The Use of Ultrasound-Assisted Maceration for the Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Directly into Fish Oil
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Sage
2.2. Effect of Ultrasonic Maceration Compared to Homogenization-Assisted Maceration on Extraction of Active Ingredients from Sage to Oil (Content of Active Ingredients in Oil Macerates)
2.2.1. Carnosic Acid (CA) in Macerates—Methanol Extraction (ME)
2.2.2. Carnosic Acid (CA) in Macerates—70% Methanol Extraction (70ME)
2.2.3. Carnosol (C) in Macerates—Methanol Extraction (ME)
2.2.4. Carnosol (C) in Macerates—70% Methanol Extraction (70ME)
2.2.5. Rosmarinic Acid (RA) in Macerate—70% Methanol Extraction (70ME)
2.2.6. Total Polyphenols, DPPH and Color
3. Discussion
4. Materials and Methods
4.1. Fish Oil and Sage
4.2. Obtaining Sage Macerates
4.2.1. The Use of Ultrasound-Assisted Maceration (U)
4.2.2. The Use of Homogenization-Assisted Maceration (H)
4.3. Extraction of Active Compounds from the Macerate to Hydrophilic Phase
4.4. The Chemical Analyses in Macerates
4.5. Physical and Chemical Analyses in Sage
4.6. Identification of Activity Compounds by Liquid Chromatography (HPLC)
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mirza, F.J.; Zahid, S.; Holsinger, R.M.D. Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action. Molecules 2023, 28, 2306. [Google Scholar] [CrossRef] [PubMed]
- El-Huneidi, W.; Bajbouj, K.; Muhammad, J.S.; Vinod, A.; Shafarin, J.; Khoder, G.; Saleh, M.A.; Taneera, J.; Abu-Gharbieh, E. Carnosic Acid Induces Apoptosis and Inhibits Akt/mTOR Signaling in Human Gastric Cancer Cell Lines. Pharmaceuticals 2021, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Celenza, G.; Petricca, S. Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants 2022, 11, 1199. [Google Scholar] [CrossRef] [PubMed]
- Villa-Ruano, N.; Hernández-Silva, N.; Varela-Caselis, J.L.; Alberto-Ramirez-Garcia, S.; Mosso-González, C. Controlled Production of Carnosic Acid and Carnosol in Cell Suspensions of Lepechinia meyenii Treated with Different Elicitors and Biosynthetic Precursors. Chem Biodivers. 2023, 20, e202200733. [Google Scholar] [CrossRef]
- Karagianni, K.; Pettas, S.; Kanata, E.; Lioulia, E.; Thune, K.; Schmitz, M.; Tsamesidis, I.; Lymperaki, E.; Xanthopoulos, K.; Sklaviadis, T.; et al. Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in In Vitro and Cell-Free Models of Prion Diseases. Antioxidants 2022, 11, 726. [Google Scholar] [CrossRef]
- Birtić, S.; Dussort, P.; Pierre, F.X.; Bily, A.C.; Roller, M. Carnosic acid. Phytochemistry 2015, 115, 9–19. [Google Scholar] [CrossRef]
- Berdahl, D.B.; McKeague, J. Rosemary and Sage Extracts as Antioxidants for Food Preservation. In Handbook of Antioxidants for Food Preservation; Shahidi, F., Ed.; Woodhead Publishing: Cambridge, UK, 2015; Volume 276, pp. 177–217. [Google Scholar]
- Ollanketo, M.; Peltoketo, A.; Hartonen, K.; Hiltunen, R.; Riekkola, M.-L. Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Antioxidant activity of the extracts. Eur. Food Res. Technol. 2002, 215, 158–163. [Google Scholar] [CrossRef]
- Irakli, M.; Bouloumpasi, E.; Christaki, S.; Skendi, A.; Chatzopoulou, P. Modeling and Optimization of Phenolic Compounds from Sage (Salvia fruticosa L.) Post-Distillation Residues: Ultrasound- versus Microwave-Assisted Extraction. Antioxidants 2023, 12, 549. [Google Scholar] [CrossRef]
- Schwarz, K.; Ternes, W.; Schmauderer, E. Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis III. Stability of phenolic diterpenes of rosemary extracts under thermal stress as required for technological processes. Z. Lebensm. Unters Forsch. 1992, 195, 104–107. [Google Scholar] [CrossRef]
- Ternes, W.; Schwarz, K. Antioxidative constituents of Rosmarinus officinalis and Salvia: IV. Determination of carnosic acid in different foodstuffs. Lebensm. Unters Forsch. 1995, 201, 548–550. [Google Scholar] [CrossRef]
- Zhang, Y.; Smuts, J.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef] [PubMed]
- Grzegorczyk, I.; Kuźma, Ł.; Wysokińska, H. Związki o właściwościach przeciwutleniajacych z roślin z rodzaju Salvia. Bromat. Chem. Toksykol. 2004, 3, 209–216. [Google Scholar]
- Boulebd, H. Modeling the peroxyl radical scavenging behavior of Carnosic acid: Mechanism, kinetics, and effects of physiological environments. Phytochemistry 2021, 192, 112950. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birti’c, S.; Havaux, M. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant. Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Tounekti, T.; Munné-Bosch, S. Enhanced Phenolic Diterpenes Antioxidant Levels Through Non-Transgenic Approaches. Crit. Rev. Plant Sci. 2012, 31, 505–519. [Google Scholar] [CrossRef]
- Mira-Sánchez, M.D.; Castillo-Sánchez, J.; Morillas-Ruiz, J.M. Comparative study of rosemary extracts and several synthetic and natural food antioxidants. Relevance of carnosic acid/carnosol ratio. Food Chem. 2020, 309, 125688. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, Y.; Wu, H. The Selective Separation of Carnosic Acid and Rosmarinic Acid by Solid-Phase Extraction and Liquid–Liquid Extraction: A Comparative Study. Molecules 2023, 28, 5493. [Google Scholar] [CrossRef]
- Labbé, C.; Faini, F.; Calderón, D.; Molina, J.; Arredondo, S. Variations of Carnosic acid and Carnosol Concentrations in Ethanol Extracts of Wild Lepechinia salviae in Spring (2008–2011). Natural Product Communications 2014, 9, 1413–1416. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.; Li, H. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Hrebień-Filisińska, A.M.; Bartkowiak, A. The Use of Sage Oil Macerates (Salvia officinalis L.) for Oxidative Stabilization of Cod Liver Oil in Bulk Oil Systems. Int. J. Food Sci. 2020, 2020, 4971203. [Google Scholar] [CrossRef]
- Hrebień-Filisińska, A.M.; Bartkowiak, A. Antioxidative Effect of Sage (Salvia officinalis L.) Macerate as “Green Extract” in Inhibiting the Oxidation of Fish Oil. Antioxidants 2022, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Jović, O.; Habinovec, I.; Galić, N.; Andrašec, M. Maceration of extra virgin olive oil with common aromatic plants using ultrasound-assisted extraction: An uv-vis spectroscopic investigation. J. Spectrosc. 2018, 2018, 7510647. [Google Scholar] [CrossRef]
- Soares, V.P.; Fagundes, M.B.; Guerra, D.R.; Leaes, Y.S.V.; Speroni, C.S.; Robalo, S.S.; Emanuelli, T.; Cichoski, A.I.; Wagner, R.; Barin, I.S.; et al. Ultrasound assisted maceration for improving the aromatization of extra-virgin olive oil with rosemary and basil. Food Res. Int. 2020, 135, 109305. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yang, H.; Meng, Y.; Wang, D. Sunflower Oil Flavored by Spearmint through Conventional and Ultrasound-Assisted Maceration: Differences in Oxidative Stability, Microbial Contamination and Sensory Properties. Processes 2022, 10, 2451. [Google Scholar] [CrossRef]
- Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 1996, 73, 645–652. [Google Scholar] [CrossRef]
- Grzegorczyk, I.; Bilichowski, I.; Mikiciuk-Olasik, E.; Wysokinska, H. In vitro cultures of Salvia officinalis L. as a source of antioxidant compounds. Acta Soc. Bot. Pol. 2005, 74, 1. [Google Scholar] [CrossRef]
- Abreu, M.E.; Muller, M.; Alegre, L.; Munne-Bosch, S. Phenolic diterpene and α-tocopherol contents in leaf extracts of 60 Salvia species. J. Sci. Food Agric. 2008, 88, 2648–2650. [Google Scholar] [CrossRef]
- Durling, N.E.; Catchpole, O.J.; Grey, J.B.; Webby, R.F.; Mitchell, K.A.; Foo, L.Y.; Perry, N.B. Extraction of phenolics and essential oil from dried sage (Salvia officinalis L) using ethanol–water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Odeh, D.; Kraljić, K.; Benussi Skukan, A.; Škevin, D. Oxidative Stability, Microbial Safety, and Sensory Properties of Flaxseed (Linum usitatissimum L.) Oil Infused with Spices and Herbs. Antioxidants 2021, 10, 785. [Google Scholar] [CrossRef]
- Mulinacci, N.; Innocenti, M.; Bellumori, M.; Giaccherini, C.; Martini, V.; Michelozzi, M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 2011, 85, 167–176. [Google Scholar] [CrossRef]
- Jacotet-Navarro, M.; Rombaut, N.; Fabiano-Tixier, A.-S.; Bily, A.; Chemat, F. Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrason. Sonochem. 2015, 27, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, I.A. Colorymetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Rossi, M.; Giussani, E.; Morelli, R.; Lo Scalzo, R.; Nani, R.C.; Torreggiani, D. Effect of fruit blanching on phenolics and radicalscavenging activity of highbush blueberry juice. Food Res. Int. 2003, 36, 999–1005. [Google Scholar] [CrossRef]
- Bianchin, M.; Pereira, D.; Almeida, J.d.F.; Moura, C.d.; Pinheiro, R.S.; Heldt, L.F.S.; Haminiuk, C.W.I.; Carpes, S.T. Antioxidant Properties of Lyophilized Rosemary and Sage Extracts and Its Effect to Prevent Lipid Oxidation in Poultry Pátê. Molecules 2020, 25, 5160. [Google Scholar] [CrossRef] [PubMed]
Dry Matter [%] | Polyphenols (mg/100 g) | DPPH [%] | ||
---|---|---|---|---|
ME | 70ME | ME | 70ME | |
92.8 ± 0.04 | 5746.8 ± 39.4 a | 7130.1 ± 157.6 b | 21.1 ± 0.2 a | 30.6 ± 0.8 b |
Active Compound | Retention Time [min] | ME | 70ME |
---|---|---|---|
Caffeic acid (COA) [mg/g] | 9.1 | - | 1.28 ± 0.04 |
Rosmarinic acid (RA) [mg/g] | 12.1 | 14.16 ± 1.32 a | 22.87 ± 0.02 b |
Carnosol (C) [mg/g] | 23.3 | 4.42 ± 0.11 a | 9.48 ± 0.08 b |
Carnosic acid (CA) [mg/g] | 25.0 | 9.67 ± 0.08 a | 1.95 ± 0.11 b |
Maceration Method | Carnosic Acid [mg/100 g] | Carnosol [mg/100 g] | ||
---|---|---|---|---|
ME | 70ME | ME | 70ME | |
U/5 min/200 W | 136.7 ± 4.9 b A | 110.6 ± 11.7 d c B | 18.2 ± 2.0 A | 34.4 ± 8.5 c g B |
U/60 min/200 W | 137.8 ± 6.9 b d A | 111.5 ± 15.5 d c B | 20.6 ± 4.9 b A | 41.3 ± 12.1 c B |
U/5 min/320 W | 145.5 ± 5.7 d a A | 120.7 ± 9.3 d c B | 19.5 ± 1.7 b A | 32.0 ± 7.9 c g B |
U/60 min/320 W | 147.5 ± 11.5 d a A | 107.4 ± 9.4 d c B | 20.0 ± 1.4 b A | 42.7 ± 7.0 c B |
H/0 day | 146.0 ± 2.3 d A | 67.6 ± 1.0 a B | 19.1 ± 2.3 A | 86.3 ± 1.0 a B |
H/1 day | 139.5 ± 2.1 b A | 130.8 ± 5.5 b B | 20.5 ± 0.9 | 22.5 ± 2.2 b g |
H/4 days | 145.8 ± 1.6 d A | 125.0 ± 11.7 b d B | 18.0 ± 1.6 | 23.5 ± 6.4 b g |
H/6 days | 141.2 ± 1.0 b A | 135.4 ± 0.9 b B | 18.4 ± 0.5 | 19.4 ± 1.7 b |
H/8 days | 151.7 ± 3.2 a A | 125.3 ± 2.4 b d B | 18.4 ± 3.2 | 19.5 ± 2.7 b |
H/11 days | 160.2 ± 9.6 a A | 125.0 ± 0.8 b d B | 20.4 ± 2.6 | 19.9 ± 1.0 b |
H/13 days | 148.9 ± 2.0 a A | 101.7 ± 2.2 c B | 18.1 ± 0.2 A | 25.5 ± 3.1 b g B |
Maceration Method | Rosmarinic Acid [mg/100 g] 70ME |
---|---|
U/5 min/200 W | 5.4 ± 0.01 c |
U/60 min/200 W | 5.0 ± 0.18 c e |
U/5 min/320 W | 4.3 ± 0.07 b |
U/60 min/320 W | 6.6 ± 0.10 a |
H/0 day | 4.5 ± 0.12 b |
H/1 day | 4.6 ± 0.04 b e |
H/4 days | 4.8 ± 0.10 b e |
H/6 days | 4.5 ± 0.11 b |
H/8 days | 5.1 ± 0.01 c e |
H/11 days | 4.5 ± 0.11 b |
H/13 days | 4.4 ± 0.04 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrebień-Filisińska, A.M.; Tokarczyk, G. The Use of Ultrasound-Assisted Maceration for the Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Directly into Fish Oil. Molecules 2023, 28, 6094. https://doi.org/10.3390/molecules28166094
Hrebień-Filisińska AM, Tokarczyk G. The Use of Ultrasound-Assisted Maceration for the Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Directly into Fish Oil. Molecules. 2023; 28(16):6094. https://doi.org/10.3390/molecules28166094
Chicago/Turabian StyleHrebień-Filisińska, Agnieszka M., and Grzegorz Tokarczyk. 2023. "The Use of Ultrasound-Assisted Maceration for the Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Directly into Fish Oil" Molecules 28, no. 16: 6094. https://doi.org/10.3390/molecules28166094
APA StyleHrebień-Filisińska, A. M., & Tokarczyk, G. (2023). The Use of Ultrasound-Assisted Maceration for the Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Directly into Fish Oil. Molecules, 28(16), 6094. https://doi.org/10.3390/molecules28166094