Different Size Formulations of Fluopyram: Preparation, Antifungal Activity, and Accumulation in the Fungal Pathogen Botrytis cinerea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Fluopyram Solid Formulation
2.2. The Particle Size and ζ Potential
2.3. Morphology
2.4. Crystalline State
2.5. Stability of Three Solid Formulations
2.6. Antifungal Activity Evaluation
2.7. Different-Size-FLU Uptake by B. cinerea
3. Materials and Methods
3.1. Materials
3.2. Preparation of Fluopyram Solid Formulation
3.3. Particle Size and ζ Potential
3.4. Morphological Characterization via SEM
3.5. Powder X-ray Diffraction Analysis
3.6. Antifungal Activity Assays
3.7. Different-Size-FLU Uptake by B. cinerea
3.8. HPLC–MS/MS Conditions
3.9. Statistical Analysis
3.10. Thermal Storage Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kumar, R.; Kumar, N.; Rajput, V.D.; Mandzhieva, S.; Minkina, T.; Saharan, B.S.; Kumar, D.; Sadh, P.K.; Duhan, J.S. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. Nanomaterials 2022, 12, 3964. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Shao, L.; Li, X.; Lu, J.; Sun, H.; Xiang, S.; Zhang, Z.; Wu, Y.; Wu, X. Adhesive and Stimulus-Responsive Polydopamine-Coated Graphene Oxide System for Pesticide-Loss Control. J. Agric. Food Chem. 2018, 66, 2616–2622. [Google Scholar] [CrossRef]
- Parisi, C.; Vigani, M.; Rodríguez-Cerezo, E. Agricultural Nanotechnologies: What are the current possibilities? Nano Today 2015, 10, 124–127. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, S.; Zhu, Y.; Sun, Y.; Zeng, G.; Yang, C.; Xu, P.; Yan, M.; Liu, Z.; Zhang, W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere 2018, 206, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yada, R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci Tech. 2011, 22, 585–594. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cui, H.; Wang, Y.; Sun, C.; Cui, B.; Zeng, Z. Development Strategies and Prospects of Nano-based Smart Pesticide Formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef]
- Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011, 63, 427–440. [Google Scholar] [CrossRef]
- Vardaka, E.; Ouranidis, A.; Nikolakakis, I.; Kachrimanis, K. Development of agomelatine nanocomposite formulations by wet media milling. Eur. J. Pharm. Sci. 2021, 166, 105979. [Google Scholar] [CrossRef]
- Toziopoulou, F.; Malamatari, M.; Nikolakakis, I.; Kachrimanis, K. Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Int. J. Pharm. 2017, 533, 324–334. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Watanabe, W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Skoglund, S.; Lowe, T.A.; Hedberg, J.; Blomberg, E.; Wallinder, I.O.; Wold, S.; Lundin, M. Effect of Laundry Surfactants on Surface Charge and Colloidal Stability of Silver Nanoparticles. Langmuir 2013, 29, 8882–8891. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Duan, F. Surfactant-Adsorption-Induced Initial Depinning Behavior in Evaporating Water and Nanofluid Sessile Droplets. Langmuir 2015, 31, 5291–5298. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Aswal, V.K. Tuning of micelle adsorption on nanoparticles by combination of surfactants. J. Appl. Phys. 2021, 129, 234703. [Google Scholar] [CrossRef]
- Tian, C.; Feng, J.; Prud’homme, R.K. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants. J. Colloid. Interface Sci. 2020, 575, 416–424. [Google Scholar] [CrossRef]
- Li, X.; Qin, Y.; Liu, C.; Jiang, S.; Xiong, L.; Sun, Q. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance. Food Chem. 2016, 199, 356–363. [Google Scholar] [CrossRef]
- Li, B.; Ju, M.; Dou, X.; Li, N.; Zhang, W.; Sun, Z.; Yu, K.; Wang, J.; Wang, Z. Assessing nanoparticle-surfactant-salt synergistic effects on droplet–droplet electrocoalescence by molecular dynamics simulations. J. Mol. Liq. 2022, 367, 120570. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Acero, F.J.; Carbu, M.; El-Akhal, M.R.; Garrido, C.; Gonzalez-Rodriguez, V.E.; Cantoral, J.M. Development of proteomics-based fungicides: New strategies for environmentally friendly control of fungal plant diseases. Int. J. Mol. Sci. 2011, 12, 795–816. [Google Scholar] [CrossRef]
- Kozhar, O.; Peever, T.L. How Does Botrytis cinerea Infect Red Raspberry? Phytopathology 2018, 108, 1287–1298. [Google Scholar] [CrossRef]
- South, K.A.; Peduto Hand, F.; Jones, M.L. Beneficial Bacteria Identified for the Control of Botrytis cinerea in Petunia Greenhouse Production. Plant Dis. 2020, 104, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- Horsefield, R.; Yankovskaya, V.; Sexton, G.; Whittingham, W.; Shiomi, K.; Omura, S.; Byrne, B.; Cecchini, G.; Iwata, S. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): A mechanism of electron transfer and proton conduction during ubiquinone reduction. J. Biol. Chem. 2006, 281, 7309–7316. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, G. Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 2003, 72, 77–109. [Google Scholar] [CrossRef]
- Matsson, M.; Hederstedt, L. The Carboxin-Binding Site on Paracoccus denitrificans Succinate:Quinone Reductase Identified by Mutations. J. Bioenerg. Biomembr. 2001, 33, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Villa, F.; Cappitelli, F.; Cortesi, P.; Kunova, A. Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Front. Microbiol. 2017, 8, 654. [Google Scholar] [CrossRef] [PubMed]
- Torrano, A.A.; Herrmann, R.; Strobel, C.; Rennhak, M.; Engelke, H.; Reller, A.; Hilger, I.; Wixforth, A.; Bräuchle, C.; Torrano, A.A. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles. Nanoscale 2016, 8, 13352–13367. [Google Scholar] [CrossRef] [PubMed]
- Cuculis, L.; Meredyth, N.A.; Frey, S.L. Nanoparticle and Surfactant Interactions with Model Cell Membranes. Biophys. J. 2012, 102, 291a. [Google Scholar] [CrossRef]
- Voci, S.; Gagliardi, A.; Salvatici, M.C.; Fresta, M.; Cosco, D. Influence of the Dispersion Medium and Cryoprotectants on the Physico-Chemical Features of Gliadin- and Zein-Based Nanoparticles. Pharmaceutics 2022, 14, 332. [Google Scholar] [CrossRef]
- Amis, T.M.; Renukuntla, J.; Bolla, P.K.; Clark, B.A. Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles. Pharmaceutics 2020, 12, 892. [Google Scholar] [CrossRef]
- Umerska, A.; Paluch, K.J.; Santos-Martinez, M.J.; Corrigan, O.I.; Medina, C.; Tajber, L. Freeze drying of polyelectrolyte complex nanoparticles: Effect of nanoparticle composition and cryoprotectant selection. Int. J. Pharm. 2018, 552, 27–38. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Gu, Y.; Liu, Y.; Zhao, J.; Yan, B.; Wang, Y. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. J. Microencapsul. 2018, 35, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Roos, Y.H. Crystallization and structural relaxation times in structural strength analysis of amorphous sugar/whey protein systems. Food Hydrocoll. 2016, 60, 85–97. [Google Scholar] [CrossRef]
- Ito, A.; Konnerth, C.; Schmidt, J.; Peukert, W. Effect of polymer species and concentration on the production of mefenamic acid nanoparticles by media milling. Eur. J. Pharm. Biopharm. 2016, 98, 98–107. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Ghosh, I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur. J. Pharm. Sci. 2013, 48, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, D.; Li, D.; Jia, H.; Qin, W. Control of Ostwald ripening. Sci. China Mater. 2023, 66, 1249–1255. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, C.; Huang, Q.; Cao, L.; Teng, F.; Zhao, P.; Jia, M. Size Effect of Mesoporous Silica Nanoparticles on Pesticide Loading, Release, and Delivery in Cucumber Plants. Appl. Sci. 2021, 11, 575. [Google Scholar] [CrossRef]
- Linnane, E.; Haddad, S.; Melle, F.; Mei, Z.; Fairen-Jimenez, D.; Linnane, E. The uptake of metal–organic frameworks: A journey into the cell. Chem. Soc. Rev. 2022, 51, 6065–6086. [Google Scholar] [CrossRef]
- Jia, J.-L.; Jin, X.-Y.; Zhu, L.; Zhang, Z.-X.; Liang, W.-L.; Wang, G.-D.; Zheng, F.; Wu, X.-Z.; Xu, H.-H. Enhanced intracellular uptake in vitro by glucose-functionalized nanopesticides. N. J. Chem. 2017, 41, 11398–11404. [Google Scholar] [CrossRef]
- Esquivel, B.D.; White, T.C. Accumulation of azole drugs in the fungal plant pathogen Magnaporthe oryzae is the result of facilitated diffusion influx. Front. Microbiol. 2017, 8, 1320. [Google Scholar] [CrossRef]
- Esquivel, B.D.; Smith, A.R.; Zavrel, M.; White, T.C. Azole drug import into the pathogenic fungus Aspergillus fumigatus. Antimicrob. Agents Chemother. 2015, 59, 3390–3398. [Google Scholar] [CrossRef]
Surfactant | Mean Size (nm) | PDI |
---|---|---|
SL | 602 ± 27.9 | 0.343 ± 0.047 |
F127 | 575 ± 34.3 | 0.159 ± 0.056 |
D425 | 580 ± 19.4 | 0.121 ± 0.023 |
SDS | 831 ± 27.3 | 0.473 ± 0.069 |
SDBS | 779 ± 27.3 | 0.207 ± 0.053 |
2700 | 623 ± 3.7 | 0.208 ± 0.039 |
HPMC | 1074 ± 42.5 | 0.647 ± 0.099 |
AI:Surfactant | Mean Size (nm) | PDI |
---|---|---|
2:1 | 759 ± 46.70 | 0.502 ± 0.158 |
5:1 | 732 ± 12.17 | 0.376 ± 0.013 |
7.5:1 | 576 ± 27.08 | 0.307 ± 0.021 |
10:1 | 580 ± 19.40 | 0.121 ± 0.023 |
15:1 | 719 ± 73.37 | 0.351 ± 0.018 |
20:1 | --- | --- |
Parameter | Rotating Speed (rpm) | ||
---|---|---|---|
300 | 400 | 500 | |
Mean size (nm) | 2991 ± 171.2 | 1897 ± 125.7 | 1796 ± 129.5 |
PDI | 0.268 ± 0.143 | 0.129 ± 0.057 | 0.087 ± 0.065 |
Fungal Strain | Formulations | Regressive Equation | R2 | EC50 (μg/mL) | 95% Confidence Interval | Toxicity Index |
---|---|---|---|---|---|---|
Botrytis cinerea | FLU-NS | Y = −0.397 + 0.543X | 0.959 | 5.389 | 2.861~9.459 | 1.97 |
FLU-MS | Y = −0.751 + 0.753X | 0.970 | 9.939 | 6.853~15.496 | 1.07 | |
FLU-WP | Y = −0.770 + 0.750X | 0.967 | 10.637 | 7.043~16.734 | 1.00 | |
Alternaria solani | FLU-NS | Y = 0.383 + 0.625X | 0.933 | 0.244 | 0.120~0.439 | 3.42 |
FLU-MS | Y = 0.212 + 0.985X | 0.984 | 0.609 | 0.407~0.921 | 1.37 | |
FLU-WP | Y = 0.064 + 0.813X | 0.948 | 0.835 | 0.524~1.405 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, S.; Xu, Y.; Li, H.; Zhang, R.; Chen, D.; Xu, J.; Wu, X. Different Size Formulations of Fluopyram: Preparation, Antifungal Activity, and Accumulation in the Fungal Pathogen Botrytis cinerea. Molecules 2023, 28, 6099. https://doi.org/10.3390/molecules28166099
Wang Y, Zhang S, Xu Y, Li H, Zhang R, Chen D, Xu J, Wu X. Different Size Formulations of Fluopyram: Preparation, Antifungal Activity, and Accumulation in the Fungal Pathogen Botrytis cinerea. Molecules. 2023; 28(16):6099. https://doi.org/10.3390/molecules28166099
Chicago/Turabian StyleWang, Yinmin, Sida Zhang, Yong Xu, Haiyun Li, Ruihua Zhang, Dong Chen, Jianfu Xu, and Xuemin Wu. 2023. "Different Size Formulations of Fluopyram: Preparation, Antifungal Activity, and Accumulation in the Fungal Pathogen Botrytis cinerea" Molecules 28, no. 16: 6099. https://doi.org/10.3390/molecules28166099
APA StyleWang, Y., Zhang, S., Xu, Y., Li, H., Zhang, R., Chen, D., Xu, J., & Wu, X. (2023). Different Size Formulations of Fluopyram: Preparation, Antifungal Activity, and Accumulation in the Fungal Pathogen Botrytis cinerea. Molecules, 28(16), 6099. https://doi.org/10.3390/molecules28166099