Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Extraction
3.3. Essential Oil Characterization
3.4. Nanoemulsion Preparation and Characterization
3.5. Stability Study
3.6. Transmission Electron Microscopy (TEM)
3.7. Ovicidal Assay
3.8. Molluscicidal Assays
3.9. Cercaricidal Assay
3.10. In Silico Environmental Toxicity Analysis
3.11. Acute Oral Toxicity in Non-Target Danio rerio
3.12. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siqueira, L.d.P.; Fontes, D.A.F.; Aguilera, C.S.B.; Timóteo, T.R.R.; Ângelos, M.A.; Silva, L.C.P.B.B.; de Melo, C.G.; Rolim, L.A.; da Silva, R.M.F.; Neto, P.J.R. Schistosomiasis: Drugs Used and Treatment Strategies. Acta Trop. 2017, 176, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human Schistosomiasis. In Proceedings of the Lancet; Elsevier: Amsterdam, The Netherlands, 2014; Volume 383, pp. 2253–2264. [Google Scholar]
- Klohe, K.; Koudou, B.G.; Fenwick, A.; Fleming, F.; Garba, A.; Gouvras, A.; Harding-Esch, E.M.; Knopp, S.; Molyneux, D.; D’souza, S.; et al. A Systematic Literature Review of Schistosomiasis in Urban and Peri-Urban Settings. PLOS Neglected Trop. Dis. 2021, 15, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Adema, C.M.; Hillier, L.D.W.; Jones, C.S.; Loker, E.S.; Knight, M.; Minx, P.; Oliveira, G.; Raghavan, N.; Shedlock, A.; do Amaral, L.R.; et al. Whole Genome Analysis of a Schistosomiasis-Transmitting Freshwater Snail. Nat. Commun. 2017, 8, 15451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, R.X.; Rocha, L.M.; Souza, E.P.B.S.S.; Almeida, F.B.; Fernandes, C.P.; Santos, J.A.A. Molluscicidal Activity of Manilkara Subsericea (Mart.) Dubard on Biomphalaria Glabrata (Say, 1818). Acta Trop. 2018, 178, 163–168. [Google Scholar] [CrossRef]
- Christina Mello-Silva, C.; Magno Vilar, M.; Clecildo Barreto Bezerra, J.; Carvalho de Vasconcellos, M.; Pinheiro, J.; de Lurdes de Rodrigues, M.A. Reproductive Activity Alterations on the Biomphalaria Glabrata Exposed to Euphorbia Splendens Var. Hislopii Latex. Mem. Inst. OswaldoCruz 2007, 102, 671–674. [Google Scholar] [CrossRef]
- Rapado, L.N.; Nakano, E.; Ohlweiler, F.P.; Kato, M.J.; Yamaguchi, L.F.; Pereira, C.A.; Kawano, T. Molluscicidal and Ovicidal Activities of Plant Extracts of the Piperaceae on Biomphalaria Glabrata (Say, 1818). J. Helminthol. 2011, 85, 66–72. [Google Scholar] [CrossRef]
- Luna, J.S.; dos Santos, A.F.; de Lima, M.R.F.; de Omena, M.C.; de Mendonça, F.A.C.; Bieber, L.W.; Sant’Ana, A.E.G. A Study of the Larvicidal and Molluscicidal Activities of Some Medicinal Plants from Northeast Brazil. J. Ethnopharmacol. 2005, 97, 199–206. [Google Scholar] [CrossRef]
- Mustafa, I.F.; Hussein, M.Z. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. Nanomaterials 2020, 10, 1608. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Q.; Liu, Q.; Zhu, Z.; McClements, D.J.; Jafari, S.M. Application of Nanoemulsions in Formulation of Pesticides. In Nanoemulsions: Formulation, Applications, and Characterization; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 379–413. ISBN 9780128118399. [Google Scholar]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Naseema, A.; Kovooru, L.; Behera, A.K.; Kumar, K.P.P.; Srivastava, P. A Critical Review of Synthesis Procedures, Applications and Future Potential of Nanoemulsions. Adv. Colloid Interface Sci 2021, 287. [Google Scholar]
- Rangel, L.D.S.; Passos de Oliveira, A.; Falcão, D.Q.; Santos, M.G.; von Ranke, N.L.; Rodrigues, C.R.; dos Santos, J.A.A.; Rocha, L.; Faria, R.X. Nanoemulsion of Sideroxylon Obtusifolium as an Alternative to Combat Schistosomiasis. Front. Plant Sci. 2022, 13, 853002. [Google Scholar] [CrossRef]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cappellacci, L.; Petrelli, R.; Spinozzi, E.; Aguzzi, C.; Zeppa, L.; Ubaldi, M.; et al. Encapsulation of Carlina Acaulis Essential Oil and Carlina Oxide to Develop Long-Lasting Mosquito Larvicides: Microemulsions versus Nanoemulsions. J. Pest Sci. 2021, 94, 899–915. [Google Scholar] [CrossRef]
- Araújo, F.D.P.; de Albuquerque, R.D.D.G.; Rangel, L.D.S.; Caldas, G.R.; Tietbohl, L.A.C.; Santos, M.G.; Ricci-Júnior, E.; Thiengo, S.; Fernandez, M.A.; dos Santos, J.A.A.; et al. Nanoemulsion Containing Essential Oil from Xylopia Ochrantha Mart. Produces Molluscicidal Effects against Different Species of Biomphalaria (Schistosoma Hosts). Mem. Inst. Oswaldo. Cruz. 2019, 114, e180489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Marhamati, M.; Ranjbar, G.; Rezaie, M. Effects of Emulsifiers on the Physicochemical Stability of Oil-in-Water Nanoemulsions: A Critical Review. J. Mol. Liq. 2021, 340, 117218. [Google Scholar] [CrossRef]
- Jin, W.; Xu, W.; Liang, H.; Li, Y.; Liu, S.; Li, B. Nanoemulsions for Food: Properties, Production, Characterization, and Applications. In Emulsions; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–36. [Google Scholar]
- Santos, I.B.D.S.; Santos Dos Santos, B.; Oliveira, J.R.S.d.; Costa, W.K.; Zagmignan, A.; da Silva, L.C.N.; Ferreira, M.R.A.; Lermen, V.L.; Lermen, M.S.B.D.S.; da Silva, A.G.; et al. Antioxidant Action and in Vivo Anti-Inflammatory and Antinociceptive Activities of Myrciaria Floribunda Fruit Peels: Possible Involvement of Opioidergic System. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Magro, T.C.; Rodrigues, L.M.; Silva Filho, D.F.; Polizel, J.L.; Leahy, J. Protected Areas and Place Making: How Do We Provide Conservation, Landscape Management, Tourism, Human Health and Regional Development? Forestry Sciences Departament—ESALQ/USP: Piracicaba, Brazil, 2013; ISBN 9788586481253. [Google Scholar]
- Tietbohl, L.A.C.; Barbosa, T.; Fernandes, C.P.; Santos, M.G.; Machado, F.P.; Santos, K.T.; Mello, C.B.; Araújo, H.P.; Gonzalez, M.S.; Feder, D.; et al. Laboratory Evaluation of the Effects of Essential Oil of Myrciaria Floribunda Leaves on the Development of Dysdercus Peruvianus and Oncopeltus Fasciatus. Rev. Bras. Farmacogn. 2014, 24, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Tietbohl, L.A.C.; Mello, C.B.; Silva, L.R.; Dolabella, I.B.; Franco, T.C.; Enríquez, J.J.S.; Santos, M.G.; Fernandes, C.P.; Machado, F.P.; Mexas, R.; et al. Green Insecticide against Chagas Disease: Effects of Essential Oil from Myrciaria Floribunda (Myrtaceae) on the Development of Rhodnius Prolixus Nymphs. J. Essent. Oil Res. 2020, 32, 1–11. [Google Scholar] [CrossRef]
- Tietbohl, L.A.; Lima, B.G.; Fernandes, C.; Santos, M.G.; Silva, F.; Denardin, E.L.G.; Bachinski, R.; Alves, G.G.; Silva-Filho, M.V.; Rocha, L. Comparative Study and Anticholinesterasic Evaluation of Essential Oils from Leaves, Stems and Flowers of Myrciaria Floribunda (H.West Ex Willd.) O. Berg. Lat. Am. J. Pharm. 2012, 31, 637–641. [Google Scholar]
- de Azevedo, M.M.L.; Cascaes, M.M.; Guilhon, G.M.S.P.; Andrade, E.H.A.; Zoghbi, M.D.G.B.; da Silva, J.K.R.; Santos, L.S.; da Silva, S.H.M. Lupane Triterpenoids, Antioxidant Potential and Antimicrobial Activity of Myrciaria Floribunda (H. West Ex Willd.) O. Berg. Nat. Prod. Res. 2019, 33, 506–515. [Google Scholar] [CrossRef]
- Tietbohl, L.A.C.; Oliveira, A.P.; Esteves, R.S.; Albuquerque, R.D.D.G.; Folly, D.; Machado, F.P.; Corrêa, A.L.; Santos, M.G.; Ruiz, A.L.G.; Rocha, L. Antiproliferative Activity in Tumor Cell Lines, Antioxidant Capacity and Total Phenolic, Flavonoid and Tannin Contents of Myrciaria Floribunda. An. Acad. Bras. Cienc. 2017, 89, 1111–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, J.A.; Alves Ribeiro da Silva, G.; Machado, F.P.; Folly, D.; Peñaloza, E.; Garrett, R.; Santos, M.G.; Ventura, J.A.; Wermelinger, G.F.; Robbs, B.K.; et al. Glimpsing the Chemical Composition and the Potential of Myrtaceae Plant Extracts against the Food Spoilage Fungus Thielaviopsis Ethacetica. Food Control 2023, 146, 109501. [Google Scholar] [CrossRef]
- Ramos, M.F.D.S.; Monteiro, S.D.S.; da Silva, V.P.; Nakamura, M.J.; Siani, A.C. Essential Oils from Myrtaceae Species of the Brazilian Southeastern Maritime Forest (Restinga). J. Essent. Oil Res. 2010, 22, 109–113. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Plantas Medicinais: Fatores De Influência No Conteúdo de Metabólitos Secundários. Química Nova 2007, 30, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.P.L.A.; Ribeiro, E.C.G.; Brito, M.C.A.; Silveira, D.P.B.; Araruna, F.O.S.; Araruna, F.B.; Leite, J.A.C.; Dias, A.A.S.; Firmo, W.D.C.A.; Borges, M.O.D.R.; et al. Essential Oils as Molluscicidal Agents against Schistosomiasis Transmitting Snails—A Review. Acta Trop. 2020, 209, 105489. [Google Scholar] [CrossRef]
- Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Machado, L.F.; Bortoleti, B.T.D.S.; Sahd, C.S.; Chagas, A.F.; Assolini, J.P.; Oliveira, F.J.D.A.; Pavanelli, W.R.; Conchon-Costa, I.; et al. Nanotechnology as a Potential Therapeutic Alternative for Schistosomiasis. Acta Trop. 2017, 174, 64–71. [Google Scholar] [CrossRef]
- Gledovic, A.; Lezaic, A.J.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; et al. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective in Vitro/in Vivo Bioperformance. Nanomaterials 2021, 11, 217. [Google Scholar] [CrossRef]
- dos Santos Matos, A.P.; Lopes, D.C.D.X.P.; Peixoto, M.L.H.; da Silva Cardoso, V.; Vermelho, A.B.; Santos-Oliveira, R.; Viçosa, A.L.; Holandino, C.; Ricci-Júnior, E. Development, Characterization, and Anti-Leishmanial Activity of Topical Amphotericin B Nanoemulsions. Drug Deliv. Transl. Res. 2020, 10, 1552–1570. [Google Scholar] [CrossRef]
- Lima, L.A.; Ferreira-Sá, P.S.; Garcia, M.D.N.; Pereira, V.L.P.; Carvalho, J.C.T.; Rocha, L.; Fernandes, C.P.; Souto, R.N.P.; Araújo, R.S.; Botas, G.; et al. Nano-Emulsions of the Essential Oil of Baccharis Reticularia and Its Constituents as Eco-Friendly Repellents against Tribolium Castaneum. Ind. Crop. Prod. 2021, 162, 113282. [Google Scholar] [CrossRef]
- Abd-Rabou, A.A.; Edris, A.E. Frankincense Essential Oil Nanoemulsion Specifically Induces Lung Cancer Apoptosis and Inhibits Survival Pathways. Cancer Nanotechnol. 2022, 13, 1–24. [Google Scholar] [CrossRef]
- Ho, T.M.; Abik, F.; Mikkonen, K.S. An Overview of Nanoemulsion Characterization via Atomic Force Microscopy. Crit. Rev. Food Sci. Nutr. 2021, 62, 1–21. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, D.; Li, D.; Jia, H.; Qin, W. Control of Ostwald Ripening. Sci. China Mater. 2022, 62, 4908–4928. [Google Scholar] [CrossRef]
- Franzol, A.; Rezende, M.C. Estabilidade de Emulsões: Um Estudo de Caso Envolvendo Emulsionantes Aniônico, Catiônico e Não-Iônico. Polimeros 2015, 25, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cossetin, L.F.; Garlet, Q.I.; Velho, M.C.; Gündel, S.; Ourique, A.F.; Heinzmann, B.M.; Monteiro, S.G. Development of Nanoemulsions Containing Lavandula Dentata or Myristica Fragrans Essential Oils: Influence of Temperature and Storage Period on Physical-Chemical Properties and Chemical Stability. Ind. Crop. Prod. 2020, 160, 113115. [Google Scholar] [CrossRef]
- de Carvalho Augusto, R.; Merad, N.; Rognon, A.; Gourbal, B.; Bertrand, C.; Djabou, N.; Duval, D. Molluscicidal and Parasiticidal Activities of Eryngium Triquetrum Essential Oil on Schistosoma Mansoni and Its Intermediate Snail Host Biomphalaria glabrata, a Double Impact. Parasites Vectors 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Pereira, L.P.L.A.; Ribeiro, E.C.G.; Brito, M.C.A.; Araruna, F.O.S.; Araruna, F.B.; Leite, J.A.C.; Silveira, D.P.B.; de Oliveira, T.M.; Cantanhede, S.P.D.; Firmo, W.; et al. Molluscicidal and Cercaricidal Activities of the Essential Oil of Dysphania Ambrosioides (L.) Mosyakin & Clemants: Implications for the Control of Schistosomiasis. Acta Trop. 2022, 230, 106393. [Google Scholar] [CrossRef]
- Cruz, J.P.; Ribeiro, F.; de Oliveira Vasconcelos, V. Molluscicidal Activity of Extracts of Plants from the Cerrado against Biomphalaria Glabrata (Say, 1818). Research, Society and Development 2022, 11, e20611830656. [Google Scholar] [CrossRef]
- Gomes, D.S.; Negrão-Corrêa, D.A.; Miranda, G.S.; Rodrigues, J.G.M.; Guedes, T.J.F.L.; de Lucca Junior, W.; Sá Filho, J.C.F.D.; Nizio, D.A.D.C.; Blank, A.F.; Feitosa, V.L.C.; et al. Lippia Alba and Lippia Gracilis Essential Oils Affect the Viability and Oviposition of Schistosoma mansoni. Acta Trop. 2022, 231, 106434. [Google Scholar] [CrossRef]
- Aguiar, T.W.D.A.; Batista, J.J.; Ferreira, S.A.D.O.; Sampaio, M.D.V.L.; Pereira, D.R.; Ferreira, M.R.A.; Soares, L.A.L.; Melo, A.M.M.D.A.; Albuquerque, M.C.P.D.A.; Aires, A.D.L.; et al. Effect of Bauhinia Monandra Kurz Leaf Preparations on Embryonic Stages and Adult Snails of Biomphalaria glabrata (Say, 1818), Schistosoma mansoni Cercariae and Toxicity in Artemia salina. Molecules 2022, 27, 4993. [Google Scholar] [CrossRef]
- Passos, B.G.; Rangel, L.D.S.; de Albuquerque, R.D.D.G.; Caldas, G.R.; Santos, M.G.; Esteves, R.D.S.; Milton, F.A.; Neves, F.D.A.R.; Ruppelt, B.M.; dos Santos, J.A.A.; et al. Ocotea Pulchella as an Alternative against Schistosomiasis: Chemical Analysis, Development of Nanoemulsion and Biological Control Activity. Bol. Latinoam. Caribe. Plantas Med. Aromat. 2020, 19, 508–518. [Google Scholar] [CrossRef]
- OECD. Fish, Acute Toxicity Testing. Test Guideline No. 203; OECD: Paris, France, 2019. [Google Scholar]
- ABNT. Aquatic Ecotoxicology, Acute Toxicity, Test with Fish (Cypirinidae). ABNT NBR 15088; ABNT: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Ostertag, F.; Weiss, J.; McClements, D.J. Low-Energy Formation of Edible Nanoemulsions: Factors Influencing Droplet Size Produced by Emulsion Phase Inversion. J. Colloid Interface Sci. 2012, 388, 95–102. [Google Scholar] [CrossRef]
- Rahaman, S.M.; Bhattarai, A.; Kumar, D.; Singh, B.; Saha, B. Application of Biosurfactants as Emulsifiers in the Processing of Food Products with Diverse Utilization in the Baked Goods. In Applications of Next Generation Biosurfactants in the Food Sector; Elsevier: Amsterdam, The Netherlands, 2023; pp. 203–237. [Google Scholar]
- Anvisa. Guia de Estabilidade de Produtos Cosméticos; Anvisa: Brasília, Brazil, 2004.
- Santos, J.A.A.; Cavalcante, V.P.; Rangel, L.D.S.; Leite, J.C.V.A.; Faria, R.X. A New Technique Using Low Volumes: A New Technique to Assess the Molluscicidal Activity Using Low Volumes. Evid. -Based Complement. Altern. Med. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The Arrive Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- OECD. Guidance Document on the Recognition, Assessment and Use of Clinical Signs as Humane Endpoints for Experimental Animals Used in Safety Evaluation Environmental Health and Safety Monograph Series on Testing and Assessment N 19; OECD: Paris, France, 2000. [Google Scholar]
- Concea. Guia Brasileiro de Produção, Manutenção Ou Utilização de Animais Para a Manutenção Ou Utilização de Animais Para Atividades de Ensino Ou Pesquisa Científica; Concea: Brasília, Brazil, 2015. [Google Scholar]
Retention Index | Arithmetic Index | Arithmetic Index Calculated | Substances | % | |
---|---|---|---|---|---|
1 | 8.321 | 1023 | 1022 | O-Cymene | 0.19 |
2 | 8.459 | 1027 | 1026 | 1,8-Cineole | 10.70 |
3 | 14.963 | 1194 | 1186 | α-Terpineol | 0.44 |
4 | 22.355 | 1369 | 1373 | α-Ylangene | 3.43 |
5 | 24.126 | 1412 | 1417 | β-Caryophylenne | 2.28 |
6 | 24.920 | 1431 | 1439 | Aromadendrene | 0.27 |
7 | 25.581 | 1447 | 1452 | α-Humulene | 1.15 |
8 | 26.333 | 1466 | 1476 | β-Chamigrene | 1.87 |
9 | 26.937 | 1481 | 1489 | β-Selinene | 13.28 |
10 | 27.235 | 1488 | 1498 | α-Selinene | 6.13 |
11 | 27.387 | 1492 | 1500 | α-Muurolene | 0.49 |
12 | 27.493 | 1495 | 1509 | α-Bulnesene | 0.45 |
13 | 28.136 | 1511 | 1511 | δ-Amorphene | 4.80 |
14 | 28.292 | 1515 | 1521 | trans-Calamenene | 0.43 |
15 | 28.819 | 1529 | 1528 | Zonarene | 7.69 |
16 | 29.010 | 1534 | 1545 | Selina-3,7(11)-diene | 6.54 |
17 | 29.654 | 1550 | 1559 | Germacrene B | 0.50 |
18 | 29.886 | 1556 | 1561 | Nerolidol | 15.43 |
19 | 30.560 | 1574 | 1582 | Caryophyllene oxide | 0.76 |
20 | 31.176 | 1590 | 1595 | Cubeban-11-ol | 0.29 |
21 | 32.506 | 1625 | 1622 | 10-epi-γ-Eudesmol | 0.66 |
22 | 33.311 | 1647 | 1649 | β-Eudesmol | 1.24 |
23 | 33.439 | 1651 | 1658 | neo-Intermedeol | 4.41 |
24 | 33.836 | 1661 | 1665 | Intermedeol | 1.56 |
25 | 34.892 | 1690 | 1700 | Eudesm-7(11)-en-4-ol | 1.48 |
26 | 35.702 | 1713 | 1714 | Farnesol | 2.05 |
27 | 39.756 | 1829 | 1821 | (2Z,6E)-Farnesyl acetate | 3.33 |
Total identified | 91.82 | ||||
Monoterpene hydrocarbons | 0.19 | ||||
Oxygenated monoterpenes | 11.14 | ||||
Monoterpenes: total | 11.33 | ||||
Sesquiterpenes hydrocarbons | 49.31 | ||||
Oxygenated sesquiterpenes | 31.18 | ||||
Sesquiterpenes: total | 80.49 |
Formulation | Droplet Size (nm) | Polydispersity Index | Hydrophilic-Lipophilic Balance |
---|---|---|---|
F1 | 171.8 ± 1.3 | 0.271 ± 0.011 | 16.7 |
F2 | 120.5 ± 0.92 | 0.249 ± 0.009 | 15.46 |
F3 | 99.71 ± 0.52 | 0.262 ± 0.013 | 14.22 |
F4 | 196.4 ± 1.4 | 0.322 ± 0.105 | 12.98 |
F5 | 311.5 ± 12.80 | 0.204 ± 0.134 | 11.74 |
F6 | 592.8 ± 84.40 | 0.672 ± 0.340 | 10.5 |
F7 | 1532 ± 646.25 | 0.520 ± 0.481 | 9.26 |
F8 | 1750 ± 817.41 | 0.439 ± 0.430 | 8.02 |
F9 | 1461 ± 263.65 | 1.0 ± 0 | 6.78 |
25 °C | 8 °C | 42 °C | ||||
---|---|---|---|---|---|---|
Average Size (nm) | Polydispersity Index | Average Size (nm) | Polydispersity Index | Average Size (nm) | Polydispersity Index | |
T00 | 87.2 ± 1.363 | 0.267 ± 0.010 | 96.6 ± 0.9917 | 0.263 ± 0.009 | 69.6 ± 1.767 | 0.283 ± 0.013 |
T07 | 84.4 ± 1.05 | 0.268 ± 0.008 | 98.1 ± 0.615 | 0.261 ± 0.003 | 72.0 ± 0.87 | 0.186 ± 0.010 |
T15 | 84.5 ± 1.517 | 0.261 ± 0.010 | 98.2 ± 1.103 | 0.248 ± 0.0 | 91.9 ± 0.2553 | 0.112 ± 0.021 |
T30 | 80.4 ± 0.9721 | 0.241 ± 0.008 | 94.3 ± 0.6274 | 0.268 ± 0.007 | 161.2 ± 2.237 | 0.148 ± 0.017 |
T60 | 91.4 ± 1.231 | 0.178 ± 0.008 | 97.8 ± 1.250 | 0.273 ± 0.009 | 533.8 ± 32.51 | 0.151 ± 0.080 |
T90 | 130 ± 0.8505 | 0.098 ± 0.008 | 100.4 ± 1.195 | 0.271 ± 0.004 | 843.5 ± 67.30 | 0.417 ± 0.519 |
T120 | 188.5 ± 1.801 | 0.141 ± 0.052 | 101.8 ± 1.041 | 0.285 ± 0.019 | 2603 ± 82.56 | 0.243 ± 0.031 |
T150 | 276.3 ± 5.408 | 0.126 ± 0.029 | 97.0 ± 0.6504 | 0.265 ± 0.013 | 2988 ± 423 | 0.676 ± 0.208 |
T200 | 580.0 ± 20.46 | 0.165 ± 0.105 | 102.4 ± 1.386 | 0.219 ± 0.008 | 2998 ± 114 | 0.370 ± 0.143 |
Compounds | Bioconcentration Factor | Biodegradation | Aquatic Toxicity | Endocrine Receptor Binding | TOX-Risk * | |||
---|---|---|---|---|---|---|---|---|
Tetrahymena pIGC50 * | Daphnia LC50 * | Minnow LC50 * | Androgen Receptor * | Estrogen Receptor * | ||||
Niclosamide | 6.65 | No | 1.968 | 1.752 | 3.612 | Toxic | Nontoxic | 2 |
Zonarene | 1497.046 | No | 1.003 | 11.855 | 0.421 | Nontoxic | Nontoxic | 1 |
β-selinene | 1951.705 | No | 1.287 | 2.110 | 0.369 | Toxic | Nontoxic | - |
1,8-Cineole | 61.434 | No | 0.041 | 227.511 | 149.762 | Nontoxic | Nontoxic | 0 |
Nerolidol | 566.945 | Yes | 0.774 | 2.863 | 1.531 | Toxic | Nontoxic | 1 |
Oil Phase % (w/w) | Aqueous Phase % (w/w) | Essential Oil % (w/w) | Polysorbate 20% (w/w) | Sorbitan Monooleate 80% (w/w) | |
---|---|---|---|---|---|
F1 | 10.0 | 90.0 | 5.0 | 5.0 | 0.0 |
F2 | 10.0 | 90.0 | 5.0 | 4.5 | 0.5 |
F3 | 10.0 | 90.0 | 5.0 | 4.0 | 1.0 |
F4 | 10.0 | 90.0 | 5.0 | 3.5 | 1.5 |
F5 | 10.0 | 90.0 | 5.0 | 3.0 | 2.0 |
F6 | 10.0 | 90.0 | 5.0 | 2.5 | 2.5 |
F7 | 10.0 | 90.0 | 5.0 | 2.0 | 3.0 |
F8 | 10.0 | 90.0 | 5.0 | 1.5 | 3.5 |
F9 | 10.0 | 90.0 | 5.0 | 1.0 | 4.0 |
F10 | 10.0 | 90.0 | 5.0 | 0.5 | 4.5 |
F11 | 10.0 | 90.0 | 5.0 | 0.0 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, F.P.; Folly, D.; Esteves, R.; Ruppelt, B.M.; da Silva, V.M.; Matos, A.P.d.S.; Santos, J.A.A.d.; Rangel, L.d.S.; Santos, M.G.; von Ranke, N.L.; et al. Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion. Molecules 2023, 28, 5944. https://doi.org/10.3390/molecules28165944
Machado FP, Folly D, Esteves R, Ruppelt BM, da Silva VM, Matos APdS, Santos JAAd, Rangel LdS, Santos MG, von Ranke NL, et al. Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion. Molecules. 2023; 28(16):5944. https://doi.org/10.3390/molecules28165944
Chicago/Turabian StyleMachado, Francisco Paiva, Diogo Folly, Ricardo Esteves, Bettina Monika Ruppelt, Victoria Marques da Silva, Ana Paula dos Santos Matos, José Augusto Albuquerque dos Santos, Leonardo da Silva Rangel, Marcelo Guerra Santos, Natalia Lidmar von Ranke, and et al. 2023. "Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion" Molecules 28, no. 16: 5944. https://doi.org/10.3390/molecules28165944