm. 2010, 46, 1715–1717. [Google Scholar] [CrossRef]
- Liu, J.; Yi, H.; Zhang, X.; Liu, C.; Liu, R.; Zhang, G.; Lei, A. Copper-catalysed oxidative Csp3–H methylenation to terminal olefins using DMF. Chem. Comm. 2014, 50, 7636–7638. [Google Scholar] [CrossRef]
- Zhu, H.; Meng, X.; Zhang, Y.; Chen, G.; Cao, Z.; Sun, X.; You, J. Chemoselective α-Methylenation of Aromatic Ketones Using the NaAuCl4/Selectfluor/DMSO System. J. Org. Chem. 2017, 82, 12059–12065. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ji, P.Y.; Xu, J.W.; Hu, Y.Q.; Liu, Q.; Luo, W.P.; Guo, C.C. Transition Metal-Free α-Csp3-H Methylenation of Ketones to Form C=C Bond Using Dimethyl Sulfoxide as Carbon Source. J. Org. Chem. 2017, 82, 7159–7164. [Google Scholar] [CrossRef]
- Verma, F.; Shukla, P.; Bhardiya, S.R.; Singh, M.; Rai, A.; Rai, V.K. Photocatalytic C(sp3)−H Activation towards α-methylenation of Ketones using MeOH as 1 C Source Steering Reagent. Adv. Synth. Catal. 2019, 361, 1247–1252. [Google Scholar] [CrossRef]
- Ümit, C.; Serife, Y.; Ahmet, K.; Emine, A.; Muhittin, A. Design, spectroscopy, quantum chemical study and Hirshfeld analysis of single crystal ferrocene-based boronate ester. J. Mol. Struct. 2021, 1243, 130767. [Google Scholar]
- Ümit, C.; Mustafa, D.; Hasan, T.; Serife, P.Y.; Ahmet, K.; Namık, Ö. Theoretical and experimental investigation of 4-[(2-hydroxy-3 methylbenzylidene) amino]benzenesulfonamide: Structural and spectroscopic properties, NBO, NLO and NPA analysis. J. Mol. Struct. 2015, 1089, 222–232. [Google Scholar]
- Kosar, B.; Albayrak, C. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 160–167. [Google Scholar] [CrossRef]
- Akman, F.; Demirpolat, A.; Kazachenko, A.S.; Anna, S.K.; Issaoui, N.; Al-Dossary, O. Molecular Structure, Electronic Properties, Reactivity (ELF, LOL, and Fukui), and NCI-RDG Studies of the Binary Mixture of Water and Essential Oil of Phlomis bruguieri. Molecules 2023, 28, 2684. [Google Scholar] [CrossRef]
- Hiremath, S.M.; Khemalapure, S.S.; Hiremath, C.S.; Patil, A.S.; Basanagouda, M. Quantum chemical computational and spectroscopic (IR, Raman, NMR, and UV) studies on the 5-(5-methoxy-benzofuran-3-ylmethyl)-3H-[1, 3, 4] oxadiazole-2-thione. J. Mol. Struct. 2020, 1210, 128041. [Google Scholar] [CrossRef]
- Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 2005, 105, 3911–3947. [Google Scholar] [CrossRef]
- Agarwal, N.; Verma, I.; Siddiqui, N.; Javed, S. Experimental spectroscopic and quantum computational analysis of pyridine-2,6-dicarboxalic acid with molecular docking studies. J. Mol. Struct. 2021, 1245, 131046. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Tanış, E.; Akman, F.; Medimagh, M.; Issaoui, N.; Al-Dossary, O.; Bousiakou, L.G.; Kazachenko, A.S.; Zimonin, D.; Skripnikov, A.M. A Comprehensive Study of N-Butyl-1H-Benzimidazole. Molecules 2022, 27, 7864. [Google Scholar] [CrossRef]
- Jacobsen, H. Localized-orbital locator (LOL) profiles of chemical bonding. Can. J. Chem. 2008, 86, 695–702. [Google Scholar] [CrossRef]
- Tsirelson, V.G.; Stash, A. Analyzing experimental electron density with the localized-orbital locator. Acta Crystallogr. B Struct. 2002, 58, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.R.; Fuentealba, P.; Galván, M.; Pérez, P. A direct evaluation of regional Fukui functions in molecules. Chem. Phys. Lett. 1999, 304, 405–413. [Google Scholar] [CrossRef]
- Fuentealba, P.; Florez, E.; Tiznado, W. Topological Analysis of the Fukui Function. J. Chem.Theory Comput. 2010, 6, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Savita, S.; Fatima, A.; Garima, K.; Pooja, K.; Verma, I.; Siddiqui, N.; Javed, S. Experimental spectroscopic, Quantum computational, Hirshfeld surface and molecular docking studies on 3-Pyridinepropionic acid. J. Mol. Struct. 2021, 1243, 130932. [Google Scholar] [CrossRef]
- Antoine, D.; Michielin, O.; Zoete, V. Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar]
- Ahmet, K.; Levent, B.; Mesut, I.; Cüneyt, T.; Adem, N.; Kasım, T.; Sükrü, B. Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. J. Organomet. Chem. 2020, 927, 121542. [Google Scholar]
- Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of autodock. J. Mol. Recognit. 1996, 9, 1–5. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Comp. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Kaiser, S.; Smidt, S.P.; Pfaltz, A. Iridium Catalysts with Bicyclic Pyridine–Phosphinite Ligands: Asymmetric Hydrogenation of Olefins and Furan Derivatives. Angew. Chem. Int. Ed. 2006, 45, 5194–5197. [Google Scholar] [CrossRef]
- Chanthamath, S.; Takaki, S.; Shibatomi, K.; Iwasa, S. Highly Stereoselective Cyclopropanation of α,β-Unsaturated Carbonyl Compounds with Methyl (Diazoacetoxy)acetate Catalyzed by a Chiral Ruthenium(II) Complex. Angew. Chem. Int. Ed. 2013, 52, 5818–5821. [Google Scholar] [CrossRef]
- Étienne, S.; Matt, M.; Oster, T.; Samadi, M.; Beley, M. Preparation and characterisation of a quinone-functionalised polythiophene film on a modified electrode. Application to the potentiometric determination of glutathione and cysteine concentrations. Tetrahedron 2008, 64, 9619–9624. [Google Scholar] [CrossRef]
- Ribaudo, G.; Bortoli, M.; Ongaro, A.; Oselladore, E.; Gianoncelli, A.; Zagotto, G.; Orian, L. Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts. RSC Adv. 2020, 10, 18583–18593. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Fujii, T.; Shioiri, T. Studies on Optically Active Amino Acids. I. Preparation of 3-(3, 4-Methylenedioxyphenyl)-D-, and-L-alanine. Chem. Pharm. Bull. 1962, 10, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Arava, V.R.; Malreddy, S.; Thummala, S.R. Acid-Catalyzed Ether Rearrangement: Total Synthesis of Isomimosifoliol and (±)-Dihydromimosifoliol. Synth. Commun. 2012, 42, 3545–3552. [Google Scholar] [CrossRef]
- Tuttle, K.; Rodriguez, A.A.; Pettus, T.R.R. An Expeditious Synthesis of (±)-Mimosifoliol Utilizing a Cascade Involving an o-Quinone Methide Intermediate. Synlett 2003, 2003, 2234–2236. [Google Scholar] [CrossRef]
- Torres, E.; DiLabio, G.A. A (Nearly) Universally Applicable Method for Modeling Noncovalent Interactions Using B3LYP. J. Phys. Chem. Lett. 2012, 13, 1738–1744. [Google Scholar] [CrossRef]
- Mitra, H.; Roy, T.K. Comprehensive Benchmark Results for the Accuracy of Basis Sets for Anharmonic Molecular Vibrations. J. Phys. Chem. A 2020, 124, 9203–9221. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
Donor | Acceptor | E(2) | Ej − Ei | F(i,j) |
---|---|---|---|---|
π(C8–C10) | π*(C9–C11) | 19.31 | 0.28 | 0.066 |
π*(C13–C15) | 21.23 | 0.28 | 0.068 | |
π(C9–C11) | π*(C8–C10) | 20.6 | 0.28 | 0.068 |
π*(C13–C15) | 19.94 | 0.28 | 0.066 | |
π(C13–C15) | π* (C8–C10) | 19.09 | 0.29 | 0.066 |
π*(C9–C11) | 20.09 | 0.28 | 0.067 | |
π(C19–C20) | π*(C21–C24) | 23.4 | 0.26 | 0.072 |
π*(C22–C25) | 18.09 | 0.27 | 0.064 | |
π(C21–C24) | π*(C19–C20) | 14.67 | 0.3 | 0.061 |
π*(C22–C25) | 21.9 | 0.29 | 0.073 | |
π(C22–C25) | π*(C19–C20) | 22.56 | 0.3 | 0.073 |
π*(C21–C24) | 17.01 | 0.28 | 0.062 | |
LP(2) O28 | π*(C22–C25) | 25.77 | 0.36 | 0.093 |
LP(2) O30 | π*(C21–C24) | 28.58 | 0.34 | 0.094 |
f(−) | f(+) | f(0) | ∆f = f(+) − f(−) | |
---|---|---|---|---|
| 0.0019 | −0.0268 | −0.0124 | −0.0287 |
| 0.0001 | 0.0002 | 0.0002 | 0.0001 |
| 0.0085 | 0.0076 | 0.0081 | −0.0009 |
| 0.0004 | 0 | 0.0002 | −0.0004 |
| 0.0006 | 0.0077 | 0.0041 | 0.0071 |
| −0.0076 | 0.0146 | 0.0035 | 0.0222 |
| 0.0012 | 0.0067 | 0.004 | 0.0055 |
| 0.0117 | −0.084 | −0.0362 | −0.0957 |
| 0.0084 | 0.0228 | 0.0156 | 0.0144 |
| 0.0083 | −0.0139 | −0.0028 | −0.0222 |
| 0.0073 | 0.0441 | 0.0257 | 0.0368 |
| 0 | −0.0268 | −0.0134 | −0.0268 |
| 0.0014 | 0.0043 | 0.0029 | 0.0029 |
| 0.0004 | 0 | 0.0002 | −0.0004 |
| 0.0087 | 0.0071 | 0.0079 | −0.0016 |
| 0 | 0.0385 | 0.0193 | 0.0385 |
| 0.0002 | 0.0014 | 0.0008 | 0.0012 |
| 0.0001 | −0.0006 | −0.0002 | −0.0007 |
| 0.1855 | −0.0065 | 0.0895 | −0.192 |
| 0.0056 | 0.2489 | 0.1273 | 0.2433 |
| 0.1321 | −0.131 | 0.0005 | −0.2631 |
| 0.2283 | −0.081 | 0.0736 | −0.3093 |
| 0.0009 | −0.0067 | −0.0029 | −0.0076 |
| 0.0098 | 0.3135 | 0.1617 | 0.3037 |
| 0.1312 | −1.0164 | −0.4426 | −1.1476 |
| 0 | 0.5762 | 0.2881 | 0.5762 |
| 0.0643 | −0.0045 | 0.0299 | −0.0688 |
| 0.0732 | −0.0136 | 0.0298 | −0.0868 |
| 0.0007 | 0.7706 | 0.3856 | 0.7699 |
| 0.0973 | 0.0187 | 0.058 | −0.0786 |
| −0.0006 | −0.0642 | −0.0324 | −0.0636 |
| 0.0049 | 0.0169 | 0.0109 | 0.012 |
| 0.0007 | 0.0226 | 0.0116 | 0.0219 |
| −0.0016 | 0.0617 | 0.03 | 0.0633 |
| 0.0025 | −0.5114 | −0.2544 | −0.5139 |
| 0.0065 | 0.3576 | 0.182 | 0.3511 |
| 0.0069 | 0.2829 | 0.1449 | 0.276 |
| 0 | 0.1628 | 0.0814 | 0.1628 |
Compound | MR | HA | TPSA | RB | MW | MlogP | HBA | HBD | Lipinski Violation | Drug Likeness |
---|---|---|---|---|---|---|---|---|---|---|
Mimosifoliol | 80.04 | 20 | 38.69 | 5 | 270.32 | 3.01 | 3 | 1 | No | 0.55 |
S.No | Compound | BBB | HIA | Caco2 | SP | MDCK | PPB |
---|---|---|---|---|---|---|---|
1 | Mimosifoliol | 1.941 | 95.842 | 47.548 | −2.136 | 205.59 | 96.802 |
S.No | Compound | GPCR | ICM | KI | NR | PI | EI |
---|---|---|---|---|---|---|---|
1 | Mimosifoliol | −0.10 | −0.16 | −0.35 | −0.03 | −0.40 | −0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, T.S.; Raja, K.; Mandapati, K.R.; Goli, S.R.; Babu, M.S.S. Efficient Approach for the Synthesis of Aryl Vinyl Ketones and Its Synthetic Application to Mimosifoliol with DFT and Autodocking Studies. Molecules 2023, 28, 6214. https://doi.org/10.3390/molecules28176214
Reddy TS, Raja K, Mandapati KR, Goli SR, Babu MSS. Efficient Approach for the Synthesis of Aryl Vinyl Ketones and Its Synthetic Application to Mimosifoliol with DFT and Autodocking Studies. Molecules. 2023; 28(17):6214. https://doi.org/10.3390/molecules28176214
Chicago/Turabian StyleReddy, Tummuri Sudheer, Karreddula Raja, Kishore Reddy Mandapati, Srinivasa Reddy Goli, and Manubolu Surya Surendra Babu. 2023. "Efficient Approach for the Synthesis of Aryl Vinyl Ketones and Its Synthetic Application to Mimosifoliol with DFT and Autodocking Studies" Molecules 28, no. 17: 6214. https://doi.org/10.3390/molecules28176214
APA StyleReddy, T. S., Raja, K., Mandapati, K. R., Goli, S. R., & Babu, M. S. S. (2023). Efficient Approach for the Synthesis of Aryl Vinyl Ketones and Its Synthetic Application to Mimosifoliol with DFT and Autodocking Studies. Molecules, 28(17), 6214. https://doi.org/10.3390/molecules28176214