Advances in Ablation or Oxidation Mechanisms and Behaviors of Carbon Fiber-Reinforced Si-Based Composites
Abstract
:1. Introduction
2. Preparation of C/Si-Based Composites
3. Ablation Behaviors and Mechanisms of Pure C/SiM Composites
3.1. Ablation Behaviors and Mechanisms of C/SiC Composites
3.2. Ablation Behaviors and Mechanisms of C/SiBCN Composites
4. Ablation of C/SiZrM Composites
4.1. Ablation Behaviors and Mechanisms of C/ZrB2-SiC Composites
4.2. Ablation Behaviors and Mechanisms of C/ZrC-SiC Composites
4.3. Ablation Behaviors and Mechanisms of C/ZrB2-ZrC-SiC Composite
5. Ablation of the C/SiZM Composites
6. Conclusions and Future Perspectives
- (1)
- The mechanical properties
- (2)
- Selection of reinforcement
- (3)
- Matrix modification
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wu, J.; Wang, H.; Wang, C.; Zhang, Z.; Tang, Y.; Hou, Z.; Wan, S.; Wu, D.; Tan, Z.; Ouyang, X. High-Pressure synthesis of Al2O3-cBN-hBN Self-lubricating ceramic. Mater. Des. 2022, 217, 110638. [Google Scholar] [CrossRef]
- Liu, R.; Yang, L.; Miao, H.; Jiang, M.; Wang, Y.; Liu, X.; Wan, F. Influence of the SiC matrix introduction time on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC ultra-high temperature composites. Ceram. Int. 2022, 48, 3762–3770. [Google Scholar] [CrossRef]
- Gao, H.; Luo, F.; Wen, Q.; Duan, S.; Zhou, W.; Zhu, D. Influence of different matrices on the mechanical and microwave absorption properties of SiC fiber-reinforced oxide matrix composites. Ceram. Int. 2018, 44, 6010–6015. [Google Scholar] [CrossRef]
- Glass, D.E.; Splinter, S.C. Active oxidation of a uhtc-based cmc. In Proceedings of the International Astronautical Congress, Cape Town, South Africa, 3–7 October 2011. [Google Scholar]
- Galizia, P.; Sciti, D. Disclosing residual thermal stresses in UHT fibre-reinforced ceramic composites and their effect on mechanical behaviour and damage evolution. Compos. Part B Eng. 2023, 248, 110369. [Google Scholar] [CrossRef]
- Nisar, A.; Ariharan, S.; Venkateswaran, T.; Sreenivas, N.; Balani, K. Effect of carbon nanotube on processing, microstructural, mechanical and ablation behavior of ZrB2-20SiC based ultra-high temperature ceramic composites. Carbon 2017, 111, 269–282. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, P.; Xiong, X. Research progress of continuous fiber reinforced ceramic matrix composites. Powder Metall. Mater. Sci. Eng. 2007, 12, 13–19. [Google Scholar]
- Bajpai, S.; Bhadauria, A.; Venkateswaran, T.; Singh, S.S.; Balani, K. Spark plasma joining of HfB2-ZrB2 based Ultra High Temperature Ceramics using Ni interlayer. Mater. Sci. Eng. A 2022, 838, 142818. [Google Scholar] [CrossRef]
- Ren, J.; Duan, Y.; Lv, C.; Luo, J.; Zhang, Y.; Fu, Y. Effects of HfC/PyC core-shell structure nanowires on the microstructure and mechanical properties of Hf1-xZrxC coating. Ceram. Int. 2021, 47, 7853–7863. [Google Scholar] [CrossRef]
- Vinci, A.; Silvestroni, L.; Gilli, N.; Zoli, L.; Sciti, D. Advancements in carbon fibre reinforced ultra-refractory ceramic composites: Effect of rare earth oxides addition. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106858. [Google Scholar] [CrossRef]
- Xu, B.; An, Y.; Wang, P.; Jin, X.; Zhao, G. Microstructure and ablation behavior of double anti-oxidation protection for carbon-bonded carbon fiber composites. Ceram. Int. 2017, 43, 783–790. [Google Scholar] [CrossRef]
- Du, B.; He, C.; Qian, J.; Wang, X.; Cai, M.; Shui, A. Ablation behaviors and mechanism of ultra-thick anti-oxidation layer coating on carbon-bonded carbon fiber composites. J. Am. Ceram. Soc. 2019, 102, 7543–7552. [Google Scholar] [CrossRef]
- Cheng, Y.; Lyu, Y.; Xie, Y.; Zhang, C.; Feng, J.; Xun, L.; Zhang, W.; Han, W.; Zhou, S.; Hu, P.; et al. Starting from essence to reveal the ablation behavior and mechanism of 3D PyC Cf/ZrC-SiC composite. Corros. Sci. 2022, 201, 110261. [Google Scholar] [CrossRef]
- Inoue, R.; Arai, Y.; Kubota, Y.; Goto, K.; Kogo, Y. Oxidation behavior of carbon fiber-dispersed ZrB2-SiC-ZrC triple phase matrix composites in an oxyhydrogen torch environment. Ceram. Int. 2018, 44, 8387–8396. [Google Scholar] [CrossRef]
- Kubota, Y.; Arai, Y.; Yano, M.; Inoue, R.; Goto, K.; Kogo, Y. Oxidation and recession of plain weave carbon fiber reinforced ZrB2-SiC-ZrC in oxygen–hydrogen torch environment. J. Eur. Ceram. Soc. 2019, 39, 2812–2823. [Google Scholar] [CrossRef]
- Vinci, A.; Reimer, T.; Zoli, L.; Sciti, D. Influence of pressure on the oxidation resistance of carbon fiber reinforced ZrB2/SiC composites at 2000 and 2200 °C. Corros. Sci. 2021, 184, 109377. [Google Scholar] [CrossRef]
- Ogasawara, T.; Aoki, T.; Hassan, M.S.A.; Mizokami, Y.; Watanabe, N. Ablation behavior of SiC fiber/carbon matrix composites under simulated atmospheric reentry conditions. Compos. Part A Appl. Sci. Manuf. 2011, 42, 221–228. [Google Scholar] [CrossRef]
- Fang, G.; Gao, X.; Song, Y. A Review on ceramic matrix composites and environmental barrier coatings for aero-engine: Material development and failure analysis. Coatings 2023, 13, 357. [Google Scholar] [CrossRef]
- Tejero-Martin, D.; Bennett, C.; Hussain, T. A review on environmental barrier coatings: History, current state of the art and future developments. J. Eur. Ceram. Soc. 2021, 41, 1747–1768. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, W.; Wang, S.; Chen, Z.-H. Oxidation behavior of oxidation protective coatings for PIP–C/SiC composites at 1500 °C. Ceram. Int. 2012, 38, 9–13. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Q.; Su, Z.; Chang, X.; Chai, L.; Liu, C.; Xue, L.; Huang, D. Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction. Corros. Sci. 2013, 75, 16–27. [Google Scholar] [CrossRef]
- Fang, X.; Liu, F.; Lu, B.; Feng, X.; Kleebe, H.J. Bio-Inspired Microstructure Design to Improve Thermal Ablation and Oxidation Resistance: Experiment on SiC. J. Am. Ceram. Soc. 2015, 98, 4010–4015. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Yu, S. Ablation behavior and mechanism analysis of C/SiC composites. J. Mater. Res. Technol. 2016, 5, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Binner, J.; Porter, M.; Baker, B.; Zou, J.; Venkatachalam, V.; Diaz, V.R.; D’Angio, A.; Ramanujam, P.; Zhang, T.; Murthy, T.S.R.C. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—A review. Int. Mater. Rev. 2019, 65, 389–444. [Google Scholar] [CrossRef]
- Liu, L.; Li, B.; Feng, W.; Tang, C.; Zhang, J.; Yao, X.; Yang, Z.; Guo, Y.; Wang, P.; Zhang, Y. Effect of loading spectrum with different single pulsing time on the cyclic ablation of C/C-SiC-ZrB2-ZrC composites in plasma. Corros. Sci. 2021, 192, 109817. [Google Scholar] [CrossRef]
- Ren, X.-R.; Wang, W.-G.; Sun, K.; Hu, Y.-W.; Xu, L.-H.; Feng, P.-Z. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering. New Carbon Mater. 2022, 37, 603–614. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Liang, W.; Miao, Q.; Zhou, S.; Sun, J.; Qi, Y.; Gao, X.; Song, Y.; Ogawa, K. Effect of the Y2O3 amount on the oxidation behavior of ZrB2-SiC-based coatings for carbon/carbon composites. J. Eur. Ceram. Soc. 2022, 42, 4770–4782. [Google Scholar] [CrossRef]
- Chen, B.-W.; Ni, D.-W.; Lu, J.; Cai, F.-Y.; Zou, X.-G.; Liao, C.-J.; Wang, H.-D.; Dong, S.-M. Long-term and cyclic ablation behavior of La2O3 modified Cf/ZrB2-SiC composites at 2500 °C. Corros. Sci. 2022, 206, 110538. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, C.; Xu, M.; Liu, B.; Zhu, X.; Fu, Q. High-entropy (Hf0.25Zr0.25Ti0.25Cr0.25)B2 ceramic incorporated SiC-Si composite coating to protect C/C composites against ablation above 2400 K. Ceram. Int. 2022, 48, 27106–27119. [Google Scholar] [CrossRef]
- Jin, X.; Fan, X.; Lu, C.; Wang, T. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. J. Eur. Ceram. Soc. 2018, 38, 1–28. [Google Scholar] [CrossRef]
- Jiang, Y.; Ni, D.; Chen, B.; Lu, J.; Cai, F.; Zou, X.; Liao, C.; Wang, H.; Dong, S. Fabrication and optimization of 3D-Cf/HfC-SiC-based composites via sol-gel processing and reactive melt infiltration. J. Eur. Ceram. Soc. 2021, 41, 1788–1794. [Google Scholar] [CrossRef]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef]
- Lee, S.; Park, G.; Kim, J.G.; Paik, J.G. Evaluation System for Ablative Material in a High-Temperature Torch. Int. J. Aeronaut. Space Sci. 2019, 20, 620–635. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, D.; Mei, H.; Xiao, S.; Yao, Y.; Cheng, L.; Zhang, L. Tuning SiC nanowires interphase to improve the mechanical and electromagnetic wave absorption properties of SiCf/SiCnw/Si3N4 composites. J. Alloys Compd. 2022, 896, 163017. [Google Scholar] [CrossRef]
- Mungiguerra, S.; Silvestroni, L.; Savino, R.; Zoli, L.; Esser, B.; Lagos, M.; Sciti, D. Qualification and reusability of long and short fibre-reinforced ultra-refractory composites for aerospace thermal protection systems. Corros. Sci. 2022, 195, 109955. [Google Scholar] [CrossRef]
- Jenkins, M.G.; Mello, M.D. Fabrication, Processing, and Characterization of Braided, Continuous SiC Fiber-Reinforced/CVI SiC Matrix Ceramic Composites. Mater. Manuf. Process. 1996, 11, 99–118. [Google Scholar] [CrossRef]
- Grantham, T.; Tanner, G.; Molina, R.; Duong, N.-M.; Koo, J.H. Ablation, thermal, and morphological properties of sic fibers reinforced ceramic matrix composites. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Carney, C.M. 5.10 Ultra-High Temperature Ceramic-Based Composites. In Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2018; pp. 281–292. [Google Scholar]
- Lee, Y.-J.; Joo, H.J. Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide (SiC) coating. Surf. Coat. Technol. 2004, 180–181, 286–289. [Google Scholar] [CrossRef]
- Gao, P.; Xiao, H.; Wang, H.; Jin, Z. A study on the oxidation kinetics and mechanism of three-dimensional (3D) carbon fiber braid coated by gradient SiC. Mater. Chem. Phys. 2005, 93, 164–169. [Google Scholar] [CrossRef]
- Tang, S.; Deng, J.; Liu, W.; Yang, K. Mechanical and ablation properties of 2D-carbon/carbon composites pre-infiltrated with a SiC filler. Carbon 2006, 44, 2877–2882. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, D.; Miao, Y.; Yan, B. Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2900 and 3550 °C. Corros. Sci. 2008, 50, 3378–3381. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, B. Morphology and Microstructure of Three-Dimensional Orthogonal C/SiC Composites Ablated by an Oxyacetylene Flame at 2900 °C. Int. J. Appl. Ceram. Technol. 2009, 6, 164–170. [Google Scholar] [CrossRef]
- Li, S.; Feng, Z.; Liu, Y.; Yang, W.; Zhang, W.; Cheng, L.; Zhang, L. Microstructural evolution of coating-modified 3D C/SiC composites after annealing in wet oxygen at different temperatures. Corros. Sci. 2010, 52, 2837–2845. [Google Scholar] [CrossRef]
- Nie, J.; Xu, Y.; Zhang, L.; Fan, S.; Xu, F.; Cheng, L.; Ma, J.; Yin, X. Microstructure, Thermophysical, and Ablative Performances of a 3D Needled C/C-SiC Composite. Int. J. Appl. Ceram. Technol. 2010, 7, 197–206. [Google Scholar] [CrossRef]
- Wei, L.; Yang, X.; Song, W.; Yan, M.; Zhao-hui, C. Ablation behavior of three-dimensional braided C/SiC composites by oxyacetylene torch under different environments. Ceram. Int. 2013, 39, 463–468. [Google Scholar] [CrossRef]
- Safi, S.; Kazemzadeh, A. MCMB–SiC composites; new class high-temperature structural materials for aerospace applications. Ceram. Int. 2013, 39, 81–86. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Feng, W.; Shi, X.; Wu, H.; Zhu, J. Effect of surface ablation products on the ablation resistance of C/C–SiC composites under oxyacetylene torch. Corros. Sci. 2013, 67, 60–66. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Shi, X.; Feng, W.; Wang, Y.; Yao, D. Effects of SiC addition on the ablation properties of C/C composites in different heat fluxes under oxyacetylene torch. Vacuum 2013, 90, 97–99. [Google Scholar] [CrossRef]
- Ni, C.; Li, K.; Liu, L.; Li, H.; Fu, Q.; Guo, L.; Liu, N. Ablation mechanism of SiC coated C/C composites at 0° angle in two flame conditions under an oxyacetylene flame. Corros. Sci. 2014, 84, 1–10. [Google Scholar] [CrossRef]
- Cui, Y.; Li, A.; Li, B.; Ma, X.; Bai, R.; Zhang, W.; Ren, M.; Sun, J. Microstructure and ablation mechanism of C/C–SiC composites. J. Eur. Ceram. Soc. 2014, 34, 171–177. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Liu, L.; Duan, L.; Wang, G.; Lu, Y. Ablation behavior of C/SiC composites in plasma wind tunnel. Carbon 2016, 103, 73–83. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Mala, R.B.; Mokhasunavisu, R.R. Fabrication and Ablation Studies of 4D C/SiC Composite Nozzle Under Liquid Propulsion. Int. J. Appl. Ceram. Technol. 2015, 12, E176–E190. [Google Scholar] [CrossRef]
- Fang, X.; Liu, F.; Xia, B.; Ou, D.; Feng, X. Formation mechanisms of characteristic structures on the surface of C/SiC composites subjected to thermal ablation. J. Eur. Ceram. Soc. 2016, 36, 451–456. [Google Scholar] [CrossRef]
- Jiao, X.; Li, T.; Li, Y.; Zhang, Z.; Dai, F.; Feng, Z. Oxidation behavior of SiC/glaze-precursor coating on carbon/carbon composites. Ceram. Int. 2017, 43, 8208–8213. [Google Scholar] [CrossRef]
- Jin, X.; Fan, X.; Jiang, P.; Wang, Q. Microstructure Evolution and Ablation Mechanism of C/C and C/C-SiC Composites Under a Hypersonic Flowing Propane Torch. Adv. Eng. Mater. 2017, 19, 1700239. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Su, Z.A.; Fang, C.; Zeng, G.; Huang, Q. Fabrication and performance of micro-diamond modified C/SiC composites via precursor impregnation and pyrolysis process. Ceram. Int. 2018, 44, 9601–9608. [Google Scholar] [CrossRef]
- Frueh, S.J.; Coons, T.P.; Reutenauer, J.W.; Gottlieb, R.; Kmetz, M.A.; Suib, S.L. Carbon fiber reinforced ceramic matrix composites with an oxidation resistant boron nitride interface coating. Ceram. Int. 2018, 44, 15310–15316. [Google Scholar] [CrossRef]
- Jin, W.; Si, Z.; Lu, Y.; Bei-zhi, S.; Yi, W.; Guang-de, L.; Zhong-fang, X.; Jie, C.; Heng-ping, H.; Yang, X. Oxidation behavior and high-temperature flexural property of CVD-SiC-coated PIP-C/SiC composites. Ceram. Int. 2018, 44, 16583–16588. [Google Scholar] [CrossRef]
- da Silva, R.J.; Reis, R.I.; Pardini, L.C.; Sias, D.F.; Filho, G.P. Low-Energy Ablation and Low Thermal Diffusivity of a CFRC Composite Modified by SiC. Int. J. Thermophys. 2019, 40, 88. [Google Scholar] [CrossRef]
- Fan, X.; Dang, X.; Ma, Y.; Yin, X.; Zhang, L.; Cheng, L. Microstructure, mechanical and ablation behaviour of C/SiC–Si with different preforms. Ceram. Int. 2019, 45, 23104–23110. [Google Scholar] [CrossRef]
- Tang, Y.; Yue, M.; Fang, X.; Feng, X. Evolution of surface droplets and flow patterns on C/SiC during thermal ablation. J. Eur. Ceram. Soc. 2019, 39, 3566–3574. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.-J.; Liu, X.-S.; Li, N.; Song, Q. Effects of SiC nanowire decorated with carbon nanosheet on mechanical, heat-dissipation and anti-ablation properties of carbon/carbon composites. Ceram. Int. 2019, 45, 2521–2529. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Song, S.H.; Lee, D. Effects of residual Si on the ablation properties of biomorphic C/SiC composites for reusable thermal protection systems. Adv. Compos. Mater. 2020, 30, 91–102. [Google Scholar] [CrossRef]
- Huang, D.; Tan, R.; Liu, L.; Ye, C.; Zhu, S.; Fan, Z.; Zhang, P.; Wu, H.; Han, F.; Liu, H.; et al. Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon-silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels. J. Eur. Ceram. Soc. 2021, 41, 4438–4446. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Wang, G.; Wang, Z.; Gao, L. New ablation evolution behaviors in micro-hole drilling of 2.5D Cf/SiC composites with millisecond laser. Ceram. Int. 2021, 47, 29670–29680. [Google Scholar] [CrossRef]
- Shi, Y.-A.; Zha, B.-L.; Su, Q.-D.; Wang, J.-J.; Li, S.-Y. Thermal performance and ablation characteristics of C/C-SiC for thermal protection of hypersonic vehicle. J. Eur. Ceram. Soc. 2021, 41, 5427–5436. [Google Scholar] [CrossRef]
- Xu, M.; Guo, L.; Huang, J.; Zhang, P. Microstructure and resistance to thermal shock of SiC coatings that are prepared on C/C-composite pyrocarbon matrices of various textures. Ceram. Int. 2021, 47, 9818–9826. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Cao, L.; Chen, J.; Qiu, G.; Wang, J. Preparation and analysis of micro-holes in C/SiC composites and ablation with a continuous wave laser. J. Eur. Ceram. Soc. 2021, 41, 176–184. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, C.; Chen, L.; Yang, X.; Shi, A.; Huang, Q.; Hu, H. Fabrication, microstructure and ablation resistance of C/C–SiC composites, by using a novel precursor of SiC. Ceram. Int. 2021, 47, 7224–7232. [Google Scholar] [CrossRef]
- Zhao, X.; Cao, Y.; Duan, L.; Li, Z.; Wang, Y. Low-surface-temperature jump behavior of C/SiC composites prepared via precursor impregnation and pyrolysis in high-enthalpy plasma flows. J. Eur. Ceram. Soc. 2021, 41, 7601–7609. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, H.; Yan, L.; Cui, H. Morphology and anti-ablation properties of PIP Cf/C–SiC composites with different CVI carbon content under 4.2 MW/m2 heat flux oxy-acetylene test. Ceram. Int. 2021, 47, 2194–2201. [Google Scholar] [CrossRef]
- Liu, N.; Guo, L.; Kou, G.; Li, Y.; Yin, X. Ablation behavior of thin-blade co-deposited C/Cx-SiCy composites under the influence of the complex fluid conditions of the oxyacetylene torch. Ceram. Int. 2022, 48, 16923–16932. [Google Scholar] [CrossRef]
- Liu, N.; Guo, L.; Kou, G.; Li, Y.; Yin, X. The influence of heat treatment on the ablation behavior of the C/Cx-SiCy composites tested by thin-blade under oxyacetylene torch. Ceram. Int. 2022, 48, 22564–22574. [Google Scholar] [CrossRef]
- Xu, M.; Guo, L.; Zhang, P.; Li, W. Effect of pyrolytic carbon texture on ablation behavior of carbon/carbon composites coated with SiC by pack cementation. Ceram. Int. 2022, 48, 10261–10270. [Google Scholar] [CrossRef]
- Guo, W.; Ye, Y.; Bai, S.; Zhu, L.A.; Li, S. Gel reactive melt infiltration: A new method for large-sized complex-shaped C/C components ceramic modification. Ceram. Int. 2019, 45, 14146–14152. [Google Scholar] [CrossRef]
- Chen, Z.F.; Wan, S.C.; Fang, D.; Zhu, J.X.; Zhang, J.Z. Morphology and ablation mechanism of Cf/Si3N4 composites ablated by oxyacetylene torch at 2200 °C. Corros. Eng. Sci. Technol. 2013, 46, 380–385. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, B.; Ni, D.; Ni, N.; He, P.; Gao, L.; Wang, H.; Zhou, H.; Dong, S. Improved ablation resistance of 3D-Cf/SiBCN composites with (PyC/SiC)3 multi-layers as interphase. J. Eur. Ceram. Soc. 2021, 41, 1114–1120. [Google Scholar] [CrossRef]
- Yan, C.; Liu, R.; Cao, Y.; Zhang, C.; Zhang, D. Ablation behavior and mechanism of C/ZrC, C/ZrC–SiC and C/SiC composites fabricated by polymer infiltration and pyrolysis process. Corros. Sci. 2014, 86, 131–141. [Google Scholar] [CrossRef]
- Wang, J.; Duan, X.; Yang, Z.; Jia, D.; Zhou, Y. Ablation mechanism and properties of SiCf/SiBCN ceramic composites under an oxyacetylene torch environment. Corros. Sci. 2014, 82, 101–107. [Google Scholar] [CrossRef]
- Yang, X.; Su, Z.; Huang, Q.; Chang, X.; Fang, C.; Chen, L.; Zeng, G. Effects of oxidizing species on ablation behavior of C/C-ZrB2-ZrC-SiC composites prepared by precursor infiltration and pyrolysis. Ceram. Int. 2016, 42, 19195–19205. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, G.; Liao, X.; Liang, B.; Li, D.; Yang, Z.; Jia, D.; Zhou, Y.; Zhang, T.; Gao, C. Ablation properties and mechanisms of BN-coated Cf-reinforced SiBCNZr ceramic composites under an oxyacetylene combustion torch. Ceram. Int. 2021, 47, 15533–15541. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, H.; Hu, Y.; Zhang, P.; Hua, M.; Liang, X.; Chen, Y.; Zhang, Z. RMI-C/C-SiC-ZrSi2 composite serving in inert atmosphere up to 2100 °C: Thermal shock resistance, microstructure and damage mechanism. Ceram. Int. 2021, 47, 20371–20378. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Cheng, L.; Zhang, L. Preparation and properties of 2D C/ZrB2-SiC ultra high temperature ceramic composites. Mater. Sci. Eng. A 2009, 524, 129–133. [Google Scholar] [CrossRef]
- Tang, S.; Deng, J.; Wang, S.; Liu, W. Fabrication and Characterization of an Ultra-High-Temperature Carbon Fiber-Reinforced ZrB2-SiC Matrix Composite. J. Am. Ceram. Soc. 2007, 90, 3320–3322. [Google Scholar] [CrossRef]
- Tang, S.; Deng, J.; Wang, S.; Liu, W. Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2–SiC composites. Corros. Sci. 2009, 51, 54–61. [Google Scholar] [CrossRef]
- Yao, X.; Li, H.; Zhang, Y.; Li, K.; Fu, Q.; Peng, H. Ablation Behavior of ZrB2-Based Coating Prepared by Supersonic Plasma Spraying for SiC-Coated C/C Composites Under Oxyacetylene Torch. J. Therm. Spray Technol. 2013, 22, 531–537. [Google Scholar] [CrossRef]
- Zou, X.; Fu, Q.; Liu, L.; Li, H.; Wang, Y.; Yao, X.; He, Z. ZrB2–SiC coating to protect carbon/carbon composites against ablation. Surf. Coat. Technol. 2013, 226, 17–21. [Google Scholar] [CrossRef]
- Li, H.-J.; Yao, X.-Y.; Zhang, Y.-L.; Li, K.-Z.; Guo, L.-J.; Liu, L. Effect of heat flux on ablation behaviour and mechanism of C/C–ZrB2–SiC composite under oxyacetylene torch flame. Corros. Sci. 2013, 74, 265–270. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Li, H.; Ren, J. Ablation resistance of ZrB2–SiC coating prepared by supersonic atmosphere plasma spraying for SiC-coated carbon/carbon composites. Ceram. Int. 2014, 40, 14749–14755. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, M.-Y.; Huang, Q.-Z.; Wang, L.-P.; Tang, X.; Yang, X.; Tong, K. Fabrication and ablation property of carbon/carbon composites with novel SiC–ZrB2 coating. Trans. Nonferrous Met. Soc. China 2015, 25, 3708–3715. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Zhang, Y.; Shi, X.; Fu, Q.; Feng, W.; Feng, T. Effect of ZrB2 and SiC distributions on the ablation of modified carbon/carbon composites. Ceram. Int. 2015, 41, 1823–1829. [Google Scholar] [CrossRef]
- Wang, D.; Zeng, Y.; Xiong, X.; Li, G.; Chen, Z.; Sun, W.; Wang, Y. Preparation and ablation properties of ZrB2–SiC protective laminae for carbon/carbon composites. Ceram. Int. 2014, 40, 14215–14222. [Google Scholar] [CrossRef]
- Fang, X.; Liu, F.; Su, H.; Liu, B.; Feng, X. Ablation of C/SiC, C/SiC–ZrO2 and C/SiC–ZrB2 composites in dry air and air mixed with water vapor. Ceram. Int. 2014, 40, 2985–2991. [Google Scholar] [CrossRef]
- Yang, X.; Wei, L.; Song, W.; Bi-feng, Z.; Zhao-hui, C. ZrB2/SiC as a protective coating for C/SiC composites: Effect of high temperature oxidation on mechanical properties and anti-ablation property. Compos. Part B Eng. 2013, 45, 1391–1396. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Yang, B.; Ren, J.; Li, H. Effect of pre-oxidation on the ablation resistance of ZrB2–SiC coating for SiC-coated carbon/carbon composites. Ceram. Int. 2015, 41, 2582–2589. [Google Scholar] [CrossRef]
- Feng, T.; Li, H.-J.; Shi, X.-H.; Yang, X.; Wang, S.-L. Oxidation and ablation resistance of ZrB2–SiC–Si/B-modified SiC coating for carbon/carbon composites. Corros. Sci. 2013, 67, 292–297. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Q.; Wang, B.; Liu, T.; Sun, J. The ablation behavior and mechanical property of C/C-SiC-ZrB2 composites fabricated by reactive melt infiltration. Ceram. Int. 2017, 43, 6138–6147. [Google Scholar] [CrossRef]
- Ghelich, R.; Mehdinavaz Aghdam, R.; Jahannama, M.R. Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers. J. Compos. Mater. 2017, 52, 1239–1251. [Google Scholar] [CrossRef]
- Liégaut, C.; Bertrand, P.; Maillé, L.; Rebillat, F. UHTC-based matrix as protection for Cf/C composites: Original manufacturing, microstructural characterisation and oxidation behaviour at temperature above 2000 °C. J. Eur. Ceram. Soc. 2022, 42, 3168–3182. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Q.; Ma, Z.; Liu, Y.; Chen, H.; Ma, K.; Sun, S. Characterization and ablation resistance of ZrB2-xSiC gradient coatings deposited with HPPS. Ceram. Int. 2020, 46, 14756–14766. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, L.; Ma, B.; Liu, Y.; Zhang, L. Effect of CVD ZrB2 coating thickness on anti-ablation performance of C/SiC composites. Ceram. Int. 2018, 44, 8166–8175. [Google Scholar] [CrossRef]
- Sciti, D.; Zoli, L.; Vinci, A.; Silvestroni, L.; Mungiguerra, S.; Galizia, P. Effect of PAN-based and pitch-based carbon fibres on microstructure and properties of continuous Cf/ZrB2-SiC UHTCMCs. J. Eur. Ceram. Soc. 2021, 41, 3045–3050. [Google Scholar] [CrossRef]
- Kong, J.H.; Lee, S.Y.; Son, Y.I.; Kim, D.K. Synergistic reinforcement effects of ZrB2 on the ultra-high temperature stability of Cf/SiC composite fabricated by liquid silicon infiltration. J. Eur. Ceram. Soc. 2023, 43, 3062–3069. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Q.; Dong, S.; Wang, Z.; Shi, G.; Zhou, H.; Wang, Z.; He, P. Microstructures and ablation properties of 3D 4-directional Cf/ZrC–SiC composite in a plasma wind tunnel environment. Ceram. Int. 2014, 40, 11387–11392. [Google Scholar] [CrossRef]
- Wang, D.; Dong, S.; Zhou, H.; Kan, Y.; Wang, Z.; Zhu, G.; Chen, X.; Cao, Y. Effect of pyrolytic carbon interface on the properties of 3D C/ZrC–SiC composites fabricated by reactive melt infiltration. Ceram. Int. 2016, 42, 10272–10278. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Zhang, S.; Wang, J.; Li, W.; Sun, F. Effect of reaction melt infiltration temperature on the ablation properties of 2D C/C–SiC–ZrC composites. Corros. Sci. 2012, 58, 12–19. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Zhang, S.; Li, W.; Wang, J. Microstructures and ablation properties of C/C−SiC−ZrC composites prepared using C/C skeletons with various densities. Ceram. Int. 2013, 39, 8173–8181. [Google Scholar] [CrossRef]
- Li, K.-Z.; Jing, X.; Qian-gang, F.; He-jun, L.; Ling-jun, G. Effects of porous C/C density on the densification behavior and ablation property of C/C–ZrC–SiC composites. Carbon 2013, 57, 161–168. [Google Scholar] [CrossRef]
- Xie, J.; Li, K.; Li, H.; Fu, Q.; Liu, L. Cyclic ablation behavior of C/C–ZrC–SiC composites under oxyacetylene torch. Ceram. Int. 2014, 40, 5165–5171. [Google Scholar] [CrossRef]
- Feng, B.; Li, H.; Zhang, Y.; Liu, L.; Yan, M. Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C–SiC–ZrC composites. Corros. Sci. 2014, 82, 27–35. [Google Scholar] [CrossRef]
- Zhuang, L.; Fu, Q.-G.; Tan, B.-Y.; Guo, Y.-A.; Ren, Q.-W.; Li, H.-J.; Li, B.; Zhang, J.-P. Ablation behaviour of C/C and C/C–ZrC–SiC composites with cone-shaped holes under an oxyacetylene flame. Corros. Sci. 2016, 102, 84–92. [Google Scholar] [CrossRef]
- Chang, Y.; Sun, W.; Xiong, X.; Chen, Z.; Wang, Y.; Hao, Z.; Xu, Y. Microstructure and ablation behaviors of a novel gradient C/C-ZrC-SiC composite fabricated by an improved reactive melt infiltration. Ceram. Int. 2016, 42, 16906–16915. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Su, Z.-A.; Xue, L.; Zhong, P.; Li, S.-P.; Huang, Q.-Z.; Liu, H.-W. Effect of ZrC–SiC content on microstructure and ablation properties of C/C composites. Trans. Nonferrous Met. Soc. China 2016, 26, 2653–2664. [Google Scholar] [CrossRef]
- Tong, Y.; Ye, Y.; Bai, S.; Zhang, H. Effects of zirconium addition on microstructure and ablation resistance of carbon fibre reinforced carbon and SiC ceramic matrix composite prepared by reactive melt infiltration. Adv. Appl. Ceram. 2014, 113, 307–310. [Google Scholar] [CrossRef]
- Liu, C.; Cao, L.; Chen, J.; Xue, L.; Tang, X.; Huang, Q. Microstructure and ablation behavior of SiC coated C/C–SiC–ZrC composites prepared by a hybrid infiltration process. Carbon 2013, 65, 196–205. [Google Scholar] [CrossRef]
- Liu, C.; Su, Z.; Huang, Q.; Chen, J.; Yang, X.; Cao, L.; Yin, T.; Zhong, P. Ablation behavior of ZrC–SiC coated C/C–ZrC–SiC composites prepared by precursor infiltration pyrolysis combined with reactive melt infiltration. J. Alloys Compd. 2014, 597, 236–242. [Google Scholar] [CrossRef]
- Yang, X.; Wei, L.; Song, W.; Chen, Z.-H.; Zhang, Y.-Z. Ablation behavior and mechanism of SiC/Zr–Si–C multilayer coating for PIP-C/SiC composites under oxyacetylene torch flame. Compos. Part B Eng. 2015, 69, 127–132. [Google Scholar] [CrossRef]
- Chen, S.A.; Zhang, C.; Zhang, Y.; Zhao, D.; Hu, H.; Zhang, Z. Mechanism of ablation of 3D C/ZrC–SiC composite under an oxyacetylene flame. Corros. Sci. 2013, 68, 168–175. [Google Scholar] [CrossRef]
- Xie, J.; Li, K.; Li, H.; Fu, Q.; Guo, L. Ablation behavior and mechanism of C/C–ZrC–SiC composites under an oxyacetylene torch at 3000 °C. Ceram. Int. 2013, 39, 4171–4178. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, Y.; Cui, H.; Yan, L.-S. Morphology and anti-ablation properties of composites nozzles under the Φ100 mm H2O2- polyethylene hybrid rocket motor test. Ceram. Int. 2021, 47, 6554–6561. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Ren, M.; Zuo, Y.; Yang, M.; Zhang, J.; Sun, J. Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame. Ceram. Int. 2017, 43, 10661–10667. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, Z.; Ge, Y.; Peng, K.; Ran, L.; Yi, M. Microstructure and ablation performance of SiC–ZrC coated C/C composites prepared by reactive melt infiltration. Ceram. Int. 2018, 44, 8314–8321. [Google Scholar] [CrossRef]
- Zhou, H.; Ni, D.; He, P.; Yang, J.; Hu, J.; Dong, S. Ablation behavior of C/C-ZrC and C/SiC-ZrC composites fabricated by a joint process of slurry impregnation and chemical vapor infiltration. Ceram. Int. 2018, 44, 4777–4782. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, K.; Li, W.; Liu, Q.; Kou, G.; Zhang, Y. Preparation, ablation behavior and mechanism of C/C-ZrC-SiC and C/C-SiC composites. Ceram. Int. 2018, 44, 7481–7490. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, K.; Li, W.; Liu, Q.; Kou, G.; Zhang, Y. Ablation behavior of C/C-ZrC-SiC composites prepared by reactive melt infiltration under oxyacetylene torch at two heat fluxes. Ceram. Int. 2018, 44, 17345–17358. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, K.; Kou, G.; Liu, T.; Li, W. Mechanical properties and ablation behavior of C/C-ZrC and C/C-ZrC-SiC composites prepared by precursor infiltration and pyrolysis combined with chemical vapor infiltration. Ceram. Int. 2018, 44, 23191–23201. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, C.; Wang, Y.; Pang, S.; Li, J.; Tang, S.; Cheng, H.-M. Construction of sandwich-structured C/C-SiC and C/C-SiC-ZrC composites with good mechanical and anti-ablation properties. J. Eur. Ceram. Soc. 2022, 42, 1219–1226. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, M.; He, H.; Wang, X.; Tong, K.; Wang, Y.; Xu, P.; Zheng, L.; Zeng, G.; Su, Z.; et al. The effect of carbon source addition order during sol-gel process on the properties of C/C–ZrC–SiC composites. Ceram. Int. 2021, 47, 35366–35377. [Google Scholar] [CrossRef]
- Xie, J.; Li, K.; Sun, G.; Li, H.; Su, X.; Han, Y.; Li, T. Effects of surface structure unit of 2D needled carbon fiber preform on the microstructure and ablation properties of C/C-ZrC-SiC composites. Ceram. Int. 2019, 45, 11912–11919. [Google Scholar] [CrossRef]
- Wu, X.; Su, Z.; Huang, Q.; Tong, K.; Xie, X.; Zeng, C. Effect of ZrC particle distribution on the ablation resistance of C/C-SiC-ZrC composites fabricated using precursor infiltration pyrolysis. Ceram. Int. 2020, 46, 16062–16067. [Google Scholar] [CrossRef]
- Tian, X.; Shi, X.; Yang, L.; Li, H.; Lin, H. Preparation and ablation properties of SiC nanowire-reinforced ZrC–SiC coating-matrix integrated C/C composites. Ceram. Int. 2021, 47, 31251–31258. [Google Scholar] [CrossRef]
- Guo, W.; Bai, S.; Ye, Y. Polymer-metal slurry reactive melt infiltration: A flexible and controllable ceramic modification strategy for irregular C/C components. Ceram. Int. 2021, 47, 32891–32899. [Google Scholar] [CrossRef]
- Tian, T.; Sun, W.; Qing, X.; Xiong, X.; Zhang, H.; Chu, Y.; Chen, Z.; Zeng, Y. Intelligent cooling structure design of "Z-pins like" silicon rods to enhance the ablation resistance of C/C-ZrC-SiC composites above 2500 °C. J. Eur. Ceram. Soc. 2020, 40, 3875–3886. [Google Scholar] [CrossRef]
- Qing, X.; Sun, W.; Tian, T.; Xiong, X.; Zhang, H.; Chen, Z.; Zeng, Y. Structural characteristics and ablative behavior of C/C–ZrC–SiC composites reinforced with “Z-pins like” Zr–Si–B–C multiphase ceramic rods. Ceram. Int. 2020, 46, 18895–18902. [Google Scholar] [CrossRef]
- Liu, R.; Liu, X.; Wang, Y.; Miao, H.; Song, C.; Qi, G.; Wan, F. Laser ablation behavior and mechanism of Cf/SiC–ZrC ultra-high temperature ceramic matrix composite prepared by PIP method. Ceram. Int. 2021, 47, 23610–23619. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Hu, X.; Feng, G.; Yao, X.; Wang, P. Effect of the curvature radius of sharp leading edge parts made of a SiC/ZrC-SiC coated C/C composite on their ablation resistance. J. Eur. Ceram. Soc. 2020, 40, 2768–2780. [Google Scholar] [CrossRef]
- He, Q.; Li, H.; Yin, X.; Wang, C.; Lu, J. Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition. Ceram. Int. 2019, 45, 20414–20426. [Google Scholar] [CrossRef]
- He, Q.; Li, H.; Wang, C.; Zhou, H.; Lu, J. Microstructure and ablation property of C/C-ZrC-SiC composites fabricated by chemical liquid-vapor deposition combined with precursor infiltration and pyrolysis. Ceram. Int. 2019, 45, 3767–3781. [Google Scholar] [CrossRef]
- He, Q.; Li, H.; Wang, C.; Li, T.; Lu, J. Microstructure and ablation property of gradient ZrC SiC modified C/C composites prepared by chemical liquid vapor deposition. Ceram. Int. 2019, 45, 13283–13296. [Google Scholar] [CrossRef]
- Feng, T.; Shi, X.; Hou, W.; Tong, M.; Li, H.; Lin, H.; Wen, S. The ablation and mechanical behaviors of C/(SiC-ZrC)n multi-layer structure matrix composites by chemical vapor infiltration. J. Eur. Ceram. Soc. 2022, 42, 4133–4143. [Google Scholar] [CrossRef]
- Feng, G.; Yu, Y.; Yao, X.; Jia, Y.; Sun, J.; Li, H. Ablation behavior of single and alternate multilayered ZrC-SiC coatings under oxyacetylene torch. J. Eur. Ceram. Soc. 2022, 42, 830–840. [Google Scholar] [CrossRef]
- Feng, G.; Li, H.; Yao, X.; Chen, L.; Yu, Y.; Wang, H.; Chen, M. Ablation behavior of ZrC and ZrO2 coatings on SiC coated C/C composites under oxyacetylene torch with different heat fluxes. Ceram. Int. 2021, 47, 21721–21729. [Google Scholar] [CrossRef]
- Chen, S.A.; Li, G.; Hu, H.; Li, Y.; Mei, M. Microstructure and properties of ablative C/ZrC–SiC composites prepared by reactive melt infiltration of zirconium and vapour silicon infiltration. Ceram. Int. 2017, 43, 3439–3442. [Google Scholar] [CrossRef]
- Chen, B.-W.; Ni, D.-W.; Wang, J.-X.; Jiang, Y.-L.; Ding, Q.; Gao, L.; Zhang, X.-Y.; Ding, Y.-S.; Dong, S.-M. Ablation behavior of Cf/ZrC-SiC-based composites fabricated by an improved reactive melt infiltration. J. Eur. Ceram. Soc. 2019, 39, 4617–4624. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Yao, X. Ablation behaviour of the CVD-(ZrC/SiC)3 alternate coating on C/C composites under oxyacetylene torch with different heat fluxes. Ceram. Int. 2022, 48, 11756–11763. [Google Scholar] [CrossRef]
- Feng, G.; Li, H.; Yao, X.; Sun, J.; Jia, Y. An optimized strategy toward multilayer ablation coating for SiC-coated carbon/carbon composites based on experiment and simulation. J. Eur. Ceram. Soc. 2022, 42, 3802–3811. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, M.; Huang, Q.; Wang, L.; Xue, L.; Tang, X.; He, K. Ablation mechanism of C/C–ZrB2–ZrC–SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2. Corros. Sci. 2015, 98, 551–559. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H.; Zhang, P.; Hu, Z.; Li, H.; Zhang, L. SiC/ZrB2–SiC–ZrC multilayer coating for carbon/carbon composites against ablation. Surf. Coat. Technol. 2016, 300, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Zhang, Y.; Li, K.; Shi, X.; Zhang, Y.; Feng, W. Effect of high temperature heat treatment on the ablation of SiC–ZrB2–ZrC particles modified C/C composites in two heat fluxes. J. Alloys Compd. 2015, 621, 18–25. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Shi, X.; Fu, Q.; Feng, W.; Yao, X.; Ni, C. Influence of SiC additive on the ablation behavior of C/C composites modified by ZrB2–ZrC particles under oxyacetylene torch. Ceram. Int. 2014, 40, 541–549. [Google Scholar] [CrossRef]
- Hu, C.; Pang, S.; Tang, S.; Wang, S.; Huang, H.; Cheng, H.-M. Ablation and mechanical behavior of a sandwich-structured composite with an inner layer of Cf/SiC between two outer layers of Cf/SiC–ZrB2–ZrC. Corros. Sci. 2014, 80, 154–163. [Google Scholar] [CrossRef]
- Zhuang, L.; Fu, Q.-G.; Liu, T.-Y. Ablation resistance of wedge-shaped C/C-ZrB2-ZrC-SiC composites exposed to an oxyacetylene torch. Corros. Sci. 2016, 112, 462–470. [Google Scholar] [CrossRef]
- Kannan, R.; Rangaraj, L. Processing and characterization of Cf/ZrB2-SiC-ZrC composites produced at moderate pressure and temperature. Ceram. Int. 2017, 43, 2625–2631. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, T.; Fu, Y.; Ren, J. Ultra-high temperature ceramic coating for carbon/carbon composites against ablation above 2000 K. Ceram. Int. 2018, 44, 3056–3063. [Google Scholar] [CrossRef]
- Tong, Y.G.; Cai, Z.H.; Bai, S.X.; Hu, Y.L.; Hua, M.Y.; Xie, W.; Ye, Y.C.; Li, Y. Microstructures and properties of Si-Zr alloy based CMCs reinforced by various porous C/C performs. Ceram. Int. 2018, 44, 16577–16582. [Google Scholar] [CrossRef]
- Tong, Y.; Hu, Y.; Liang, X.; Zhang, Z.; Li, Y.; Chen, Z.; Xiong, X.; Hua, M. Carbon fiber reinforced ZrC based ultra-high temperature ceramic matrix composite subjected to laser ablation: Ablation resistance, microstructure and damage mechanism. Ceram. Int. 2020, 46, 14408–14415. [Google Scholar] [CrossRef]
- Tong, Y.; Bai, S.; Hu, Y.; Liang, X.; Ye, Y.; Qin, Q.H. Laser ablation resistance and mechanism of Si-Zr alloyed melt infiltrated C/C-SiC composite. Ceram. Int. 2018, 44, 3692–3698. [Google Scholar] [CrossRef] [Green Version]
- Subha, S.; Singh, D.; Venkatanarayanan, P.S.; Kavitha, N. Experimental investigation of mechanical, thermal, and ablation performance of ZrO2/SiC modified C-Ph composites. Int. J. Appl. Ceram. Technol. 2018, 16, 761–771. [Google Scholar] [CrossRef]
- Wang, P.; Li, D.; Meng, J.; Wei, C.; Li, S.; Geng, X.; Sun, H.; Li, X.; Wu, Y.; Wen, G. Effect of silicon/graphite ratio and temperature on oxidation protective properties of SiC/ZrB2–SiC coatings prepared by pack cementation. Ceram. Int. 2022, 48, 5187–5196. [Google Scholar] [CrossRef]
- Torabi, S.; Valefi, Z.; Ehsani, N. Evaluation of oxy-acetylene flame angle effect on the erosion resistance of SiC/ZrB2–SiC/ZrB2 multilayer coatings fabricated by the shielding shrouded plasma spray technique. Ceram. Int. 2022, 48, 8155–8168. [Google Scholar] [CrossRef]
- Hu, P.; Cheng, Y.; Xie, M.; Yang, Y.; Liu, C.; Qu, Q.; Zhang, X.; Du, S. Damage mechanism analysis to the carbon fiber and fiber-ceramic interface tailoring of Cf/ZrC-SiC using PyC coating. Ceram. Int. 2018, 44, 19038–19043. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Q.; Kan, Y.; Ni, D.; Zhou, H.; Gao, L.; Zhang, X.; Ding, Y.; Dong, S. Effects of preform pore structure on infiltration kinetics and microstructure evolution of RMI-derived Cf/ZrC-ZrB2-SiC composite. J. Eur. Ceram. Soc. 2020, 40, 2683–2690. [Google Scholar] [CrossRef]
- Patra, N.; Al Nasiri, N.; Jayaseelan, D.D.; Lee, W.E. Thermal properties of Cf/HfC and Cf/HfC-SiC composites prepared by precursor infiltration and pyrolysis. J. Eur. Ceram. Soc. 2018, 38, 2297–2303. [Google Scholar] [CrossRef]
- Vinci, A.; Zoli, L.; Sciti, D.; Watts, J.; Hilmas, G.E.; Fahrenholtz, W.G. Influence of fibre content on the strength of carbon fibre reinforced HfC/SiC composites up to 2100 °C. J. Eur. Ceram. Soc. 2019, 39, 3594–3603. [Google Scholar] [CrossRef]
- Xu, J.; Sun, W.; Xiong, X.; Xu, Y.; Deng, N.; Li, W.; Chen, Z. Microstructure and ablation behaviour of a strong, dense, and thick interfacial ZrxHf1−xC/SiC multiphase bilayer coating prepared by a new simple one-step method. Ceram. Int. 2020, 46, 12031–12043. [Google Scholar] [CrossRef]
- Abdollahi, A.; Valefi, Z.; Ehsani, N. Erosion mechanism of ternary-phase SiC/ZrB2-MoSi2-SiC ultra-high temperature multilayer coating under supersonic flame at 90° angle with speed of 1400 m/s (Mach 4). J. Eur. Ceram. Soc. 2020, 40, 972–987. [Google Scholar] [CrossRef]
- Jia, J.; Li, C.; Chen, Q.; Bai, S.; Chang, J.; Xiong, D.; Gao, M.; Li, S.; Xiao, J. Effects of SiC content on the mechanical and thermophysical properties of 3D Cf/SiC–Al composites. Ceram. Int. 2022, 48, 20571–20578. [Google Scholar] [CrossRef]
- Tan, W.; Li, K.; Li, H.; Zhang, J.; Ni, C.; Cao, A.; Ma, C. Ablation behavior and mechanism of C/C-HfC-SiC composites. Vacuum 2015, 116, 124–129. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Duan, L.; Liu, L.; Wang, G. Ablation behavior of C/SiC-HfC composites in the plasma wind tunnel. J. Eur. Ceram. Soc. 2016, 36, 3801–3807. [Google Scholar] [CrossRef]
- Wen, Q.; Luan, X.; Wang, L.; Xu, X.; Ionescu, E.; Riedel, R. Laser ablation behavior of SiHfC-based ceramics prepared from a single-source precursor: Effects of Hf-incorporation into SiC. J. Eur. Ceram. Soc. 2019, 39, 2018–2027. [Google Scholar] [CrossRef]
- Chinnaraj, R.K.; Hong, S.M.; Kim, H.S.; Oh, P.Y.; Choi, S.M. Ablation Experiments of Ultra-High-Temperature Ceramic Coating on Carbon–Carbon Composite Using ICP Plasma Wind Tunnel. Int. J. Aeronaut. Space Sci. 2020, 21, 889–905. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Jia, Y.; Zhang, Y.; Yuan, R. Ablation resistance of HfB2-SiC coating prepared by in-situ reaction method for SiC coated C/C composites. Ceram. Int. 2017, 43, 12005–12012. [Google Scholar] [CrossRef]
- Tong, M.; Fu, Q.; Hu, D.; Zhou, L.; Feng, T. Improvement of ablation resistance of CVD-HfC/SiC coating on hemisphere shaped C/C composites by introducing diffusion interface. J. Eur. Ceram. Soc. 2021, 41, 4067–4075. [Google Scholar] [CrossRef]
- Duan, L.; Zhao, X.; Wang, Y. Comparative ablation behaviors of C/SiC-HfC composites prepared by reactive melt infiltration and precursor infiltration and pyrolysis routes. Ceram. Int. 2017, 43, 16114–16120. [Google Scholar] [CrossRef]
- Tang, Z.; Yi, M.; Xiang, Q.; Du, Y.; Peng, K. Mechanical and ablation properties of a C/C-HfB2-SiC composite prepared by high-solid-loading slurry impregnation combined with precursor infiltration and pyrolysis. J. Eur. Ceram. Soc. 2021, 41, 6160–6170. [Google Scholar] [CrossRef]
- Zhang, P.; Fu, Q.; Cheng, C.; Sun, J.; Zhang, J.; Xu, M.; Zhu, X. Microstructure evolution of in-situ SiC-HfB2-Si ternary coating and its corrosion behaviors at ultra-high temperatures. J. Eur. Ceram. Soc. 2021, 41, 6223–6237. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhang, T.; Chen, R.; Zhu, X. Cyclic ablation behavior and microstructure evolution of multi-layer coating on C/C composites under oxyacetylene torch. Ceram. Int. 2022, 48, 21750–21757. [Google Scholar] [CrossRef]
- Luan, X.; Yuan, J.; Wang, J.; Tian, M.; Cheng, L.; Ionescu, E.; Riedel, R. Laser ablation behavior of Cf/SiHfBCN ceramic matrix composites. J. Eur. Ceram. Soc. 2016, 36, 3761–3768. [Google Scholar] [CrossRef]
- Feng, T.; Hou, W.; Tong, M.; Li, H.; Lin, H.; Wen, S. Effect of SiCnws on flexural strength of SiCf/HfC-SiC composites after impact and ablation. J. Eur. Ceram. Soc. 2021, 41, 6171–6180. [Google Scholar] [CrossRef]
- Qu, J.-L.; Fu, Q.-G.; Zhang, J.-P.; Zhang, P.-F. Ablation behavior of TaB2-SiC coating for carbon/carbon composites under oxyacetylene torch. Vacuum 2016, 131, 223–230. [Google Scholar] [CrossRef]
- Du, B.; Hong, C.; Zhang, X.; Wang, A.; Sun, Y. Ablation behavior of advanced TaSi2-based coating on carbon-bonded carbon fiber composite/ceramic insulation tile in plasma wind tunnel. Ceram. Int. 2018, 44, 3505–3510. [Google Scholar] [CrossRef]
- Liu, F.; Li, H.; Gu, S.; Yao, X.; Fu, Q. Ablation behavior and thermal protection performance of TaSi2 coating for SiC coated carbon/carbon composites. Ceram. Int. 2019, 45, 3256–3262. [Google Scholar] [CrossRef]
- Chen, Z.-K.; Xiong, X.; Li, G.-D.; Wang, Y.-L. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers. Appl. Surf. Sci. 2009, 255, 9217–9223. [Google Scholar] [CrossRef]
- Jia, Y.; Li, H.; Li, L.; Fu, Q.; Li, K. Effect of Monolithic LaB6 on the Ablation Resistance of ZrC/SiC Coating Prepared by Supersonic Plasma Spraying for C/C Composites. J. Mater. Sci. Technol. 2016, 32, 996–1002. [Google Scholar] [CrossRef]
- Jia, Y.; Li, H.; Feng, L.; Sun, J.; Li, K.; Fu, Q. Ablation behavior of rare earth La-modified ZrC coating for SiC-coated carbon/carbon composites under an oxyacetylene torch. Corros. Sci. 2016, 104, 61–70. [Google Scholar] [CrossRef]
- Fang, C.; Huang, B.; Yang, X.; He, K.; Chen, L.; Shi, A.; Zhang, Z.; Huang, Q. Effects of LaB6 on the microstructures and ablation properties of 3D C/C-SiC-ZrB2-LaB6 composites. J. Eur. Ceram. Soc. 2020, 40, 2781–2790. [Google Scholar] [CrossRef]
- Chen, M.; Yao, X.; Feng, G.; Guo, Y. Anti-ablation performance of La2O3-modified ZrB2 coating on SiC-coated carbon/carbon composites. Ceram. Int. 2020, 46, 28758–28766. [Google Scholar] [CrossRef]
- Jia, Y.; Li, H.; Fu, Q.; Sun, J.; Li, L. Ablation behavior of ZrC-La2O3 coating for SiC-coated carbon/carbon composites under an oxyacetylene torch. Ceram. Int. 2016, 42, 14236–14245. [Google Scholar] [CrossRef]
- Lu, J.; Hao, K.; Liu, L.; Li, H.; Li, K.; Qu, J.; Yan, X. Ablation resistance of SiC–HfC–ZrC multiphase modified carbon/carbon composites. Corros. Sci. 2016, 103, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, W.; Xiong, X.; Chang, Y.; Xu, Y.; Peng, Z.; Tian, T.; Zeng, Y. Microstructure, thermophysical properties, and ablation resistance of C/HfC-ZrC-SiC composites. Ceram. Int. 2019, 45, 4685–4691. [Google Scholar] [CrossRef]
- Yang, Y.; Li, K.; Zhao, Z.; Liu, G. HfC-ZrC-SiC multiphase protective coating for SiC-coated C/C composites prepared by supersonic atmospheric plasma spraying. Ceram. Int. 2017, 43, 1495–1503. [Google Scholar] [CrossRef]
- Shojaie-Bahaabad, M.; Hasani-Arefi, A. Ablation properties of ZrC-SiC-HfB2 ceramic with different amount of carbon fiber under an oxyacetylene flame. Mater. Res. Express 2020, 7, 025604. [Google Scholar] [CrossRef]
- Liu, X.; Deng, C.; Deng, C.; Liu, M.; Zhou, K. Mullite-modified ZrB2-MoSi2 coating for carbon/carbon composites to withstand long term ablation. Ceram. Int. 2018, 44, 4330–4337. [Google Scholar] [CrossRef]
- Hu, D.; Fu, Q.; Liu, T.; Tong, M. Structural design and ablation performance of ZrB2/MoSi2 laminated coating for SiC coated carbon/carbon composites. J. Eur. Ceram. Soc. 2020, 40, 212–219. [Google Scholar] [CrossRef]
- Cheng, S.; Geng, L.; Liu, X.; Wang, Y. Laser ablation behavior and mechanism of C/SiC coated with ZrB2–MoSi2–SiC/Mo prepared by HVOF. Ceram. Int. 2020, 46, 17752–17762. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, S.; Hong, C.; Zhang, X.; Han, J.; Qu, Q. A novel combination of precursor pyrolysis assisted sintering and rapid sintering for construction of multi-composition coatings to improve ablation resistance of SiOC ceramic modified carbon fiber needled felt preform composites. Ceram. Int. 2020, 46, 20163–20172. [Google Scholar] [CrossRef]
- Feng, G.; Li, H.; Yao, X.; Zhou, H.; Yu, Y.; Lu, J. Ablation resistance of HfC-TaC/HfC-SiC alternate coating for SiC-coated carbon/carbon composites under cyclic ablation. J. Eur. Ceram. Soc. 2021, 41, 3207–3218. [Google Scholar] [CrossRef]
- Tong, M.; Chen, C.; Fu, Q.; Feng, T.; Hou, W.; Zhang, J.; Sun, J.; Zhou, L. Exploring Hf-Ta-O precipitation upon ablation of Hf-Ta-Si-C coating on C/C composites. J. Eur. Ceram. Soc. 2022, 42, 2586–2596. [Google Scholar] [CrossRef]
- Feng, G.; Li, H.; Yao, X.; Chen, M.; Xue, Y. Ablation resistance of TaC-modified HfC coating prepared by supersonic plasma spraying for SiC-coated carbon/carbon composites. Ceram. Int. 2019, 45, 17936–17945. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, W.; Miao, C.; Shen, Y.; Chen, H.; Liu, Y.; Zhang, H.; Xiong, X. Ablation properties of C/C-UHTCs and their preparation by reactive infiltration of K2MeF6 (Me = Zr, Ti) molten salt. J. Eur. Ceram. Soc. 2021, 41, 5405–5416. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, D.; Xiong, X.; Gao, S.; Chen, Z.; Sun, W.; Wang, Y. Ultra-high-temperature ablation behavior of SiC–ZrC–TiC modified carbon/carbon composites fabricated via reactive melt infiltration. J. Eur. Ceram. Soc. 2020, 40, 651–659. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Guo, L.; Fan, K.; Riedel, R.; Fu, Q. Ablation resistant ZrC coating modified by polymer-derived SiC/TiC nanocomposites for ultra-high temperature application. J. Eur. Ceram. Soc. 2022, 42, 18–29. [Google Scholar] [CrossRef]
- Fan, X.; Yin, X.; Wang, L.; Cheng, L.; Zhang, L. Processing, microstructure and ablation behavior of C/SiC–Ti3SiC2 composites fabricated by liquid silicon infiltration. Corros. Sci. 2013, 74, 98–105. [Google Scholar] [CrossRef]
- Yaghobizadeh, O.; Sedghi, A.; Baharvandi, H.R. Effect of Ti3SiC2 on the ablation behavior and mechanism of Cf-C-SiC-Ti3SiC2 composites under oxyacetylene torch at 3000 °C. Ceram. Int. 2019, 45, 777–785. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Fu, Q.-G.; Zhuang, L.; Li, H.-J.; Sun, C. Preparation and Ablation Properties of Y2SiO5 Coating for SiC-Coated C/C Composites by Supersonic Plasma Spraying. J. Therm. Spray Technol. 2015, 24, 994–1001. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Fu, Q.-G.; Li, H.-J.; Sun, G.-D.; Sun, C.; Nan, X.-Y.; Li, S.-F.; Liu, L. Ablation behavior of Y2SiO5/SiC coating for C/C composites under oxyacetylene torch. Corros. Sci. 2014, 87, 472–478. [Google Scholar] [CrossRef]
- Li, K.; Hu, M. Dynamic oxidation resistance and residual mechanical strength of ZrB2-CrSi2-SiC-Si/SiC coated C/C composites. Ceram. Int. 2017, 43, 4880–4887. [Google Scholar] [CrossRef]
- Huo, C.; Guo, L.; Wang, C.; Zhou, L.; Wang, J.; Li, K. Microstructure and high temperature anti-ablation behavior of Cr-modified ZrC coating for SiC-coated carbon/carbon composites. Ceram. Int. 2019, 45, 1777–1789. [Google Scholar] [CrossRef]
- Makurunje, P.; Monteverde, F.; Sigalas, I. Self-generating oxidation protective high-temperature glass-ceramic coatings for Cf/C-SiC-TiC-TaC UHTC matrix composites. J. Eur. Ceram. Soc. 2017, 37, 3227–3239. [Google Scholar] [CrossRef]
- Ren, J.; Feng, E.; Zhang, Y.; Zhang, J.; Ding, D.; Li, L. Influences of deposition temperature, gas flow rate and ZrC content on the microstructure and anti-ablation performance of CVD-HfC-ZrC coating. Ceram. Int. 2021, 47, 556–566. [Google Scholar] [CrossRef]
- Ren, J.; Feng, E.; Zhang, Y.; Zhang, J.; Li, L. Microstructure and anti-ablation performance of HfC-TaC and HfC-ZrC coatings synthesized by CVD on C/C composites. Ceram. Int. 2020, 46, 10147–10158. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, W.; Xiong, X.; Xu, Y.; Chen, Y. A novel Cr-doped Al2O3-SiC-ZrC composite coating for ablative protection of C/C-ZrC-SiC composites. J. Eur. Ceram. Soc. 2018, 38, 2897–2902. [Google Scholar] [CrossRef]
- Tian, T.; Sun, W.; Qing, X.; Chu, Y.; Chen, H.; Liu, Y.; Xiong, X.; Zhang, H. Effect of surface structure unit of 3D needled carbon fiber preform on the ablation improvement of “Z-pins like” V0.9-Si0.1 rod for C/C–ZrC–SiC. Ceram. Int. 2021, 47, 33463–33475. [Google Scholar] [CrossRef]
- Hao, Z.; Sun, W.; Xiong, X.; Chen, Z.; Wang, Y.; Chang, Y.; Xu, Y. Microstructure and ablation properties of a gradient Cf/C-XSi2-SiC (X = Mo,Ti) composite fabricated by reactive melt infiltration. J. Eur. Ceram. Soc. 2016, 36, 3775–3782. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Cao, L.; Huang, J.; OuYang, H.; Li, C.; Zhao, X.; Wang, Y.; Yan, J. Microstructures and ablation properties of Cf/C-SiC-MoSi2 composites: Influence of the SiC:MoSi2 mass ratio. Ceram. Int. 2016, 42, 19296–19301. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Jiang, Y.; Lin, H.; Feng, J. Preparation and properties of TaSi2-MoSi2-ZrO2-borosilicate glass coating on porous SiCO ceramic composites for thermal protection. Ceram. Int. 2018, 44, 19143–19150. [Google Scholar] [CrossRef]
- Liu, F.; Li, H.; Zhang, W.; Yao, X.; Fu, Q.; He, X. Effect of CrSi2 on the ablation resistance of a ZrSi2-Y2O3/SiC coating prepared by SAPS. Ceram. Int. 2021, 47, 15030–15038. [Google Scholar] [CrossRef]
- Chang, Y.; Sun, W.; Xiong, X.; Chen, Z.; Wang, Y.; Hao, Z.; Xu, Y. A novel design of Al-Cr alloy surface sealing for ablation resistant C/C-ZrC-SiC composite. J. Eur. Ceram. Soc. 2017, 37, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Liu, J.; Duan, L.; Wang, Y. Multiple ablation resistance of La2O3/Y2O3-doped C/SiC–ZrC composites. Ceram. Int. 2015, 41, 12878–12886. [Google Scholar] [CrossRef]
- Hao, Z.; Sun, W.; Xiong, X.; Chen, Z.; Wang, Y. Effects of Ti/Al addition on the microstructures and ablation properties of Cf/C–MoSi2–SiC composites. J. Eur. Ceram. Soc. 2016, 36, 457–464. [Google Scholar] [CrossRef]
- Silvestroni, L.; Vinci, A.; Failla, S.; Zoli, L.; Rubio, V.; Binner, J.; Sciti, D. Ablation behaviour of ultra-high temperature ceramic matrix composites: Role of MeSi2 addition. J. Eur. Ceram. Soc. 2019, 39, 2771–2781. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, Y.; Ma, Z.; Zhu, S.; Wang, Y.; Chen, H.; Ma, K. Infrared radiative performance and anti-ablation behaviour of Sm2O3 modified ZrB2/SiC coatings. Ceram. Int. 2021, 47, 400–408. [Google Scholar] [CrossRef]
- Wang, P.; Wei, F.; Zhang, H.; Yin, J.; Hao, Z.; Zhou, J. Effect of SiC whiskers on the mechanical and ablation performances of Cu modified C/C composite. Ceram. Int. 2022, 48, 5369–5376. [Google Scholar] [CrossRef]
- Wang, H.-H.; Kong, J.-A.; Ge, J.; Teng, L.; Shi, X.-H.; Li, H.-J. Effects of reflectivity on laser-ablation resistance of the laser-cladding repaired Nd2O3 modified SiO2 coatings on C/C composites. J. Eur. Ceram. Soc. 2021, 41, 6548–6558. [Google Scholar] [CrossRef]
- Liu, H.; Kang, P.; Yang, W.; Zhang, N.; Sun, Y.; Wu, G. Ablation behavior of Al20Si/graphite composite nozzle-throats in a solid rocket motor environment. Ceram. Int. 2020, 46, 13317–13323. [Google Scholar] [CrossRef]
- Kannan, R.; Rangaraj, L. Properties of Cf/SiC-ZrB2-TaxCy composite produced by reactive hot pressing and polymer impregnation pyrolysis (RHP/PIP). J. Eur. Ceram. Soc. 2019, 39, 2257–2265. [Google Scholar] [CrossRef]
- He, R.; Li, K.; Gu, S.; Liu, Q. Comparing ablation properties of NbC and NbC-25 mol.% ZrC coating on SiC-coated C/C composites. Ceram. Int. 2020, 46, 7055–7064. [Google Scholar] [CrossRef]
- Fang, C.; Yang, X.; He, K.; Chen, L.; Zeng, G.; Shi, A.; Huang, Q.; Huang, B. Microstructure and ablation properties of La2O3 modified C/C-SiC composites prepared via precursor infiltration pyrolysis. J. Eur. Ceram. Soc. 2019, 39, 762–772. [Google Scholar] [CrossRef]
- Cai, F.; Ni, D.; Chen, B.; Ye, L.; Sun, Y.; Lu, J.; Zou, X.; Zhou, H.; He, P.; Zhao, T. Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites via precursor infiltration and pyrolysis. J. Eur. Ceram. Soc. 2021, 41, 5863–5871. [Google Scholar] [CrossRef]
- Tian, T.; Sun, W.; Xiong, X.; Xu, Y.; Chen, Y.; Zeng, Y.; Liu, F. Novel “Z-pins like” vanadium rods prepared by solid phase sintering to improve ablation resistance of the C/C-ZrC-SiC composites. J. Eur. Ceram. Soc. 2019, 39, 1696–1702. [Google Scholar] [CrossRef]
- Weng, Y.; Yang, X.; Chen, F.; Zhang, X.; Shi, A.; Yan, J.; Huang, Q. Effect of CVI SiC content on ablation and mechanism of C/C-SiC-ZrC-Cu composites. Ceram. Int. 2022, 48, 7937–7950. [Google Scholar] [CrossRef]
Composites | Main Structure | Interphase | Matrix (Coating) | Preparing Method | Ablation Type | Mass Ablation Rate (mg∙s−1) | Liner Ablation Rate (mm∙s−1) | Ref. |
---|---|---|---|---|---|---|---|---|
C/SiC | 4D axes carbon fiber preform | SiC coating | arcplasma torch | 3 | 0.1311 | [39] | ||
3D braid carbon | SiC coating | isothermal oxidation | [40] | |||||
2D C/C needle | PyC | SiC | ICVI; PI; | engine torch | [41] | |||
carbon fiber (M30) | PyC | SiC | CVI | oxyacetylene torch | [42] | |||
3D C orthogonal structure | SiC | PIP, HP | oxyacetylene torch | [43] | ||||
3D braid C/C | PyC | SiC | CVI, CVD | gas mixture (O2/H2O/Ar) | [44] | |||
3D needled (30 vol%) | PyC | SiC | CVI; LSI | oxyacetylene torch | 1.6 | 0.0039 | [45] | |
3D braided | PyC | SiC | PIP | oxyacetylene torch | [46] | |||
2D plain woven carbon- fabric | PyC | Ph/SiC | LSI | oxyacetylene torch | 1837 | [47] | ||
needle punched disk felts | PyC | SiC | PIP; TCVI | oxyacetylene torch | 1.53 | [48] | ||
2.5D carbon fiber felts | PyC | SiC | PIP; TCVI | oxyacetylene torch | [49] | |||
2.5D needle puncher felts | PyC | SiC coating | TCVI; PC | oxyacetylene torch | [50] | |||
needle-carbon fiber felts | PyC | SiC | CVI; molten infiltration | oxyacetylene torch | [51] | |||
3D needled felt (T300) | PyC | SiC coating | CVI | plasma wind tunnel | [52] | |||
4D woven carbon preforms | SiC | impregnation | UH25 was used as fuel; N2O4 as oxidizer | 0.005 | [53] | |||
carbon fiber | PyC | SiC coating | CVD; ICVI | oxyacetylene torch | [54] | |||
2D C/C | PyC | SiC coating | slurry and sintering | isothermal | [55] | |||
2D C/C needle | PyC | SiC | CVI | hypersonic flowing propane flame | [56] | |||
2.5D needle punched carbon fiber felt | PyC | SiC | PI; PIP; CVI | plasma generator equipment | 0.017 | [57] | ||
2D carbon fiber | BN | SiC | CVD | temperature programmed oxidation | [58] | |||
carbon fibers (T-300) | SiC/SiC coating | PIP; CVD | air | [59] | ||||
carbon fiber plain fabrics | ph/silicon | LPI | thermal plasma torch | [60] | ||||
3D needle preform | PyC | SiC and Si | CVI; CVD | oxyacetylene torch | 6.2 | [61] | ||
carbon fiber | PyC | SiC | CVD | wind-tunnel | [62] | |||
carbon fiber cloth | PyC | SiC nanowires | CVD | oxyacetylene torch | 0.400 | [63] | ||
carbon preform | graphitized | SiC | oxy-kerosene hypersonic torch | 0.09 | [64] | |||
3D preform | PyC | SiC | CVI; PIP | plasma arc ablation | 0.56 | 1.1 × 10−4 | [65] | |
2.5D preform | PyC | SiC | millisecond laser | [66] | ||||
2D carbon fiber felts | SiC | CVI; | plasma stream | [67] | ||||
carbon fiber | PyC | SiC coating | PC | furnace | [68] | |||
carbon fiber | SiC | CVI | continuous wave lasers | [69] | ||||
2.5D needle punched preform | PyC | SiC | CVI; PIP | plasma generator equipment | 0.133 | 0.0141 | [70] | |
3D needle-punched preform | PyC | SiC | CVI; PIP | plasma wind tunnel | [71] | |||
needled preform of carbon felt | PyC | SiC | PIP | oxy-acetylene torch | [72] | |||
2.5D carbon fiber felt | PyCx-SiCy | CVI; | oxyacetylene torch | 0.0016 | [73] | |||
carbon structure | PyCx-SiCy | CVI | oxyacetylene torch | 0.0013 | [74] | |||
2.5D needle punched preform | PyC | SiC coating | CVI; PC | oxyacetylene torch | 0.0001 | 0.0003 | [75] | |
carbon fibre needled felts | PyC | SiC | RMI; CVI | oxyacetylene torch | 0.75 | [76] | ||
Cf/Si3N4 | needle preform | Si3N4 | LPCVI; CVI | oxyacetylene torch | [77] | |||
Cf/SiBCN | 3D needled carbon fiber preform | (PyC/SiC)3 | SiBCN | CVI; PIP | plasma ablation flame | 0.0427 | 0.0017 | [78] |
Composites | Main Structure | Interphase | Matrix (Coating) | Preparing Method | Ablation Method | Mass Ablation Rate (mg∙s−1) | Liner Ablation Rate (mm∙s−1) | Ref. |
---|---|---|---|---|---|---|---|---|
C/ZrB2-SiC | 2D plain woven carbon cloth | PyC | ZrB2-SiC | CVI; SP | oxyacetylene torch | [84] | ||
needle punched carbon fiber webs | PyC | ZrB2-SiC | CVI; HCVI | arc-heated wind tunnel | [85] | |||
2D needle punched carbon fiber preform | PyC | ZrB2-SiC | CVI | arc-heated wind tunnel | [86] | |||
2D C/C composites | ZrB2-SiC | SAPS | oxyacetylene torch | 1.7 × 10−4 | [87] | |||
2D C/C composites | ZrB2-SiC | pack-cementation | oxyacetylene torch | 0.062 | 0.0044 | [88] | ||
needle punched integrated felt | PyC | ZrB2-SiC | TCVI; PIP | oxyacetylene torch | [89] | |||
2D C/C composites | ZrB2-SiC | SAPS; PC; SI | oxyacetylene torch | [90] | ||||
2D needled carbon fiber preform | ZrB2-SiC | slurry-sintering; CVR | plasma generator | [91] | ||||
needle-punching carbon fiber preform | ZrB2-SiC | TCVI; PIP | oxyacetylene torch | [92] | ||||
needled integrated preform | ZrB2-SiC | pressing, pyrolysis; RSI | oxyacetylene torch | 1.3 | [93] | |||
C/C composites | PyC | SiC-ZrB2 | CVD; CVI | oxyacetylene torch | [94] | |||
3D braided C/SiC preform | ZrB2-SiC | painting slurry; CVD; PIP | oxyacetylene torch | 22.9 | 0.0236 | [95] | ||
2D SiC-coated C/C preform | ZrB2-SiC | TCVI; PC; SAPS | oxyacetylene torch | [96] | ||||
2D SiC-coated C/C preform | ZrB2-SiC-Si | PC | oxyacetylene torch | 1.5 | 0.00021 | [97] | ||
3D braided SiC-coated C/C preform | ZrB2-SiC | CVD; slurry painting; PIP | oxidation in air | [20] | ||||
carbon fiber | ZrB2-SiC | slurry infiltration; HP | homemade testing chamber | [16] | ||||
short random/aligned continuous carbon fiber | ZrB2-SiC | HP; SPS | arc-jet plasma | [35] | ||||
porous C/C preform | SiC-ZrB2 | RMI; ICVI | oxyacetylene torch | 0.61 | 0.00672 | [98] | ||
short carbon fiber | phenolic-ZrB2-SiC | oxyacetylene torch | 14 | 0.000168 | [99] | |||
needle-punched carbon preform | PyC | ZrB2-SiC-Si | CVI | oxyacetylene torch | [100] | |||
C/C preform | ZrB2-SiC | HPPS | oxyacetylene torch | 2.46 | [101] | |||
2D C/SiC preform | ZrB2-SiC | CVI; CVD | oxyhydrogen torch | [102] | ||||
PAN-based carbon fiber | PyC | ZrB2-SiC | PIP | arc-jet wind tunnel | [103] | |||
C/C carbon fabric | ZrB2-SiC | LSI; | oxyacetylene torch | 217 | [104] | |||
C/ZrC-SiC | 3D 4-directional carbon fiber preform | ZrC-SiC | CVD; PIP | oxyacetylene torch | 0.69 | 0.026 | [79] | |
3D 4-directional carbon fiber preform | ZrC-SiC | PIP | plasma wind tunnel | 0.7 | 0.0009 | [105] | ||
3D needle-punched carbon fabrics | PyC | ZrC-SiC | CVI; SI; RMI; PIP | plasma wind tunnel | [106] | |||
2D C/C carbon felts | ZrC-SiC | ICVI; RMI | oxyacetylene torch | 0.24 | 0.00133 | [107] | ||
2D C/C carbon felts | ZrC-SiC | ICVI; RMI | oxyacetylene torch | 0.21 | 0.00144 | [108] | ||
2D needled C/C carbon fiber felts | ZrC-SiC | TCVI; PIP | oxyacetylene torch | 0.40 | 0.00102 | [109] | ||
porous C/C preform | ZrC-SiC | PIP | oxyacetylene torch | 2.29 | 0.0003 | [110] | ||
2.5D carbon fiber felts | PyC | ZrC-SiC | TCVI; PIP | oxyacetylene torch | 1.9 | 0.012 | [111] | |
2.5D needled carbon felts | PyC | ZrC-SiC | TCVI; PIP | oxyacetylene torch | 0.585 | 0.00133 | [112] | |
2.5D needled integral C/C preform | ZrC-SiC | CVD; RMI | oxyacetylene torch | 0.02 | 3.3 × 10−4 | [113] | ||
2.5D needled C/C felts | ZrC-SiC | CVI; PIP | plasma generator | 1.57 | 3.7 × 10−4 | [114] | ||
3D orthogonal braided carbon fiber preform | PyC | ZrC-SiC | CVI; RMI | oxyacetylene torch | [115] | |||
2D needled C/C perform | ZrC-SiC | CVI; PIP; RMI | plasma generator | 2.6 | 3.7 × 10−3 | [116] | ||
C/C preform | ZrC-SiC | RMI; PIP | plasma generator | 0.0045 | 4.8 × 10−3 | [117] | ||
3D braided carbon fibers | SiC/Zr-Si-C/SiC | PIP; CVD | oxyacetylene torch | 27.4 | 0.0255 | [118] | ||
3D carbon fiber preform | ZrC-SiC | CVD; PIP | oxyacetylene torch | [119] | ||||
2D needled C/C felts | ZrC-SiC | PIP | oxyacetylene torch | 37.5 | 2.48 × 10−3 | [120] | ||
C/C felt preform | SiC-ZrC | CVI; PIP | Developed personally | 3 × 10−3 | [121] | |||
needled carbon fiber integer preform | ZrC-SiC | CVI; PIP | plasma flame | 1.73 | 1.94 × 10−4 | [122] | ||
porous needling C/C preform | SiC-ZrC | RMI; CVI | oxyacetylene flame | 1.18 | 2.47 × 10−3 | [123] | ||
3D needle-punched carbon fiber fabrics | SiC-ZrC | slurry impregnation; CVI | arc-heated air plasma | 0.039 | [124] | |||
2D needle-punched carbon felt | PyC | SiC-ZrC | CVI; PIP; ICVI; TCVI | oxyacetylene torch | 2.95 | 0.015 | [125] | |
C/C preform | SiC-ZrC | RMI; ICVI | oxyacetylene torch | 1.21 | 5.9 × 10−3 | [126] | ||
C/C preform | SiC-ZrC | CVI; PIP | oxyacetylene torch | [127] | ||||
needle-punched carbon felt | PyC | SiC-ZrC | ICVI; PIP; ECVI | oxyacetylene flame | 0.04 | 3.7 × 10−4 | [128] | |
2.5D carbon fiber preforms | PyC | ZrC-SiC | CVI | oxyacetylene torch | 0.147 | 9.8 × 10−3 | [129] | |
2D needled carbon fiber preform | PyC | ZrC-SiC | TCVI | oxyacetylene flame | 0.298 | 8.2 × 10−4 | [130] | |
needled carbon felt | ZrC-SiC | CVI; PIP | plasma generator | 0.558 | 0.01633 | [131] | ||
2D needled carbon felts | PyC | ZrC-SiC | CVI; PIP | oxyacetylene torch | 0.46 | 6.7 × 10−4 | [132] | |
needled felt-structured C/C preform | SiC-ZrC | RMI | oxyacetylene torch | 0.29 | 2.48 × 10−3 | [133] | ||
C/C preform | ZrC-SiC | liquid sintering; RIM | oxyacetylene torch | 0.87 | 2.8 × 10−4 | [134] | ||
C/C preform | ZrC-SiC | RIM | oxyacetylene torch | 0.8 | 3.85 × 10−3 | [135] | ||
T300 fiber cloth | ZrC-SiC | PIP | laser ablation | 0.0748 | [136] | |||
2D C/C preform | SiC/ZrC-SiC | oxyacetylene flame | 1.2 | [137] | ||||
carbon felts | SiCnw/PyC/ZrC-SiC | CLVD | oxyacetylene torch | 0.47 | 7.3 × 10−4 | [138] | ||
2.5D needling carbon felt | ZrC-SiC | CLVD; PIP | oxyacetylene flame | 1.22 | 1.07 × 10−3 | [139] | ||
2.5D needled carbon fiber felts | ZrC-SiC | CLVD | oxyacetylene torch | 0.39 | 5.2 × 10−4 | [140] | ||
2D carbon fiber cloths | PyC | SiC-ZrC | CVI | oxyacetylene ablator | 1.17 | 7.5 × 10−3 | [141] | |
2D needled C/C preform | SiC-ZrC | CVI | oxyacetylene torch | 0.29 | 4.2 × 10−4 | [142] | ||
2D needle-punched C/C preform | SiC-ZrC | PC | oxyacetylene flame | 1.378 | 1.928 × 10−3 | [143] | ||
3D carbon fiber | PyC | SiC-ZrC | CVD | oxyacetylene flame | [13] | |||
3D needle-woven carbon fiber felt | SiC-ZrC | CVI | oxyacetylene torch | 7.1 | 4.7 × 10−3 | [144] | ||
3D needle- carbon fiber felt | PyC-SiC | SiC-ZrC | CVI; RMI | plasma torch | [145] | |||
2.5D needled C/C preform | ZrC/SiC | CVD | oxyacetylene torch | 0.84 | [146] | |||
2D needle-punched carbon felts | PyC | ZrC-SiC | CVI | oxyacetylene torch | 0.343 | 4.67 × 10−4 | [147] | |
C/ZrB2-ZrC-SiC | 3D carbon fiber preform | PyC | ZrB2-ZrC-SiC | CVI; PIP | oxyacetylene; plasma torch | 0.5; 0.13 | 1 × 10−3; 4 × 10−5 | [81] |
needled C/ZrB2 preform | ZrC-SiC | vacuum impregnation; PIP | plasma generator | 5.09 | 2.61 × 10−3 | [148] | ||
2D C/C preform | ZrB2-ZrC-SiC | CVD; PC; SAPS | oxyacetylene torch | 0.23 | 6.5 × 10−5 | [149] | ||
2D needle punched carbon fiber fabric | PyC | SiC-ZrB2-ZrC | TCVI; PIP | oxyacetylene torch | [150] | |||
needle punched carbon fiber felts | PyC | SiC-ZrB2-ZrC | PIP; TCVI | oxyacetylene torch | [151] | |||
2D carbon fiber reinforcement felts | PyC | SiC-ZrB2-ZrC | CVI; PIP | oxyacetylene torch | 0.0252 | 4.15 × 10−4 | [152] | |
carbon felts | PyC | ZrB2-ZrC-SiC | TCVI; PIP | oxyacetylene torch | [153] | |||
pitch-based carbon fibers | ZrB2-ZrC-SiC | HP | oxyhydrogen torch | [14] | ||||
plain weave carbon fiber | ZrB2-SiC-ZrC | Silicon melt-infiltration | oxyhydrogen torch | [15] | ||||
2.5D needle punched carbon fiber fabric | SiC-ZrB2-ZrC | TCVI; PIP | plasma and compressed air | [25] | ||||
Carbon fiber cloth | ZrB2-SiC/ZrC | HP | oxyhydrogen torch | 2.8 | [154] | |||
2D C/C preform | ZrB2-SiC-ZrC | SAPS; RMI | oxyhydrogen torch | 0.016 | 1.3 × 10−3 | [155] | ||
C/SiC-ZrSi2 | 3D needled carbon felts | PyC | SiC-ZrSi2 | CVI; RMI | oxyacetylene torch | [156] | ||
C/Zr2Si | 3D needled carbon fiber felts | PyC | Zr2Si | RMI; CVI; arc melting | economical laser beam | [157] | ||
C/SiC-Si-Zr | 3D needled carbon fiber felts | PyC | SiC-Si-Zr | RMI; CVI | economical laser beam | 0.0407 | [158] | |
C/SiC/ZrO2 | carbon fabric | Ph/SiC/ZrO2 | ball milling | oxyacetylene flame | 70.848 | 0.031 | [159] |
Added UHTC | Composites | Main Structure | Interphase | Matrix (Coating) | Preparing Method | Ablation Method | MR * (mg∙s−1) | LR * (mm∙s−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Si-Hf | C/SiC-HfC | 2D needled C/C felts | SiC-HfC | PIP; TCVI | oxyacetylene torch | 2.5 | 1.2 × 10−4 | [169] | |
3D needle-punched felt | PyC | SiC-HfC | CVI; RMI | plasma wind tunnel | [170] | ||||
2D carbon fabrics | SiC-HfC | SPS; PIP | CO2 laser | 12.6 | [171] | ||||
C/C-HfC-SiC | SiC and HfC coating | CVR; VPS | ICP plasma wind tunnel | [172] | |||||
C/C-HfB2-SiC | SiC-coated C/C preform | HfB2-SiC | PC; in situ reaction | oxyacetylene | 0.147 | 2.67 × 10−4 | [173] | ||
C/C-SiC-HfC | 2.5D C/C preform | SiC-HfC | in situ reaction; CVD | oxyacetylene | 2.05 | 1.93 × 10−3 | [174] | ||
C/SiC-HfC | 3D needle-punched preforms | PyC | SiC-HfC | CVI; RMI; PIP | oxyacetylene torch | 1.5 | 4 × 10−3 | [175] | |
C/C-HfB2-SiC | 2.5D needled carbon fiber felts | PyC | HfB2-SiC | CVI; PIP; HSLSI | oxyacetylene flame | 0.5 | 4.15 × 10−4 | [176] | |
C/C-SiC-HfB2-Si | 2.5D C/C preform | SiC-HfB2-Si | SP; GSI | oxyacetylene flame | 0.07 | 7.2 × 10−4 | [177] | ||
C/C-SiC-HfC | C/C preform | (SiC-HfC)4/SiC | LPCVD; | oxyacetylene torch | 0.64 | 5.3 × 10−4 | [178] | ||
C/SiHfBCN | 2D carbon fabric | SiHfBCN | PIP | CO2 laser beam | [179] | ||||
SiCf/HfC-SiC | 2.5D SiC preform | PyC | HfC-SiC | CVI; PIP | oxyacetylene torch | 1.32 | 7.37 × 10−3 | [180] | |
Si-Ta | C/TaB2-SiC | 2D-C/C preform | TaB2-SiC | PC; TCVI | oxyacetylene torch | 4.2 × 10−3 | [181] | ||
C/TaSi2 | 3D carbon fiber preform | TaSi2 | pressure filtration | plasmatron | [182] | ||||
C/SiCnw-TaSi2 | carbon fiber preform | SiCnw-TaSi2 | rapid sintering | oxyacetylene torch | [12] | ||||
C/C-SiC-TaSi2 | 2D SiC-coated C/C preform | SiC-TaSi2 | SAPS; PC | oxyacetylene torch | 0.4 | 9 × 10−4 | [183] | ||
C/C-SiC-TaC | needle-integrated C/C felts | PyC | C-SiC-TaC | CVI | oxyacetylene flame | [184] | |||
Si-Zr-La | C/C/-ZrC-SiC-LaB6 | 2D C/C preform | ZrC-SiC-LaB6 | SPS; SAPS | oxyacetylene torch | [185] | |||
C/C-SiC-ZrC-La | 2D C/C preform | SiC-ZrC-La | PC; SAPS | oxyacetylene torch | [186] | ||||
C/C-SiC-ZrB2-LaB6 | 3D C/C preform | PyC | SiC-ZrB2-LaB6 | PIP; CVI; | plasma generator | 0.38 | 3.7 × 10−4 | [187] | |
C/C-SiC-ZrB2-La2O3 | 2D C/C preform | SiC-ZrB2-La2O3 | PC; SAPS | oxyacetylene flame | 0.558 | 1.67 × 10−5 | [188] | ||
C/C-ZrB2-SiC-La2O3 | 2D carbon fiber plain cloth | PyC | ZrB2-SiC-La2O3 | CVI; SI; PIP | air plasma flame | [28] | |||
C/C-SiC-ZrC-La2O3 | 2D C/C preform | SiC-ZrC-La2O3 | SAPS | oxyacetylene torch | [189] | ||||
Si-Zr-Hf | C/C-SiC-HfC-ZrC | 2D C/C preform | SiC-HfC-ZrC | TCVI; PIP | oxyacetylene torch | [190] | |||
C/HfC-ZrC-SiC | 2.5D needled C/C preform | HfC-ZrC-SiC | RMI | oxyacetylene torch | 1.5 | 1.1 × 10−3 | [191] | ||
C/C-HfC-ZrC-SiC | 3D C/C preform | HfC-ZrC-SiC | CVI; PC; SAPS | oxyacetylene torch | 0.017 | [192] | |||
C/ZrC-SiC-HfB2 | short carbon fiber | ZrC-SiC-HfB2 | pressureless sintering | oxyacetylene flame | 2.46 | 3.51 × 10−3 | [193] | ||
Si-Zr-Mo | C/C-ZrB2-MoSi2 | C/C preform | ZrB2-MoSi2 | plasma spraying | oxypropylene flame | 1.91 | 4.8 × 10−4 | [194] | |
C/C-SiC-ZrB2/MoSi2 | 2.5D SiC-coated C/C preform | SiC-ZrB2/MoSi2 | SAPS; | oxyacetylene torch | 0.44 | 1.67 × 10−3 | [195] | ||
C/C-Mo-ZrB2-MoSi2-SiC | 2D C/SiC preform | PyC | SiC-ZrB2-MoSi2-SiC/Mo | HVOF; CVI; SAPS | CO2 laser beam | [196] | |||
C/SiOC-MoSi2-SiO2-SiC/ZrB2-MoSi2-SiC | carbon fiber needled felt | MoSi2-SiO2-SiC/ZrB2-MoSi2-SiC | PIP; slurry and precursor infiltration | oxyacetylene torch | [197] | ||||
Si-Ta-Hf | C/HfC-TaC/HfC-SiC | 2D needled C/C preform | HfC-TaC/HfC-SiC | SAPS | oxyacetylene torch | [198] | |||
C/C-Hf-Ta-Si | 2.5D C/C preform | Hf-Ta-Si-C | CVD; | oxyacetylene torch | 0.03 | 1.17 × 10−4 | [199] | ||
C/C-SiC-HfC-TaC | 2D SiC-coated C/C preform | HfC-TaC | PC; SAPS | oxyacetylene torch | 0.35 | 1.05 × 10−3 | [200] | ||
Si-Zr-Ti | C/C-ZrC-TiC-SiC | 2.5D needled C/C preform | PyC | ZrC-TiC-SiC | reactive infiltration | oxyacetylene torch | 2.6 | 8.2 × 10−4 | [201] |
C/C-SiC-ZrC-TiC | needled C/C fabrics | PyC | SiC-ZrC-TiC | RMI; CVI | oxyacetylene torch | 0.008 | [202] | ||
C/C-ZrC-SiC/TiC | 2.5D needled C/C preform | ZrC-SiC/TiC | SAPS; SSP; CVI; | oxyacetylene flames | 1 × 10−3 | [203] | |||
Si-Ti | C/SiC-Ti3SiC2 | carbon cloths | PyC | SiC-Ti3SiC2 | LSI; CVI; SI | oxyacetylene torch | 6.3 | 0.024 | [204] |
C/C-SiC-Ti3SiC2 | C/TiC preform | SiC-Ti3SiC2 | LSI | oxyacetylene flame | 11.8 | 0.06 | [205] | ||
Si-Y | C/C-SiC-Y2SiO5 | 2D needle carbon fabric | SiC-Y2SiO5 | TCVI; PC; SPS | oxyacetylene torch | 0.031 | 2.6 × 10−3 | [206] | |
C/C-Y2SiO5-SiC | 2D C/C preform | Y2SiO5-SiC | PC; SPS | oxyacetylene torch | 0.035 | 3.43 × 10−3 | [207] | ||
Si-Zr-Cr | C/C-ZrB2-CrSi2-SiC-Si | 2D C/C preform | ZrB2-CrSi2-SiC-Si/SiC | PC | corundum tube furnace | [208] | |||
C/C-SiC-Cr-ZrC | 2D C/C preform | SiC-Cr-ZrC | TCVI; SAPS | oxyacetylene flame | [209] | ||||
Si-Hf-Ti | C/C-HfC-TiC-SiC | C/C | HfC, TiC and SiC coating | VPS; CVR | ICP plasma wind tunnel | [172] | |||
Si-Ti-Ta | C/C-SiC-TiC-TaC | 2/2 C/C twill carbon cloth | SiC-TiC-TaC | MI; SPS; | oxyacetylene flame | 3.9 | 0.0022 | [210] | |
Zr-Hf | C/C-HfC-ZrC | C/C preform | HfC-ZrC | CVD; | oxyacetylene torch | [211] | |||
Hf-Ta-Zr | C/HfC-TaC(HfC-ZrC) | C/C preform | HfC-TaC/HfC-ZrC | CVD; | oxyacetylene torch | 0.63 | 2.1 × 10−4 | [212] | |
SiZrHfTiCr | C/C-(HfZrTiCr)B2-SiC-Si | C/C preform | (Hf1/4Zr1/4Ti1/4Cr1/4)B2-SiC-Si | SP; GRSI | oxyacetylene ablator | 0.37 | 1.5 × 10−4 | [29] | |
SiZrAlCr | C/C-ZrC-SiC-Al2O3-Cr | C/C-ZrC-SiC preform | Al2O3-SiC-ZrC-Cr | RMI; SI; plasma spray | oxyacetylene torch | 0.52 | 4.7 × 10−4 | [213] | |
Si-Zr-V | C/C-ZrC-SiC-V0.9-Si0.1 | 3D needled carbon preform | ZrC-SiC-V0.9-Si0.1 | RMI; | oxyacetylene torch | 0.25 | 4.3 × 10−4 | [214] | |
Si-Mo/Ti | C/C-(Mo,Ti)Si2-SiC | porous C/C preform | (Mo,Ti)Si2-SiC | RMI | oxyacetylene torch | 0.01 | 2 × 10−3 | [215] | |
Si-Mo | C/C-SiC-MoSi2 | porous C/C preform | SiC-MoSi2 | VFI | oxyacetylene torch | 1.34 | 3.5 × 10−3 | [216] | |
SiZrMoTa | C/SiCO-TaSi2-MoSi2-ZrO2 | carbon felts | TaSi2-MoSi2-ZrO2 | sol-gel; pyrolysis | oxyacetylene flame | 0.4 | 8.33 × 10−4 | [217] | |
SiZrCrY | C/C-ZrSi2-CrSi2-Y2O3/SiC | 2D SiC-coated C/C preform | ZrSi2-CrSi2-Y2O3/SiC | SAPS; | oxyacetylene torch | 0.16 | 1 × 10−3 | [218] | |
SiZrCrAl | C/C-ZrC-SiC-Al-Cr | 2.5D needled C/C preform | ZrC-SiC-Al-Cr | CVD; RMI | oxyacetylene torch | 0.02 | 2.5 × 10−4 | [219] | |
Si-Zr-La/Y | C/SiC-ZrC-La2O3; C/SiC-ZrC-Y2O3 | 3D needled felt | SiC-ZrC-La2O3; SiC-ZrC-Y2O3 | CVI; RMI; PIP | oxyacetylene torch | 1.19; 4.52 | 9.93 × 10−3; 0.0178 | [220] | |
Si-Mo-(Ti/Al) | C/C-MoSi2-SiC-(Ti/Al) | needle-punched C/C preform | PyC | MoSi2-SiC-(Ti/Al) | CVI | oxyacetylene torch | 0.01 | 2 × 10−3 | [221] |
Si-Mo-Hf-W | C/ZrB2-SiC-MoSi2; C/ZrB2-SiC-HfSi2; C/ZrB2-SiC-WSi2; | short carbon fiber | ZrB2-SiC-MoSi2; ZrB2-SiC-HfSi2; ZrB2-SiC-WSi2; | ball-milling; hot-pressing | oxyacetylene torch | [222] | |||
Si-Zr-Y | C/C-ZrB2-SiC-Y2O3/SiC | C/C preform | ZrB2-SiC-Y2O3/SiC | PC; APS | muffle furnace | [27] | |||
Si-Zr-Sm | C/C-ZrB2/SiC-Sm2O3 | C/C preform | ZrB2/SiC-Sm2O3 | APS; IPS | plasma torch | 0.319 | [223] | ||
Si-Cu | C/C-SiCW-Cu | carbon fiber bundle | SiCW-Cu | CVD; CVI; | oxyacetylene torch | 4.56 | 8 × 10−3 | [224] | |
Si-Nd | C/C-Si-SiC-SiO2-Nd2O3 | SiC coated C/C preform | Si-SiC-SiO2-Nd2O3 | CVI; laser cladding | laser-ablation | [225] | |||
Si-Al | C/C-Al20Si/graphite | 3D needled C/C preform | Al20Si/graphite | GCVI; | combustion chamber | [226] | |||
Si-Zr-Ta | C/SiC-ZrB2-TaxCy | carbon fiber cloth mat | SiC-ZrB2-TaxCy | RHP; PIP | oxyacetylene torch | 1.33 | 1.9 × 10−4 | [227] | |
Si-Zr-Nb | C/SiC-NbC-ZrC | 2D C/C preform | SiC-NbC-ZrC | SAPS | oxyacetylene torch | 0.48 | 1.3 × 10−4 | [228] | |
Si-La | C/C-SiC-La2O3 | 2.5D carbon fiber felts | PyC | SiC-La2O3 | PIP; CVI; | plasma generator | 0.722 | 0.0333 | [229] |
SiTiZrHfNbTa | C/(TiZrHfNbTa)C-SiC | 3D-needled carbon fiber | PyC/SiC | (TiZrHfNbTa)C-SiC | PIP; CVI; | air plasma torch | 2.60 | 2.89 × 10−3 | [230] |
Si-Zr-V | C/C-ZrC-SiC-V | C/C preform | ZrC-SiC-V | RIM | oxyacetylene torch | 2 | 7 × 10−4 | [231] | |
Si-Zr-Cu | C/C-SiC-ZrC-Cu | needled carbon fiber felts | PyC | SiC-ZrC-Cu | CVI; PIP; VPI | oxyacetylene flame | 3.4 | 3.5 × 10−3 | [232] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.; Ruan, F.; Wang, H.; Wang, H.; Wang, X.; Huang, Y.; Wang, R.; Zou, L.; Xu, Z.; Li, D. Advances in Ablation or Oxidation Mechanisms and Behaviors of Carbon Fiber-Reinforced Si-Based Composites. Molecules 2023, 28, 6022. https://doi.org/10.3390/molecules28166022
Zuo H, Ruan F, Wang H, Wang H, Wang X, Huang Y, Wang R, Zou L, Xu Z, Li D. Advances in Ablation or Oxidation Mechanisms and Behaviors of Carbon Fiber-Reinforced Si-Based Composites. Molecules. 2023; 28(16):6022. https://doi.org/10.3390/molecules28166022
Chicago/Turabian StyleZuo, Hongmei, Fangtao Ruan, Hongjie Wang, He Wang, Xu Wang, Yufan Huang, Rui Wang, Lihua Zou, Zhenzhen Xu, and Diansen Li. 2023. "Advances in Ablation or Oxidation Mechanisms and Behaviors of Carbon Fiber-Reinforced Si-Based Composites" Molecules 28, no. 16: 6022. https://doi.org/10.3390/molecules28166022
APA StyleZuo, H., Ruan, F., Wang, H., Wang, H., Wang, X., Huang, Y., Wang, R., Zou, L., Xu, Z., & Li, D. (2023). Advances in Ablation or Oxidation Mechanisms and Behaviors of Carbon Fiber-Reinforced Si-Based Composites. Molecules, 28(16), 6022. https://doi.org/10.3390/molecules28166022