Antimicrobial Potential of Aqueous Extract of Giant Sword Fern and Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry Analysis
Abstract
:1. Introduction
2. Results
2.1. Antivibrio Activity
2.2. Antiparasitic Activity
2.3. Physio-Chemical Parameters
2.4. Metabolites Detected in the Aqueous Extract of GSF
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Extraction
4.2. Vibrio Strains and Stock Preparation
4.3. Antivibrio Activity
4.4. Parasitic Leech Collection
4.5. Antiparasitic Activity
4.6. Liquid Chromatography
4.7. Data Acquisition
4.8. Data Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- de Souza Valente, C.; Wan, A.H.L. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J. Invertebr. Pathol. 2021, 181, 107527. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.; Amal, M.N.A.; Yasin, I.S.M.; Zamri Saad, M.; Nasruddin, N.S.; Al-saari, N.; Mino, S.; Sawabe, T. Vibriosis in cultured marine fishes: A review. Aquaculture 2019, 512, 734289. [Google Scholar] [CrossRef]
- Kumar, P.; Thirunavukkarasu, A.R.; Subburaj, R.; Thiagarajan, G. Concept of stress and its mitigation in aquaculture. In Advances in Marine and Brackishwater Aquaculture; Springer: New Delhi, India, 2015; pp. 95–100. ISBN 9788132222712. [Google Scholar]
- Nagasawa, K.; Uyeno, D. Zeylanicobdella arugamensis (Hirudinida, Piscicolidae), a leech infesting brackish-water fishes, new to Japan. Biogeography 2009, 11, 125–130. [Google Scholar]
- Ravi, R.; Shariman Yahaya, Z. Zeylanicobdella arugamensis, the marine leech from cultured crimson snapper (Lutjanus erythropterus), Jerejak Island, Penang, Malaysia. Asian Pac. J. Trop. Biomed. 2017, 7, 473–477. [Google Scholar] [CrossRef]
- Shah, M.D.; Venmathi Maran, B.A.; Haron, F.K.; Ransangan, J.; Ching, F.F.; Shaleh, S.R.M.; Shapawi, R.; Yong, Y.S.; Ohtsuka, S. Antiparasitic potential of Nephrolepis biserrata methanol extract against the parasitic leech Zeylanicobdella arugamensis (Hirudinea) and LC-QTOF analysis. Sci. Rep. 2020, 10, 22091. [Google Scholar] [CrossRef]
- Azmey, S.; Taruna, M.; Taha, H.; Arai, T. Prevalence and infestation intensity of a piscicolid leech, Zeylanicobdella arugamensis on cultured hybrid grouper in Brunei Darussalam. Vet. Parasitol. Reg. Stud. Reports 2020, 20, 100398. [Google Scholar] [CrossRef]
- Leong, T.S.; Wong, S.Y. A comparative study of the parasite fauna of wild and cultured grouper (Epinephelus malabaricus Bloch et Schneider) in Malaysia. Aquaculture 1988, 68, 203–207. [Google Scholar] [CrossRef]
- Cruz-Lacierda, E.R.; Toledo, J.D.; Tan-Fermin, J.D.; Burreson, E.M. Marine leech (Zeylanicobdella arugamensis) infestation in cultured orange-spotted grouper, Epinephelus coioides. Aquaculture 2000, 185, 191–196. [Google Scholar] [CrossRef]
- Kua, B.C.; Azmi, M.A.; Hamid, N.K.A. Life cycle of the marine leech (Zeylanicobdella arugamensis) isolated from sea bass (Lates calcarifer) under laboratory conditions. Aquaculture 2010, 302, 153–157. [Google Scholar] [CrossRef]
- Venmathi Maran, B.A.; Moon, S.Y.; Oh, S.Y.; Soh, H.Y.; Myoung, J.G. Redescription of two Pennellids (Copepoda, Siphonostomatoida) from Korea with a key to species of Peniculus von Nordmann, 1832. Zookeys 2012, 243, 1–14. [Google Scholar] [CrossRef]
- Boxshall, G.A.; Lin, C.L.; Ho, J.S.; Ohtsuka, S.; Venmathi Maran, B.A.; Justine, J. Lou A revision of the family Dissonidae Kurtz, 1924 (Copepoda: Siphonostomatoida). Syst. Parasitol. 2008, 70, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, A.; Rajkumar, M.; Sun, J.; Parida, A.; Maran, B.A.V. Integrated biological control of water hyacinths, Eichhornia crassipes by a novel combination of grass carp, Ctenopharyngodon idella (Valenciennes, 1844), and the weevil, Neochetina spp. Chinese J. Oceanol. Limnol. 2011, 29, 162–166. [Google Scholar] [CrossRef]
- Rimmer, M.A.; Glamuzina, B. A review of grouper (Family Serranidae: Subfamily Epinephelinae) aquaculture from a sustainability science perspective. Rev. Aquac. 2019, 11, 58–87. [Google Scholar] [CrossRef] [Green Version]
- Shinn, A.A.P.; Pratoomyot, J.; Bron, J.E.; Paladini, G.G.; Brooker, E.; Brooker, A.J. Economic Impacts of Aquatic Parasites on Global Finfish Production; Global Seafood Alliance: Portsmouth, NH, USA, 2015; pp. 82–84. [Google Scholar]
- Mohamed, S.; Nagaraj, G.; Chua, F.H.C.; Wang, Y.G. The use of chemicals in aquaculture in Malaysia and Singapore. In Use of Chemicals in Aquaculture in Asia: Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia, Tigbauan, Iloilo, Philippines, 20–22 May 1996; Arthur, J.R., Lavilla-Pitogo, C.R., Subasinghe, R.P., Eds.; Southeast Asian Fisheries Development Center: Tigbauan, Iloilo, Philippines, 2000; pp. 127–141. [Google Scholar]
- Leal, J.F.; Neves, M.G.P.M.S.; Santos, E.B.H.; Esteves, V.I. Use of formalin in intensive aquaculture: Properties, application and effects on fish and water quality. Rev. Aquac. 2018, 10, 281–295. [Google Scholar] [CrossRef]
- Pitten, F.A.; Kramer, A.; Herrmann, K.; Bremer, J.; Koch, S. Formaldehyde neurotoxicity in animal experiments. Pathol. Res. Pract. 2000, 196, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Langeland, K.A. Natural Area Weeds: Distinguishing Native and Non-native “Boston Ferns” and “Sword Ferns”. 2014. Available online: https://edis.ifas.ufl.edu/publication/AG120 (accessed on 7 March 2023).
- Venmathi Maran, B.A.; Iqbal, M.; Gangadaran, P.; Ahn, B.-C.; Rao, P.V.; Shah, M.D. Hepatoprotective potential of Malaysian medicinal plants: A review on phytochemicals, oxidative Stress, and antioxidant mechanisms. Molecules 2022, 27, 1533. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.D.; Tani, K.; Yong, Y.S.; Ching, F.F.; Shaleh, S.R.M.; Vairappan, C.S.; Venmathi Maran, B.A. Antiparasitic potential of chromatographic fractions of Nephrolepis biserrata and liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis. Molecules 2021, 26, 499. [Google Scholar] [CrossRef]
- Murphy, R.C. Tandem Mass Spectrometry of Lipids; Royal Society of Chemistry: London, UK, 2014; ISBN 978-1-84973-827-9. [Google Scholar]
- Valladão, G.M.R.; Gallani, S.U.; Pilarski, F. Phytotherapy as an alternative for treating fish disease. J. Vet. Pharmacol. Ther. 2015, 38, 417–428. [Google Scholar] [CrossRef]
- Maulianawati, D.; Suharni, S. Antibacterial activity of Nephrolepis biserrata extract against Aeromonas hydrophila and Vibrio parahaemolyticus. IOP Conf. Ser. Earth Environ. Sci. 2022, 1033, 012010. [Google Scholar] [CrossRef]
- Shah, M.D.; Venmathi Maran, B.A.; Iqbal, M.; Ching, F.F.; Mohamad Lal, M.T.; Binti Othman, R.; Shapawi, R. Antiparasitic activity of the medicinal plant Dillenia suffruticosa against the marine leech Zeylanicobdella arugamensis (Hirudinea) and its phytochemical composition. Aquac. Res. 2020, 51, 215–221. [Google Scholar] [CrossRef]
- Wan Norhana, M.N.; Kua, B.C.; Liyana, R. Evaluation of selected plant extracts for in vitro anti-marine leech (Zeylanicobdella arugamensis) activity. Trop. Biomed. 2021, 38, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, M.; Abbasi, J.; Mohsenzadegan, A.; Sadeghian, S.; Ahangaran, M.G. Allium sativum L.: The anti-immature leech (Limnatis nilotica) activity compared to Niclosomide. Comp. Clin. Path. 2013, 22, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Gbe-Emi Ke, D.; Amawulu, E. Effect of methanolic extract of some selected plants on the mortality of leech (Hirudo medicinalis). Ecologia 2021, 12, 1–6. [Google Scholar] [CrossRef]
- Ling, F.; Jiang, C.; Liu, G.; Li, M.; Wang, G. Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against Dactylogyrus intermedius. Parasitology 2015, 142, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, X.; Cheng, L.; Wang, D.; Qin, G.; Zhang, X.; Zhen, Y.; Wang, T.; Sun, Z. Protective mechanism of leucine and isoleucine against H2O2-induced oxidative damage in bovine mammary epithelial cells. Oxid. Med. Cell. Longev. 2022, 2022, 4013575. [Google Scholar] [CrossRef] [PubMed]
- Moosmann, B.; Behl, C. Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. Eur. J. Biochem. 2000, 267, 5687–5692. [Google Scholar] [CrossRef] [Green Version]
- Naddaf, N.; Haddad, S. Apigenin effect against Leishmania tropica amastigotes in vitro. J. Parasit. Dis. 2020, 44, 574–578. [Google Scholar] [CrossRef]
- Mead, J.R.; McNair, N. Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol. Lett. 2006, 259, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Soares, M.B.P.; Silva, C.V.; Bastos, T.M.; Guimarães, E.T.; Figueira, C.P.; Smirlis, D.; Azevedo, W.F. Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop. 2012, 122, 224–229. [Google Scholar] [CrossRef]
- Sereno, D.; Monte Alegre, A.; Silvestre, R.; Vergnes, B.; Ouaissi, A. In vitro antileishmanial activity of nicotinamide. Antimicrob. Agents Chemother. 2005, 49, 808–812. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.G.; Hong, I.P.; Woo, S.O.; Jang, H.R.; Pak, S.C.; Han, S.M. Isolation of abscisic acid from Korean acacia honey with anti-Helicobacter pylori activity. Pharmacogn. Mag. 2017, 13, S170–S173. [Google Scholar] [CrossRef] [Green Version]
- Parida, S.; Singh, T.U.; Thangamalai, R.; Narasimha Reddy, C.E.; Panigrahi, M.; Kandasamy, K.; Singh, V.; Mishra, S.K. Daidzein pretreatment improves survival in mouse model of sepsis. J. Surg. Res. 2015, 197, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid. Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef] [PubMed]
- Szwedowicz, U.; Szewczyk, A.; Gołab, K.; Choromańska, A. Evaluation of wound healing activity of salvianolic acid b on in vitro experimental model. Int. J. Mol. Sci. 2021, 22, 7728. [Google Scholar] [CrossRef]
- Huttunen, S.; Toivanen, M.; Liu, C.; Tikkanen-Kaukanen, C. Novel anti-infective potential of salvianolic acid B against human serious pathogen Neisseria meningitidis. BMC Res. Notes 2016, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabrez, S.; Rahman, F.; Ali, R.; Alouffi, A.S.; Akand, S.K.; Alshehri, B.M.; Alshammari, F.A.; Alam, A.; Alaidarous, M.A.; Banawas, S.; et al. Cynaroside inhibits Leishmania donovani UDP-galactopyranose mutase and induces reactive oxygen species to exert antileishmanial response. Biosci. Rep. 2021, 41, BSR20203857. [Google Scholar] [CrossRef]
- van Baren, C.; Martino, V.; Di Leo Lira, P.; Anao, I.; Houghton, P.; Debenedetti, S.; Croft, S. Triterpenic Acids and Flavonoids from Satureja parvifolia. Evaluation of their Antiprotozoal Activity. Z. Naturforsch. Sect. C J. Biosci. 2006, 61, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Somsak, V.; Damkaew, A.; Onrak, P. Antimalarial Activity of Kaempferol and Its Combination with Chloroquine in Plasmodium berghei Infection in Mice. J. Pathog. 2018, 2018, 3912090. [Google Scholar] [CrossRef] [Green Version]
- Mittra, B.; Saha, A.; Chowdhury, A.R.; Pal, C.; Mandal, S.; Mukhopadhyay, S.; Bandyopadhyay, S.; Majumder, H.K. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol. Med. 2000, 6, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fonseca, A.; Alcala-Canto, Y.; Salem, A.Z.M.; Alberti-Navarro, A.B. Anticoccidial efficacy of naringenin and a grapefruit peel extract in growing lambs naturally-infected with Eimeria spp. Vet. Parasitol. 2016, 232, 58–65. [Google Scholar] [CrossRef]
- Pekkle Lam, H.Y.; Hung, M.-Y.; Cheng, P.-C.; Peng, S.-Y. Use of wogonin as a cooperative drug with praziquantel to better combat schistosomiasis. J. Microbiol. Immunol. Infect. 2022, 55, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Keyhani, A.; Sharifi, I.; Salarkia, E.; Khosravi, A.; Tavakoli Oliaee, R.; Babaei, Z.; Ghasemi Nejad Almani, P.; Hassanzadeh, S.; Kheirandish, R.; Mostafavi, M.; et al. In vitro and in vivo therapeutic potentials of 6-gingerol in combination with amphotericin B for treatment of Leishmania major infection: Powerful synergistic and multifunctional effects. Int. Immunopharmacol. 2021, 101, 108274. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef] [PubMed]
No. | Groups | Diameter of Inhibition Zone (mm) Mean ± S.D |
---|---|---|
1 | Oxytetracycline (positive control) | 55.0 ± 1.0 |
2 | V. alginolyticus | 0 |
3 | V. anguillarum | 0 |
4 | V. harveyi | 0 |
5 | V. parahaemolyticus | 19.5 ± 2.50 * |
No. | Group | Time Till Death (mins) Mean ± S.D | Death Percentage |
---|---|---|---|
1 | Normal control | >720.00 ± 00 | 0 |
2 | Positive control (Formalin 0.25%) (v/v) | 3.62 ± 0.42 * | 100 |
3 | GSF aqueous extract (25 mg/mL) | 43.89 ± 3.97 *# | 100 |
4 | GSF aqueous extract (50 mg/mL) | 27.26 ± 4.65 *#$ | 100 |
5 | GSF aqueous extract (100 mg/mL) | 11.30 ± 2.42 *#$^ | 100 |
No. | Water Parameters | Concentrations | ||||
---|---|---|---|---|---|---|
Groups | Normal Control | Positive Control (Formalin 0.25%) (v/v) | GSF Aqueous Extract (mg/mL) | |||
(25) | (50) | (100) | ||||
1 | Temperature (°C) | 25.6 | 25.9 | 25.9 | 24.9 | 24.9 |
2 | pH | 7.77 | 7.30 | 5.59 | 5.38 | 5.08 |
3 | Salinity (ppt) | 30.0 | 30.9 | 31 | 31 | 31 |
4 | Dissolved oxygen (mg/L) | 7.2 | 6.7 | 7.0 | 7.1 | 7.1 |
Name | R. Time (mins) | Formula | Mass Error (ppm) | Calc. Molecular Mass | Database | Matching Score * | Class |
---|---|---|---|---|---|---|---|
(4R)-4-but-2-yn-1-yl-l-glutamic acid (1) | 3.45 | C9H13NO4 | 0.01 | 199.0845 | ChemSpider | 63.3 | Amino acid |
Isoleucine (2) | 1.43 | C6H13NO2 | 1.11 | 131.0948 | mzCloud | 99.1 | Amino acid |
Tyrosine (3) | 1.07 | C9H11NO3 | 1.05 | 181.0741 | mzCloud | 99.0 | Amino acid |
(1E)-1-Phenyl-1-penten-3-one (4) | 7.73 | C11H12O | −0.14 | 160.0888 | ChemSpider | 60.0 | Aromatic |
(1R,2S,3R,4R)-3-[(Cyclopentylmethyl)amino]-4-phenyl-1,2-cyclopentanediol (5) | 10.01 | C17H25NO2 | −0.26 | 275.1885 | mzCloud | 87.0 | Aromatic |
1-(1H-Benzo[d]imidazol-2-yl)ethan-1-ol (6) | 3.02 | C9H10N2O | 0.50 | 162.0794 | mzCloud | 81.0 | Aromatic |
4-(4-{4-[(7-oxo-6-Propionylnonyl)oxy] phenoxy}butyl)-3,5-heptanedione (7) | 7.52 | C29H44O6 | 1.08 | 488.3143 | ChemSpider | 56.8 | Aromatic |
4-Indolecarbaldehyde (8) | 6.12 | C9H7NO | −0.40 | 145.0527 | mzCloud | 94.7 | Aromatic |
4-Methoxycinnamaldehyde (9) | 5.38 | C10H10O2 | −0.71 | 162.0680 | ChemSpider | 52.4 | Aromatic |
7-Benzoylheptanoic acid (10) | 7.61 | C14H18O3 | −0.14 | 234.1256 | ChemSpider | 73.7 | Aromatic |
Amylcinnamaldehyde (11) | 7.46 | C14H18O | 0.88 | 202.1359 | ChemSpider | 66.0 | Aromatic |
Cinnamaldehyde (12) | 4.37 | C9H8O | 0.21 | 132.0575 | ChemSpider | 60.0 | Aromatic |
Cinnamic acid (13) | 7.13 | C9H8O2 | 0.41 | 148.0525 | ChemSpider | 50.0 | Aromatic |
Heptanophenone (14) | 6.60 | C13H18O | 0.45 | 190.1359 | ChemSpider | 69.8 | Aromatic |
Indole-3-acrylic acid (15) | 5.67 | C11H9NO2 | −0.01 | 187.0633 | mzCloud | 98.3 | Aromatic |
Jasmonal (16) | 11.62 | C14H18O | 0.65 | 202.1359 | ChemSpider | 73.7 | Aromatic |
N-{2-[(4-methylphenyl)thio]pyridin-3-yl}-2-phenylacetamide (17) | 4.82 | C20H18N2OS | −0.13 | 334.1139 | mzCloud | 90.9 | Aromatic |
Psoralen (18) | 4.77 | C11H6O3 | 0.13 | 186.0317 | mzCloud | 81.5 | Aromatic |
Valerophenone (19) | 6.81 | C11H14O | 0.13 | 162.1045 | ChemSpider | 53.6 | Aromatic |
Abscisic acid (20) | 10.09 | C15H20O4 | −0.70 | 264.1360 | mzCloud | 82.7 | Cyclic ketone |
1,2-Dimethyl-4-oxo-1,4-dihydro-3-pyridinyl β-d-glucopyranoside (21) | 4.28 | C13H19NO7 | −0.25 | 301.1161 | ChemSpider | 52.9 | Cyclic ketone |
12-oxo Phytodienoic acid (22) | 8.15 | C18H28O3 | −0.47 | 292.2037 | ChemSpider | 75.8 | Cyclic ketone |
4-(1,3-Butadienyl)-3,5,5-trimethylcyclohex-2-en-1-one (23) | 5.00 | C13H18O | 0.38 | 190.1358 | ChemSpider | 51.4 | Cyclic ketone |
(2Z)-11-Methyl-2-dodecenoic acid (24) | 6.06 | C13H24O2 | −0.15 | 212.1776 | ChemSpider | 80.8 | Fatty acyl |
(4E)-4-Undecen-1-yn-3-ol (25) | 4.87 | C11H18O | 0.15 | 166.1358 | ChemSpider | 69.4 | Fatty acyl |
1-Octyn-3-ol (26) | 4.84 | C8H14O | 1.88 | 126.1047 | ChemSpider | 52.6 | Fatty acyl |
2-[3-(Dimethylamino)-3-oxopropyl]-4-oxopentanedioic acid (27) | 2.99 | C10H15NO6 | −0.31 | 245.0899 | ChemSpider | 82.1 | Fatty acyl |
2-Amino-1,3,4-octadecanetriol (28) | 21.50 | C18H39NO3 | 0.03 | 317.2930 | mzCloud | 82.8 | Fatty acyl |
5,8-Tetradecadienal (29) | 10.66 | C14H24O | −0.17 | 208.1827 | ChemSpider | 65.4 | Fatty acyl |
9-Aminononanoic acid (30) | 4.31 | C9H19NO2 | 0.95 | 173.1417 | ChemSpider | 53.5 | Fatty acyl |
Decanamide (31) | 10.02 | C10H21NO | 0.69 | 171.1624 | mzCloud | 84.8 | Fatty acyl |
Ethyl (2E,4E)-2,4-undecadienoate (32) | 5.38 | C13H22O2 | 0.92 | 210.1622 | ChemSpider | 54.4 | Fatty acyl |
Tetradeca-2Z,5Z,8Z-trien-1-ol (33) | 10.58 | C14H24O | −0.17 | 208.1827 | ChemSpider | 71.2 | Fatty acyl |
2-(3,4-Dihydroxyphenyl)-8-galactopyranosyl-5,7-dihydroxy-4H-1-benzopyran-4-one (34) | 5.26 | C21H20O11 | −0.04 | 448.1005 | mzCloud | 85.8 | Flavonoid |
5,6,2’-Trimethoxyflavone (35) | 10.16 | C18H16O5 | −0.74 | 312.0995 | mzCloud | 88.4 | Flavonoid |
5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl 6-O-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-β-d-galactopyranoside (36) | 6.82 | C30H26O14 | 0.39 | 610.1325 | ChemSpider | 68.6 | Flavonoid |
Afzelin (37) | 6.59 | C21H20O10 | 0.19 | 432.1057 | mzCloud | 95.2 | Flavonoid |
Apigenin (38) | 5.84 | C15H10O5 | −0.38 | 270.0527 | mzCloud | 99.5 | Flavonoid |
Cosmosiin (39) | 5.84 | C21H20O10 | −0.09 | 432.1056 | mzCloud | 99.1 | Flavonoid |
Cynaroside (40) | 5.42 | C21H20O11 | −0.45 | 448.1004 | mzCloud | 81.2 | Flavonoid |
Diosmetin (41) | 6.06 | C16H12O6 | −0.87 | 300.0631 | mzCloud | 96.0 | Flavonoid |
Eriodictyol (42) | 5.64 | C15H12O6 | −0.59 | 288.0632 | mzCloud | 98.4 | Flavonoid |
Homoeriodictyol (43) | 6.34 | C16H14O6 | −0.44 | 302.0789 | mzCloud | 86.3 | Flavonoid |
Kaempferol (44) | 5.98 | C15H10O6 | 0.14 | 286.0478 | mzCloud | 99.1 | Flavonoid |
Kaempferol-3-O-β-glucopyranosyl-7-O-α-rhamnopyranoside (45) | 5.54 | C27H30O15 | 0.61 | 594.1588 | mzCloud | 98.9 | Flavonoid |
Kaempferol-7-O-glucoside (46) | 4.95 | C21H20O11 | 0.23 | 448.1007 | mzCloud | 99.3 | Flavonoid |
Luteolin (47) | 5.42 | C15H10O6 | −0.18 | 286.0477 | mzCloud | 97.6 | Flavonoid |
Naringenin (48) | 6.15 | C15H12O5 | −0.31 | 272.0684 | mzCloud | 94.4 | Flavonoid |
Naringin (49) | 6.08 | C27H32O14 | 0.81 | 580.1797 | mzCloud | 94.4 | Flavonoid |
Prunin (50) | 6.15 | C21H22O10 | 0.49 | 434.1215 | mzCloud | 99.0 | Flavonoid |
Quercetin (51) | 5.72 | C15H10O7 | −0.61 | 302.0425 | mzCloud | 99.4 | Flavonoid |
Quercetin-3β-d-glucoside (52) | 5.72 | C21H20O12 | −0.08 | 464.0954 | mzCloud | 98.2 | Flavonoid |
Quercitrin (53) | 6.16 | C21H20O11 | 0.43 | 448.1008 | mzCloud | 89.3 | Flavonoid |
Rutin (54) | 5.58 | C27H30O16 | 0.55 | 610.1537 | mzCloud | 99.1 | Flavonoid |
Sinensin (55) | 4.79 | C21H22O11 | 0.38 | 450.1164 | mzCloud | 85.6 | Flavonoid |
Taxifolin (56) | 4.36 | C15H12O7 | −0.09 | 304.0583 | mzCloud | 93.5 | Flavonoid |
Tiliroside (57) | 7.23 | C30H26O13 | 0.47 | 594.1376 | mzCloud | 98.9 | Flavonoid |
Trifolin (58) | 5.98 | C21H20O11 | 0.54 | 448.1008 | mzCloud | 84.3 | Flavonoid |
Vicenin-2 (59) | 4.87 | C27H30O15 | 1.48 | 594.1594 | mzCloud | 88.0 | Flavonoid |
Wogonin (60) | 10.12 | C16H12O5 | −0.02 | 284.0685 | mzCloud | 88.2 | Flavonoid |
3-Hexyl-4-methyl-2,5-furandione (61) | 6.18 | C11H16O3 | 0.76 | 196.1101 | ChemSpider | 51.9 | Heterocyclic |
D-(+)-Pyroglutamic Acid (62) | 1.12 | C5H7NO3 | 1.15 | 129.0427 | mzCloud | 96.6 | Heterocyclic |
Loliolide (63) | 6.07 | C11H16O3 | 0.76 | 196.1101 | ChemSpider | 61.1 | Heterocyclic |
Maltol (64) | 3.84 | C6H6O3 | 0.85 | 126.0318 | mzCloud | 99.4 | Heterocyclic |
Zeatin (65) | 3.36 | C10H13N5O | 0.17 | 219.1121 | mzCloud | 89.3 | Heterocyclic |
(4R,6R)-4-Hydroxy-6-{2-[(1S,2S,8aR)-2-methyl-1,2,6,7,8,8a-hexahydro-1-naphthalenyl]ethyl}tetrahydro-2H-pyran-2-one (66) | 11.62 | C18H26O3 | −0.23 | 290.1881 | ChemSpider | 62.5 | Lactone |
Sedanolide (67) | 5.76 | C12H18O2 | 0.70 | 194.1308 | ChemSpider | 56.4 | Lactone |
(3S)-3-{[(Allyloxy)carbonyl]amino}-5-[(2,6-dihydroxybenzoyl)oxy]-4-oxopentanoic acid (68) | 3.67 | C16H17NO9 | −0.28 | 367.0902 | ChemSpider | 55.6 | Phenolic |
2-Hydroxycinnamaldehyde (69) | 3.08 | C9H8O2 | 0.13 | 148.0525 | ChemSpider | 64.3 | Phenolic |
3,4-Dihydroxybenzaldehyde (70) | 4.10 | C7H6O3 | 0.11 | 138.0317 | mzCloud | 85.5 | Phenolic |
3R,5R-Sonnerlactone (71) | 11.00 | C14H18O5 | −0.65 | 266.1153 | ChemSpider | 57.9 | Phenolic |
4-(3,4-Dihydroxyphenyl)-6,7-dihydroxy-2-naphthoic acid (72) | 3.47 | C17H12O6 | −1.15 | 312.0630 | mzCloud | 97.0 | Phenolic |
5,7-Dihydroxy-4-methylcoumarin (73) | 5.02 | C10H8O4 | 0.69 | 192.0424 | mzCloud | 93.8 | Phenolic |
6-Gingerol (74) | 9.71 | C17H26O4 | −0.88 | 294.1829 | ChemSpider | 59.8 | Phenolic |
Caffeic acid (75) | 4.06 | C9H8O4 | −0.34 | 180.0422 | mzCloud | 98.8 | Phenolic |
Esculetin (76) | 4.15 | C9H6O4 | −0.32 | 178.0266 | mzCloud | 99.0 | Phenolic |
Esculin (77) | 4.50 | C15H16O9 | −0.65 | 340.0792 | mzCloud | 94.4 | Phenolic |
Ferulic acid (78) | 5.04 | C10H10O4 | 0.32 | 194.0580 | mzCloud | 95.9 | Phenolic |
Isovanillic acid (79) | 3.64 | C8H8O4 | 0.70 | 168.0424 | mzCloud | 83.9 | Phenolic |
Naringeninchalcone (80) | 6.07 | C15H12O5 | −0.02 | 272.0685 | mzCloud | 96.3 | Phenolic |
N-p-Coumaroyltyrosine (81) | 6.09 | C18H17NO5 | −0.56 | 327.1105 | mzCloud | 99.3 | Phenolic |
o-Coumaric acid (82) | 5.12 | C9H8O3 | 0.49 | 164.0474 | mzCloud | 96.8 | Phenolic |
p-Coumaric acid (83) | 4.67 | C9H8O3 | 0.53 | 164.0474 | mzCloud | 80.6 | Phenolic |
Phyllodulcin (84) | 11.12 | C9H8O2 | −0.30 | 148.0524 | ChemSpider | 55.0 | Phenolic |
Sinapinic acid (85) | 4.56 | C11H12O5 | 1.03 | 224.0687 | mzCloud | 94.7 | Phenolic |
Vanillin (86) | 5.42 | C8H8O3 | 0.64 | 152.0474 | mzCloud | 90.5 | Phenolic |
(-)-Caryophyllene oxide (87) | 7.54 | C15H24O | −0.09 | 220.1827 | mzCloud | 86.5 | Terpenoid |
(+)-ar-Turmerone (88) | 6.74 | C15H20O | 0.92 | 216.1516 | ChemSpider | 76.7 | Terpenoid |
epi-Antheindurolide A (89) | 4.56 | C15H20O4 | 0.57 | 264.1363 | mzCloud | 89.6 | Terpenoid |
Geranylacetone (90) | 6.06 | C13H22O | 0.10 | 194.1671 | ChemSpider | 78.1 | Terpenoid |
Nicotinamide (91) | 1.10 | C6H6N2O | 1.69 | 122.0482 | mzCloud | 94.0 | Vitamin B |
Pyridoxine (92) | 1.08 | C8H11NO3 | 1.41 | 169.0741 | mzCloud | 96.4 | Vitamin B |
Steroidal compound | 6.02 | C27H44O7 | −1.01 | 480.3082 | mzCloud | 94.1 | Steroid |
Name | R. Time (mins) | Formula | Mass Error (ppm) | Calc. Molecular Mass | Database | Matching Score * | Class |
---|---|---|---|---|---|---|---|
N-Acetyltryptophan (93) | 5.69 | C13H14N2O3 | 0.20 | 246.1005 | mzCloud | 98.9 | Aromatic |
{(1R,2R)-2-[(2Z)-5-(Hexopyranosyloxy)-2-penten-1-yl]-3-oxocyclopentyl}acetic acid (94) | 4.70 | C18H28O9 | 0.29 | 388.1734 | mzCloud | 87.8 | Cyclic ketone |
Abscisic acid (95) | 9.52 | C15H20O4 | 0.67 | 264.1363 | mzCloud | 81.2 | Cyclic ketone |
(15Z)-9,12,13-Trihydroxy-15-octadecenoic acid (96) | 8.60 | C18H34O5 | 0.34 | 330.2407 | mzCloud | 92.8 | Fatty acyl |
(9Z,11E,13S,15Z)-13-Hydroxy-9,11,15-octadecatrienoic acid (97) | 11.69 | C18H30O3 | 0.42 | 294.2196 | mzCloud | 82.7 | Fatty acyl |
3-tert-Butyladipic acid (98) | 7.20 | C10H18O4 | −1.72 | 202.1202 | mzCloud | 83.7 | Fatty acyl |
Corchorifatty acid F (99) | 8.17 | C18H32O5 | 0.98 | 328.2253 | mzCloud | 97.8 | Fatty acyl |
Dodecanedioic acid (100) | 6.77 | C12H22O4 | −0.93 | 230.1516 | mzCloud | 97.1 | Fatty acyl |
Tetradecanedioic acid (101) | 10.12 | C14H26O4 | −0.08 | 258.1831 | mzCloud | 85.0 | Fatty acyl |
5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl 6-O-(6-deoxyhexopyranosyl)hexopyranoside (102) | 5.97 | C27H30O15 | 1.42 | 594.1593 | mzCloud | 83.3 | Flavonoid |
Cynaroside (103) | 6.01 | C21H20O11 | 0.49 | 448.1008 | mzCloud | 82.0 | Flavonoid |
Daidzein (104) | 8.70 | C15H10O4 | −0.31 | 254.0578 | mzCloud | 93.2 | Flavonoid |
Quercetin-3β-d-glucoside (105) | 5.75 | C21H20O12 | 0.62 | 464.0958 | mzCloud | 90.2 | Flavonoid |
(1S,4aS,6S,7aS)-4-[(β-d-Glucopyranosyloxy)methyl]-6-hydroxy-7a-methyl-7-methylene-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-1-yl 3-methylbutanoate (106) | 7.79 | C22H34O10 | −0.14 | 458.2151 | ChemSpider | 55.6 | Heterocyclic |
1-Caffeoyl-β-d-glucose (107) | 5.43 | C15H18O9 | 0.95 | 342.0954 | ChemSpider | 73.3 | Phenolic |
3-[3-(β-d-Glucopyranosyloxy)-2-hydroxyphenyl]propanoic acid (108) | 4.34 | C15H20O9 | 0.62 | 344.1109 | mzCloud | 80.8 | Phenolic |
3-Hydroxy-3-(3-hydroxyphenyl)propanoic acid-O-sulphate (109) | 3.51 | C9H10O7S | −0.35 | 262.0146 | ChemSpider | 50.0 | Phenolic |
4-(3,4-Dihydroxyphenyl)-6,7-dihydroxy-2-naphthoic acid (110) | 5.97 | C17H12O6 | 0.62 | 312.0636 | mzCloud | 99.5 | Phenolic |
Caffeoylglycolic acid (111) | 5.51 | C11H10O6 | −1.13 | 238.0475 | ChemSpider | 75.0 | Phenolic |
Esculin (112) | 4.18 | C15H16O9 | 0.23 | 340.0795 | mzCloud | 95.5 | Phenolic |
Salvianolic acid B (113) | 6.62 | C36H30O16 | 1.80 | 718.1547 | mzCloud | 90.5 | Phenolic |
2-[(2S,4aR,8aS)-2-Hydroxy-4a-methyl-8-methylenedecahydro-2-naphthalenyl]acrylic acid (114) | 9.99 | C15H22O3 | −0.20 | 250.1568 | mzCloud | 86.4 | Polycyclic |
Dendronobiloside B (115) | 7.31 | C21H38O8 | 1.47 | 418.2573 | ChemSpider | 59.1 | Terpenoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venmathi Maran, B.A.; Palaniveloo, K.; Mahendran, T.; Chellappan, D.K.; Tan, J.K.; Yong, Y.S.; Lal, M.T.M.; Joning, E.J.; Chong, W.S.; Babich, O.; et al. Antimicrobial Potential of Aqueous Extract of Giant Sword Fern and Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry Analysis. Molecules 2023, 28, 6075. https://doi.org/10.3390/molecules28166075
Venmathi Maran BA, Palaniveloo K, Mahendran T, Chellappan DK, Tan JK, Yong YS, Lal MTM, Joning EJ, Chong WS, Babich O, et al. Antimicrobial Potential of Aqueous Extract of Giant Sword Fern and Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry Analysis. Molecules. 2023; 28(16):6075. https://doi.org/10.3390/molecules28166075
Chicago/Turabian StyleVenmathi Maran, Balu Alagar, Kishneth Palaniveloo, Thivyalaxmi Mahendran, Dinesh Kumar Chellappan, Jen Kit Tan, Yoong Soon Yong, Mohammad Tamrin Mohamad Lal, Elliecpearl Jasca Joning, Wei Sheng Chong, Olga Babich, and et al. 2023. "Antimicrobial Potential of Aqueous Extract of Giant Sword Fern and Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry Analysis" Molecules 28, no. 16: 6075. https://doi.org/10.3390/molecules28166075
APA StyleVenmathi Maran, B. A., Palaniveloo, K., Mahendran, T., Chellappan, D. K., Tan, J. K., Yong, Y. S., Lal, M. T. M., Joning, E. J., Chong, W. S., Babich, O., Sukhikh, S., & Shah, M. D. (2023). Antimicrobial Potential of Aqueous Extract of Giant Sword Fern and Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry Analysis. Molecules, 28(16), 6075. https://doi.org/10.3390/molecules28166075