From K6[Re6−xMoxS8(CN)5] Solid Solution to Individual Cluster Complexes: Separation and Investigation of [Re4Mo2S8(CN)6]n− and [Re3Mo3S8(CN)6]n− Heterometallic Clusters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystal Structures
2.3. Electrochemical Properties
2.4. Electronic Structure
2.5. Geometry Optimization
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Compounds
- Preparation of K6[Re3.2Mo2.8S8(CN)5] (1). Compound 1 was prepared using a technique derived from that previously described [15]. ReS2 (1.02 g, 4 mmol), MoS2 (0.65 g, 4 mmol) and KCN (1.68 g, 25 mmol) were mixed in a silica ampoule. The ampoule was evacuated and sealed. The reaction was carried out at 700 °C for 8 days, and then the ampoule was cooled down to room temperature in 12 h. The reaction mixture was stirred in Ar-saturated H2O (250 mL) under Ar gas flow at room temperature for 1 h to remove unreacted KCN and was filtered off. The resulting solid residue was washed on a glass filter with an EtOH/H2O mixture (7/1 vol., 2 portions of 20 mL) and EtOH (30 mL). The mixture containing octahedral black crystals of 1 with an admixture of unreacted metal sulfides was separated by sonication in EtOH with subsequent decantation, and then product 1 was dried in air. Yield: 1.30 g (66% based on total amount of metals). EDS: K:Re:Mo:S = 5.7:3.2:2.8:8.3. FT-IR (KBr, cm−1): 2088 (C≡N). Phase purity of the product was confirmed by PXRD. PXRD also revealed that compound 1 is isostructural to the K6[Re3Mo3S8(CN)5] phase reported previously [15].
- Preparation of K5[Re3.2Mo2.8S8(CN)6] (2). Compound 1 (0.50 g, 0.33 mmol) and KCN (0.05 g, 0.77 mmol) were dissolved in 20 mL of H2O. The solution was evaporated on heating in a glass to a volume of about 5 mL and then 10 mL of EtOH was added, causing immediate precipitation of compound 2. The precipitate was separated by centrifugation, washed with an EtOH/H2O mixture (7/1 vol., 20 mL) and EtOH (20 mL) and dried in air. Yield: 0.34 g (70%). EDS: K:Re:Mo:S = 4.8:3.1:2.9:8.0. FT-IR (KBr, cm−1): v = 2103 (C≡N); v = 3572, 1620 (O-H). UV-vis (H2O; λmax, nm (ε, M−1cm−1)): 454 (973), 482 (1056), 804 (255). Elemental analysis: Anal. Calcd. for C6N6Re3.2Mo2.8S8 (%): C, 4.89; N, 5.71; H, 0; S, 17.42. Found: C, 4.96; N, 5.82; H, 0.14; S, 17.28. PXRD pattern shows that compound 2 is isostructural to the CaK4[Re3Mo3S8(CN)6]·8H2O phase reported previously [23] and does not present additional diffraction peaks.
- Preparation of (Ph4P)4[Re3.2Mo2.8S8(CN)6] (3). Compound 2 (0.10 g, 0.03 mmol) was dissolved in 10 mL of H2O. Ph4PCl (0.10 g, 0.26 mmol) was dissolved in H2O (10 mL) and added to the solution of compound 2, leading to the precipitation of compound 3. The precipitate was separated by centrifugation, washed with H2O and dried in air. Single crystals for X-ray diffraction studies were obtained by slow diffusion of H2O layered under the solution of compound 3 in CH3CN (15 mg mL−1) in a thin glass tube. EDS: Re:Mo:S = 3.2:2.8:7.6. FT-IR (KBr, cm−1): v = 2096 (C≡N); 1436, 1107, 995, 756, 721, 686, 522 (Ph4P+). UV-vis absorption (CH3CN; λmax, nm (ε, M−1cm−1)): 475 (1238), 483 (1266), 813 (406). Elemental analysis: Anal. Calcd. for C102N6H80Re3.2Mo2.8S8 (%): C, 46.50; N, 3.19; H, 3.06; S, 9.74. Found: C, 46.43; N, 3.32; H, 3.35; S, 9.53.
- Preparation of (Bu4N)4[Re4Mo2S8(CN)6]·2H2O (4). Compound 2 (1.00 g, 0.68 mmol) was stirred in 20 mL of H2O for 2 h, resulting in a dark-brown solution. The solution was filtered and added to the solution of n-Bu4NCl (1.00 g, 3.6 mmol) in 20 mL of H2O (the pH of the resulting solution was 9.6). KOH was added to the reaction mixture until it reached a pH of 11.0. The reaction mixture stayed at room temperature in the open glass and slowly evaporated. During the evaporation, a green precipitate of compound 4 was formed. The end of precipitation occurred in about 7 days. The precipitate was filtered, washed with H2O and dried in air. Yield: 0.52 g (33% based on initial amount of compound 2). EDS: Re:Mo:S = 4.0:2.0:7.6. FT-IR (KBr, cm−1): 2115 (C≡N). UV–vis absorption (H2O; λmax, nm (ε, M−1cm−1)): 495 (425), 452 (375), 807 (140). Elemental analysis: Anal. Calcd. for C70N10H148O2Re4Mo2S8 (%): C, 35.7; N, 5.9; H, 6.3; S, 10.9. Found: C, 34.3; N, 5.6; H, 6.1; S, 10.9. ESI-MS in CH3CN, negative ion mode, m/z (Figure 2): H4[{Re4Mo2S8}(CN)6](H2O)(CH3CN)2− (obs. 706.24, calcd. 706.24), (Bu4N)[{Re4Mo2S8}(CN)5]2− (obs. 782.85, calcd. 782.85), (Bu4N)[{Re4Mo2S8}(CN)4(OH)](CH3CN)2− (obs. 798.84, calcd. 798.86) and (Bu4N)2[{Re4Mo2S8}(CN)6]2− (obs. 916.99, calcd. 916.99). PXRD pattern of polycrystalline phase matched the calculated pattern from single-crystal X-ray diffraction data. Single crystals for X-ray diffraction studies were obtained by recrystallization of 4 from CH3CN.
- Preparation of K5[Re3Mo3S8(CN)6]·8H2O (5). The aqueous solution formed after separation of solid compound 4 was extracted with 40 mL of CH2Cl2. The organic layer was separated and evaporated in air to dryness, and the solid residue was dissolved in 15 mL of CH3CN. This solution was mixed with a solution of 0.30 g (3.1 mmol) of KSCN in 15 mL of CH3CN. A brown precipitate quickly formed after mixing the two solutions. The precipitate was dissolved in H2O, and KCN was added to the solution (0.01 g, 0.15 mmol). The solution was evaporated to 5 mL, which led to the precipitation of red-brown crystals. Yield: 0.17 g (25% based on initial amount of compound 2). Elemental analysis: Anal. Calcd. for C6N6H16O8K5Re3Mo3S8 (%): C, 4.48; N, 5.23; H, 1.00; S, 15.93. Found: C, 4.71; N, 5.53; H, 0.89; S, 16.14. FT-IR (KBr, cm−1): 2102 (C≡N). UV–vis absorption (H2O; λmax, nm (ε, M−1cm−1)): 480 (1736), 739 (565).
- Preparation of (Ph4P)5[Re3Mo3S8(CN)6] (6). A total of 300 mg (0.2 mmol) of compound 5 was dissolved in 20 mL of water. Aqueous solution of Ph4PCl (0.30 g, 0.8 mmol) was added, causing the formation of a brown-red precipitate. The precipitate was separated by centrifugation, washed with H2O and dried in air. EDS: Re:Mo:S = 2.9:3.1:8.2. FT-IR (KBr, cm−1): v = 2052 (C≡N); 1435, 1107, 995, 750, 721, 686, 522 (Ph4P+). Elemental analysis: Anal. Calcd. for C126N6H100P5Re3Mo3S8 (%): C, 51.04; N, 2.83; H, 3.40; S, 8.63. Found: C, 51.23; N, 2.78; H, 3.56; S, 8.49. ESI-MS in CH3CN, negative ion mode, m/z (Figure 3): (Ph4P)H3[{Re3Mo3S8}(CN)5]·(CH3CN)2− (obs. 808.31, calcd. 808.27), (Ph4P)H4[{Re3Mo3S8}(CN)4]·(CH3CN)22− (obs. 816.31, calcd. 816.29), (Ph4P)H2[{Re3Mo3S8}(CN)4]·(CH3CN)2(H2O)2− (obs. 824.30, calcd. 824.29), (Ph4P)[{Re3Mo3S8}(CN)6]·(CH3CN)22− (obs. 840.29, calcd. 840.28), (Ph4P)H[{Re3Mo3S8}(CN)5]·(CH3CN)32− (obs. 848.29, calcd. 848.29), (Ph4P)[{Re3Mo3S8(CN)6]·(CH3CN)2(H2O)22− (obs. 858.29, calcd. 858.29) and (Ph4P)[Re3Mo3S8(CN)6]·(CH3CN)2(H2O)32− (obs. 867.29, calcd. 867.29).
3.3. Single-Crystal Diffraction Studies
3.4. Computational Details
3.5. EXAFS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nguyen, N.T.K.; Lebastard, C.; Wilmet, M.; Dumait, N.; Renaud, A.; Cordier, S.; Ohashi, N.; Uchikoshi, T.; Grasset, F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6): Inorganic 0D and 2D powders and films. Sci. Technol. Adv. Mater. 2022, 23, 547–578. [Google Scholar] [CrossRef] [PubMed]
- Kirakci, K.; Shestopalov, M.A.; Lang, K. Recent developments on luminescent octahedral transition metal cluster complexes towards biological applications. Coord. Chem. Rev. 2023, 481, 215048. [Google Scholar] [CrossRef]
- Molard, Y. Clustomesogens: Liquid Crystalline Hybrid Nanomaterials Containing Functional Metal Nanoclusters. Acc. Chem. Res. 2016, 49, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Gray, T.G. Hexanuclear and higher nuclearity clusters of the Groups 4–7 metals with stabilizing π-donor ligands. Coord. Chem. Rev. 2003, 243, 213–235. [Google Scholar] [CrossRef]
- Yoshimura, T.; Ishizaka, S.; Umakoshi, K.; Sasaki, Y.; Kim, H.-B.; Kitamura, N. Hexarhenium(III) Clusters [Re6(μ3-S)8X6]4− (X− = Cl−, Br−, I−) are Luminescent at Room Temperature. Chem. Lett. 1999, 28, 697–698. [Google Scholar] [CrossRef]
- Krasilnikova, A.A.; Shestopalov, M.A.; Brylev, K.A.; Kirilova, I.A.; Khripko, O.P.; Zubareva, K.E.; Khripko, Y.I.; Podorognaya, V.T.; Shestopalova, L.V.; Fedorov, V.E.; et al. Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents. J. Inorg. Biochem. 2015, 144, 13–17. [Google Scholar] [CrossRef]
- Akagi, S.; Fujii, S.; Kitamura, N. A study on the redox, spectroscopic, and photophysical characteristics of a series of octahedral hexamolybdenum(ii) clusters: [{Mo6X8}Y6]2− (X, Y = Cl, Br, or I). Dalton Trans. 2018, 47, 1131–1139. [Google Scholar] [CrossRef]
- Renaud, A.; Nguyen, T.K.N.; Grasset, F.; Raissi, M.; Guillon, V.; Delabrouille, F.; Dumait, N.; Jouan, P.Y.; Cario, L.; Jobic, S.; et al. Preparation by electrophoretic deposition of molybdenum iodide cluster-based functional nanostructured photoelectrodes for solar cells. Electrochim. Acta 2019, 317, 737–745. [Google Scholar] [CrossRef]
- Lappi, T.; Cordier, S.; Gayfulin, Y.; Ababou-Girard, S.; Grasset, F.; Uchikoshi, T.; Naumov, N.G.; Renaud, A. Nanoarchitectonics of Metal Atom Cluster-Based Building Blocks Applied to the Engineering of Photoelectrodes for Solar Cells. Solar RRL 2023, 7, 2370064. [Google Scholar] [CrossRef]
- Perrin, A.; Sergent, M.; Fischer, O. New compounds of the type Mo2Re4X8 (M = S, Se) containing octahedral Mo2Re4 clusters. Mater. Res. Bull. 1978, 13, 259–264. [Google Scholar] [CrossRef]
- Perrin, A.; Chevrel, R.; Sergent, M.; Fischer, Ø. Synthesis and electrical properties of new chalcogenide compounds containing mixed (Mo, Me)6 octahedral clusters (Me = Ru or Rh). J. Solid State Chem. 1980, 33, 43–47. [Google Scholar] [CrossRef]
- Hönle, W.; Flack, H.D.; Yvon, K. Single crystal X-ray study of Mo6Se8-type selenides containing partially substituted (Mo,Me)6 clusters (Me = Ru,Re). J. Solid State Chem. 1983, 49, 157–165. [Google Scholar] [CrossRef]
- Berry, F.J.; Gibbs, C.D.; Greaves, C. Structural properties of the molybdenum-ruthenium telluride of composition Mo4.5Ru1.5Te8. J. Solid State Chem. 1991, 92, 148–153. [Google Scholar] [CrossRef]
- Berry, F.J.; Gibbs, C.D. Synthesis of metal molybdenum tellurides of composition Mo6–MTe8(M = Ru or Rh). J. Chem. Soc. Dalton Trans. 1991, 57–59. [Google Scholar] [CrossRef]
- Caillat, T.; Fleurial, J.P. Thermoelectric properties of the semiconducting Chevrel phase Mo2Re4Se8. J. Phys. Chem. Solids 1998, 59, 1139–1144. [Google Scholar] [CrossRef]
- McGuire, M.A.; Schmidt, A.M.; Gascoin, F.; Jeffrey Snyder, G.; DiSalvo, F.J. Thermoelectric and structural properties of a new Chevrel phase: Ti0.3Mo5RuSe8. J. Solid State Chem. 2006, 179, 2158–2163. [Google Scholar] [CrossRef]
- Bronger, W.; Koppe, C.; Loevenich, M.; Schmitz, D.; Schuster, T. Cs3Re5OsS11, eine Verbindung mit gemischten Rhenium–Osmium-Clustern. Z. Anorg. Allg. Chem. 1997, 623, 695–698. [Google Scholar] [CrossRef]
- Tulsky, E.G.; Long, J.R. Heterometal Substitution in the Dimensional Reduction of Cluster Frameworks: Synthesis of Soluble [Re6-nOsnSe8Cl6](4−n)− (n = 1–3) Cluster-Containing Solids. Inorg. Chem. 2001, 40, 6990–7002. [Google Scholar] [CrossRef]
- Tulsky, E.G.; Crawford, N.R.M.; Baudron, S.A.; Batail, P.; Long, J.R. Cluster-to-Metal Magnetic Coupling: Synthesis and Characterization of 25-Electron [Re6-nOsnSe8(CN)6](5−n)− (n = 1, 2) Clusters and {Re6-nOsnSe8[CNCu(Me6tren)]6}9+ (n = 0, 1, 2) Assemblies. J. Am. Chem. Soc. 2003, 125, 15543–15553. [Google Scholar] [CrossRef]
- Brylev, K.A.; Naumov, N.G.; Kozlova, S.G.; Ryzhikov, M.R.; Kim, S.J.; Kitamura, N. Synthesis and structures of new octahedral heterometal rhenium-osmium cluster complexes. Russ. J. Coord. Chem. 2012, 38, 183–191. [Google Scholar] [CrossRef]
- Artemkina, S.B.; Naumov, N.G.; Kondrakov, K.N.; Virovets, A.V.; Kozlova, S.G.; Fedorov, V.E. Cluster Complexes with the Novel Heterometallic Cluster Core {Mo5NbI8}: Synthesis, Excision Reactions, and Crystal Structures. Z. Anorg. Allg. Chem. 2010, 636, 483–491. [Google Scholar] [CrossRef]
- Muravieva, V.K.; Gayfulin, Y.M.; Ryzhikov, M.R.; Novozhilov, I.N.; Samsonenko, D.G.; Piryazev, D.A.; Yanshole, V.V.; Naumov, N.G. Mixed-metal clusters with a {Re3Mo3Se8} core: From a polymeric solid to soluble species with multiple redox transitions. Dalton Trans. 2018, 47, 3366–3377. [Google Scholar] [CrossRef] [PubMed]
- Gayfulin, Y.M.; Naumov, N.G.; Rizhikov, M.R.; Smolentsev, A.I.; Nadolinny, V.A.; Mironov, Y.V. Heterometallic clusters with a new {Re3Mo3S8} core: Direct synthesis, properties and DFT calculations. Chem. Commun. 2013, 49, 10019–10021. [Google Scholar] [CrossRef] [PubMed]
- Muravieva, V.K.; Gayfulin, Y.M.; Prestipino, C.; Lemoine, P.; Ryzhikov, M.R.; Yanshole, V.V.; Cordier, S.; Naumov, N.G. Tailoring Heterometallic Cluster Functional Building Blocks: Synthesis, Separation, Structural and DFT Studies of [Re6−xMoxSe8(CN)6]n−. Chem. Eur. J. 2019, 25, 15040–15045. [Google Scholar] [CrossRef] [PubMed]
- Muravieva, V.K.; Loginov, I.P.; Sukhikh, T.S.; Ryzhikov, M.R.; Yanshole, V.V.; Nadolinny, V.A.; Dorcet, V.; Cordier, S.; Naumov, N.G. Synthesis, Structure, and Spectroscopic Study of Redox-Active Heterometallic Cluster-Based Complexes [Re5MoSe8(CN)6]n. Inorg. Chem. 2021, 60, 8838–8850. [Google Scholar] [CrossRef] [PubMed]
- Lappi, T.I.; Gaifulin, Y.M.; Yanshole, V.V.; Cordier, S.; Naumov, N.G. Evidences of the non-stoichiometry and control of the composition of the cluster-based solid solution K6[Re6−xMoxS8(CN)5] (x = 2.75–3.63). J. Solid State Chem. 2023, 319, 123785. [Google Scholar] [CrossRef]
- Yoshimura, T.; Ishizaka, S.; Sasaki, Y.; Kim, H.-B.; Kitamura, N.; Naumov, N.G.; Sokolov, M.N.; Fedorov, V.E. Unusual Capping Chalcogenide Dependence of the Luminescence Quantum Yield of the Hexarhenium(III) Cyano Complexes [Re6(μ3-E)8(CN)6]4−, E2− = Se2− > S2− > Te2−. Chem. Lett. 1999, 28, 1121–1122. [Google Scholar] [CrossRef]
- Gabriel, J.-C.P.; Boubekeur, K.; Uriel, S.; Batail, P. Chemistry of Hexanuclear Rhenium Chalcohalide Clusters. Chem. Rev. 2001, 101, 2037–2066. [Google Scholar] [CrossRef]
- APEX2; Version 2.0; Bruker Advanced X-ray Solutions: Madison, WI, USA, 2000.
- SAINT; Version 8.18c; Bruker Advanced X-ray Solutions: Madison, WI, USA, 2012.
- SADABS; Version 2.11; Bruker Advanced X-ray Solutions: Madison, WI, USA, 2000.
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Roisnel, T. CRYSCALC (Crystallographic Calculations), Rennes, France. Available online: www.cdifx.univ-rennes1.fr/cryscalc (accessed on 6 June 2023).
- te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comp. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- ADF 2023.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available online: https://www.scm.com (accessed on 6 June 2023).
- Zhang, Y.; Yang, W. Comment on “Generalized Gradient Approximation Made Simple”. Phys. Rev. Lett. 1998, 80, 890. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Van Lenthe, E.; Baerends, E.J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 2003, 24, 1142–1156. [Google Scholar] [CrossRef] [PubMed]
- van Lenthe, E.; Ehlers, A.; Baerends, E.-J. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 1999, 110, 8943–8953. [Google Scholar] [CrossRef]
- Pye, C.C.; Ziegler, T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor. Chem. Acc. 1999, 101, 396–408. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Davydova, M.P.; Berezin, A.S.; Ryzhikov, M.R.; Samsonenko, D.G. Dicopper(I) Paddle-Wheel Complexes with Thermally Activated Delayed Fluorescence Adjusted by Ancillary Ligands. Inorg. Chem. 2020, 59, 10699–10706. [Google Scholar] [CrossRef]
- Gushchin, A.L.; Laricheva, Y.A.; Sokolov, M.N.; Llusar, R. Tri- and tetranuclear molybdenum and tungsten chalcogenide clusters: On the way to new materials and catalysts. Russ. Chem. Rev. 2018, 87, 670–706. [Google Scholar] [CrossRef]
- Briois, V.; Fonda, E.; Belin, S.; Barthe, L.; La Fontaine, C.; Langlois, F.; Ribbens, B.; Villain, F. SAMBA: The 4–40 keV X-ray absorption spectroscopy beamline at SOLEIL. In UVX 2010; EDP Sciences: Les Ulis, France, 2011; pp. 41–47. [Google Scholar] [CrossRef] [Green Version]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Ankudinov, A.L.; Ravel, B.; Rehr, J.J.; Conradson, S.D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576. [Google Scholar] [CrossRef] [Green Version]
Anion/Charge | 7− | 6− | 5− | 4− |
---|---|---|---|---|
[Re4Mo2Se8(CN)6]n | 25 | 24 | 23 | 22 |
[Re3Mo3S8(CN)6]n | 24 | 23 | 22 | 21 |
M–M | M–Q | M–C | Ref. | |
---|---|---|---|---|
[Re4Mo2S8(CN)6]4− (296 K) | 2.615(1) | 2.427(2) | 2.15(1) | This work |
[Re4Mo2Se8(CN)6]4− (150 K) | 2.646(14) | 2.540(9) | 2.16(1) | [24] |
[Re3Mo3S8(CN)6]5− (296 K) | 2.623(2) | 2.430(4) | 2.15(3) | This work |
[Re3Mo3Se8(CN)6]5− (150 K) | 2.6494(9) | 2.5464(9) | 2.14(2) | [24] |
Anion/CSE Number | 21/22 | 22/23 | 23/24 |
---|---|---|---|
[Re6S8(CN)6](n−1)−/n− (CH3CN) [27] | - | - | +0.60 |
[Re4Mo2S8(CN)6](n−1)−/n− (CH3CN) | - | −0.303 | −1.186 |
[Re4Mo2Se8(CN)6](n−1)−/n− (CH3CN) [24] | - | −0.476 | −1.294 |
[Re3Mo3S8(CN)6](n−1)−/n− (Acetone) | −0.018 | −0.904 | −1.332 |
[Re3Mo3Se8(CN)6](n−1)−/n− (CH3CN) [24] | −0.202 | −0.870 | −1.270 |
fac-[Re3Mo3S8(CN)6]5− | mer-[Re3Mo3S8(CN)6]5− | SC XRD | |||
---|---|---|---|---|---|
EXAFS | DFT | EXAFS | DFT | ||
RMo-Mo | 2.75(2) | <2.695> | 2.741(3) | <2.743> | |
RMo-Re | 2.630(6) | <2.658> | 2.642(5) | <2.649> | |
RRe-Re | 2.608(4) | <2.633> | 2.612(6) | <2.611> | |
RM-M | <2.655> | <2.661> | <2.659> | <2.659> | 2.623(2) |
cis-[Re4Mo2S8(CN)6]4− | trans-[Re4Mo2S8(CN)6]4− | SC XRD | |||
---|---|---|---|---|---|
EXAFS | DFT | EXAFS | DFT | ||
RMo-Mo | 2.80(3) | <2.800> | – | – | |
RMo-Re | 2.644(3) | <2.650> | 2.644(3) | <2.675> | |
RRe-Re | 2.593(4) | <2.618> | 2.592(4) | <2.589> | |
RM-M | <2.635> | <2.649> | <2.627> | <2.646> | 2.597(1)–2.623(1) <2.615> |
4 | 5 | |
---|---|---|
Empirical formula | C70H148Mo2.13N10O2Re3.87S8 | C6H16K5Mo3.06N6O8Re2.94S8 |
Formula weight | 2343.31 | 1593.39 |
Temperature (K) | 296(2) | 296(2) |
Crystal size (mm3) | 0.17 × 0.12 × 0.07 | 0.06 × 0.05 × 0.03 |
Crystal system | Monoclinic | Cubic |
Space group | P21/c | Fm͞3m |
Z | 2 | 4 |
Unit-cell dimensions | ||
a (Å) | 13.784(2) | 15.296(3) |
b (Å) | 17.069(3) | 15.296(3) |
c (Å) | 20.812(4) | 15.296(3) |
α (°) | 90 | 90 |
β (°) | 102.107(5) | 90 |
γ (°) | 90 | 90 |
Volume (Å3) | 4787.7(14) | 3579(2) |
Dcalcd. (g∙cm−3) | 1.625 | 2.957 |
μ (mm−1) | 5.358 | 12.036 |
θ range (°) | 1.925–27.547 | 3.768–27.386 |
Indices ranges | −17 ≤ h ≤ 17 0 ≤ k ≤ 22 0 ≤ l ≤ 26 | −19 ≤ h ≤ 8 −19 ≤ k ≤ 8 −12 ≤ l ≤ 16 |
Reflections collected | 10,988 | 2000 |
Unique reflections | 10,988 (Rint = 0.082) | 249 (Rint = 0.0630) |
Observed reflections | 6548 [I > 2σ(I)] | 209 [I > 2σ(I)] |
Parameters refined/restraints | 436/96 | 24/0 |
R[F2 > 2σ(F2)] | R1 = 0.0429 wR2 = 0.1039 | R1 = 0.0336 wR2 = 0.0953 |
R(F2) (all data) | R1 = 0.1051 wR2 = 0.1302 | R1 = 0.0399 wR2 = 0.0992 |
Goodness-of-fit on F2 | 0.999 | 1.194 |
Δρmax, Δρmin (e∙Å−3) | 1.139, −1.635 | 1.167, −2.842 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lappi, T.I.; Gayfulin, Y.M.; Renaud, A.; Prestipino, C.; Lemoine, P.; Yanshole, V.V.; Muravieva, V.K.; Cordier, S.; Naumov, N.G. From K6[Re6−xMoxS8(CN)5] Solid Solution to Individual Cluster Complexes: Separation and Investigation of [Re4Mo2S8(CN)6]n− and [Re3Mo3S8(CN)6]n− Heterometallic Clusters. Molecules 2023, 28, 5875. https://doi.org/10.3390/molecules28155875
Lappi TI, Gayfulin YM, Renaud A, Prestipino C, Lemoine P, Yanshole VV, Muravieva VK, Cordier S, Naumov NG. From K6[Re6−xMoxS8(CN)5] Solid Solution to Individual Cluster Complexes: Separation and Investigation of [Re4Mo2S8(CN)6]n− and [Re3Mo3S8(CN)6]n− Heterometallic Clusters. Molecules. 2023; 28(15):5875. https://doi.org/10.3390/molecules28155875
Chicago/Turabian StyleLappi, Tatiana I., Yakov M. Gayfulin, Adèle Renaud, Carmelo Prestipino, Pierric Lemoine, Vadim V. Yanshole, Viktoria K. Muravieva, Stéphane Cordier, and Nikolai G. Naumov. 2023. "From K6[Re6−xMoxS8(CN)5] Solid Solution to Individual Cluster Complexes: Separation and Investigation of [Re4Mo2S8(CN)6]n− and [Re3Mo3S8(CN)6]n− Heterometallic Clusters" Molecules 28, no. 15: 5875. https://doi.org/10.3390/molecules28155875
APA StyleLappi, T. I., Gayfulin, Y. M., Renaud, A., Prestipino, C., Lemoine, P., Yanshole, V. V., Muravieva, V. K., Cordier, S., & Naumov, N. G. (2023). From K6[Re6−xMoxS8(CN)5] Solid Solution to Individual Cluster Complexes: Separation and Investigation of [Re4Mo2S8(CN)6]n− and [Re3Mo3S8(CN)6]n− Heterometallic Clusters. Molecules, 28(15), 5875. https://doi.org/10.3390/molecules28155875