Wild Asparagus Shoots Constitute a Healthy Source of Bioactive Compounds
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Characterization
2.1.1. Moisture Content
2.1.2. Vitamin C Content
2.1.3. Total Phenolic Compound and Flavonoid Contents
2.1.4. Antioxidant Activity
2.1.5. Phenolic Compound Profiles
2.2. Antitumor Activity
3. Discussion
3.1. Vitamin C Content
3.2. Phenolic Compound Content
3.3. Antioxidant Activity
3.4. Antiproliferative Activity of the Ethanol Extracts of Asparagus Shoots on HT-29 Cancer Cells
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Samples
4.3. Extraction of Phenolic Compounds from Asparagus Species
4.4. Characterization of Phenolic Compounds by HPLC-DAD
4.5. Characterization of Phenolic Compounds by LC-MS
4.6. Determination of Total Phenolic Content
4.7. Determination of Total Flavonoid Content
4.8. Extraction and Quantification of Vitamin C
4.9. Antioxidant Activity
4.10. Antitumor Assay
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mokria, M.; Gebretsadik, Y.; Birhane, E.; McMullin, S.; Ngethe, E.; Hadgu, K.M.; Hagazi, N.; Tewolde-Berhan, S. Nutritional and ecoclimatic importance of indigenous and naturalized wild edible plant species in Ethiopia. Food Chem. Mol. Sci. 2022, 4, 100084. [Google Scholar] [CrossRef] [PubMed]
- Schunko, C.; Li, X.; Klappoth, B.; Lesi, F.; Porcher, V.; Porcuna-Ferrer, A.; Reyes-García, V. Local communities’ perceptions of wild edible plant and mushroom change: A systematic review. Glob. Food Secur. 2022, 32, 100601. [Google Scholar] [CrossRef]
- Adouni, K.; Chahdoura, H.; Mosbah, H.; Santos-Buelga, C.; González-Paramás, A.M.; Cuidad-Mulero, M.; Fernandes, Â.; Calhelha, R.C.; Morales, P.; Flamini, G.; et al. Revalorization of wild Asparagus stipularis Forssk. as a traditional vegetable with nutritional and functional properties. Food Funct. 2018, 9, 1578–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafiriou, P.; Mamolos, A.P.; Menexes, G.C.; Siomos, A.S.; Tsatsarelis, C.A.; Kalburtji, K.L. Analysis of energy flow and greenhouse gas emissions in organic, integrated and conventional cultivation of white asparagus by PCA and HCA: Cases in Greece. J. Clean. Prod. 2012, 29, 20–27. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, N.; Liu, H.; Li, Z.; Lu, L.; Wang, C. The bioactive compounds and biological functions of Asparagus officinalis L.—A review. J. Funct. Foods 2020, 65, 103727. [Google Scholar] [CrossRef]
- Negi, J.S.; Singh, P.; Joshi, G.P.; Rawat, M.S.; Bisht, V.K. Chemical constituents of Asparagus. Pharmacogn. Rev. 2010, 4, 215. [Google Scholar] [CrossRef] [Green Version]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, O.T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. Fundam. Mol. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Di Maro, A.; Pacifico, S.; Fiorentino, A.; Galasso, S.; Gallicchio, M.; Guida, V.; Severino, V.; Monaco, P.; Parente, A. Raviscanina wild asparagus (Asparagus acutifolius L.): A nutritionally valuable crop with antioxidant and antiproliferative properties. Food Res. Int. 2013, 53, 180–188. [Google Scholar] [CrossRef]
- Ferrara, L.; Dosi, R.; Di Maro, A.; Guida, V.; Cefarelli, G.; Pacifico, S.; Mastellone, C.; Fiorentino, A.; Rosati, A.; Parente, A. Nutritional values, metabolic profile and radical scavenging capacities of wild asparagus (A. acutifolius L.). J. Food Compos. Anal. 2011, 24, 326–333. [Google Scholar] [CrossRef]
- Hamdi, A.; Jaramillo-Carmona, S.; Rodríguez-Arcos, R.; Jiménez-Araujo, A.; Lachaal, M.; Karray-Bouraoui, N.; Guillén-Bejarano, R. Phytochemical characterization and bioactivity of Asparagus acutifolius: A focus on antioxidant, cytotoxic, lipase inhibitory and antimicrobial activities. Molecules 2021, 26, 3328. [Google Scholar] [CrossRef] [PubMed]
- Altundag, E.M.; Gençalp, D.; Özbilenler, C.; Toprak, K.; Kerküklü, N. In vitro antioxidant, anti-inflammatory and anti-cancer activities of methanolic extract of Asparagus horridus grows in North Cyprus Kuzey Kıbrıs da yetişen Asparagus horridus metanolik ekstraktının in-vitro antioksidan, anti-enflamatuar ve anti-kanser aktivitesi. Turk. J. Biochem. 2020, 45, 365–372. [Google Scholar] [CrossRef]
- Bremner, P.; Rivera, D.; Calzado, M.A.; Obón, C.; Inocencio, C.; Beckwith, C.; Fiebich, B.L.; Muñoz, E.; Heinrich, M. Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J. Ethnopharmacol. 2009, 124, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Palfi, M.; Jurković, Z.; Ćosić, J.; Tomić-Obrdalj, H.; Jurković, V.; Knežević, N.; Vrandečić, K. Total polyphenol content and antioxidant activity of wild and cultivated asparagus in Croatia. Poljoprivreda 2017, 23, 56–62. [Google Scholar] [CrossRef]
- Englard, S.; Seifter, S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 1986, 6, 365–406. [Google Scholar] [CrossRef]
- Padh, H. Cellular functions of ascorbic acid. Biochem. Cell Biol. 1990, 6, 1166–1173. [Google Scholar] [CrossRef]
- Esteve, M.J.; Farre, R.; Frigola, A.; Clemente, G. Changes in ascorbic acid content of green asparagus during the harvesting period and storage. J. Agric. Food Chem. 1995, 43, 2058–2061. [Google Scholar] [CrossRef]
- Moreno, R.; Castro, P.; Rubio, J.; Rodriguez-Arcos, R.; Gil, J. Desarrollo de una nueva variedad de espárrago octo-ploide ’HT801’. Mejor. Genética Veg. 2012, 60, 105–108. [Google Scholar]
- Martins, D.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet”. Food Chem. 2011, 125, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.; Zimmermann, N.; McVicar, T.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E. Present and future Kö-ppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Stavroula, M.; Rahul, J. Mediterranean climate affects the biosynthesis of secondary metabolites in common medicinal plants. Int. J. Bus. Syst. Res. 2016, 6, 17–28. [Google Scholar]
- Maeda, T.; Honda, K.; Sonoda, T.; Motoki, S.; Inoue, K.; Suzuki, T.; Oosawa, K.; Suzuki, M. Light condition influences rutin and polyphenol contents in asparagus spears in the mother-fern culture system during the summer-autumn harvest. J. Jpn. Soc. Hortic. Sci. 2010, 79, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Medina-Medrano, J.R.; Almaraz-Abarca, N.; González-Elizondo, M.S.; Uribe-Soto, J.N.; González-Valdez, L.S.; Herrera-Arrieta, Y. Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Bot. Stud. 2015, 56, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, C.C.; Rodrigues, R.C.; Mercali, G.D.; Rodrigues, E. New insights into non-extractable phenolic compounds analysis. Food Res. Int. 2022, 157, 111487. [Google Scholar] [CrossRef] [PubMed]
- Motoki, S.; Kitazawa, H.; Maeda, T.; Suzuki, T.; Chiji, H.; Nishihara, E.; Shinohara, Y. Effects of various asparagus production methods on rutin and protodioscin contents in spears and cladophylls. Biosci. Biotechnol. Biochem. 2012, 76, 1047–1050. [Google Scholar] [CrossRef]
- Frutos, M.J.; Rincón-frutos, L.; Valero-cases, E. Chapter 2.14: Rutin. In Nonvitamin and Nonmineral Nutritional Suplements; Nabavi, S.M., Silva, A.S., Eds.; Charlotte Cockle: London, UK, 2019; pp. 111–117. [Google Scholar] [CrossRef]
- Dehshiri, M.M.; Aghamollaei, H.; Zarini, M.; Nabavi, S.M.; Mirzaei, M.; Loizzo, M.R.; Nabavi, S.F. Antioxidant activity of different parts of Tetrataenium lasiopetalum. Pharm. Biol. 2013, 51, 1081–1085. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, H.; Hosein-Farzaei, M.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, S1700–S1741. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Yuan, F.; Wang, N.; Gao, Y.; Huang, Y. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. J. Food Sci. Technol. 2015, 52, 2690–2700. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, R.; Jaramillo, S.; Rodríguez, G.; Espejo, J.A.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A.; Jiménez, A. Antioxidant Activity of Ethanolic Extracts from Several Asparagus Cultivars. J. Agric. Food Chem. 2005, 53, 5212–5217. [Google Scholar] [CrossRef]
- Sun, T.; Powers, J.R.; Tang, J. Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chem. 2007, 105, 101–106. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Flaczyk, E.; Rudzińska, M.; Kmiecik, D. Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci. 2014, 97, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J.C.; Salas-Reyes, M.; Jiménez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activi-ties of Sonoran propolis. Food Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Makris, D.P.; Rossiter, J.T. Domestic Processing of Onion Bulbs (Allium cepa) and Asparagus Spears (Asparagus officinalis): Effect on Flavonol Content and Antioxidant Status. J. Agric. Food Chem. 2001, 49, 3216–3222. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Kobus-Cisowska, J.; Kmiecik, D.; Gramza-Michałowska, A.; Golczak, D.; Korczak, J. Antiradical capacity and polyphenol composition of asparagus spears varieties cultivated under diff erent sunlight conditions. Acta Sci. Pol. Technol. Aliment. 2016, 15, 267–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathiraja, D.; Wanasundara, J.P.D.; Elessawy, F.M.; Purves, R.W.; Vandenberg, A.; Shand, P.J. Water-soluble phenolic compounds and their putative antioxidant activities in the seed coats from different lentil (Lens culinaris) genotypes. Food Chem. 2023, 407, 135145. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.L.; Cho, N.; Lee, T.H.; Ahn, S.J.; Lee, D.J.; Ku, Y.G. Bioactive substances, antioxidant enzymes, and anti-cancer activity of asparagus ‘atlas’ grown in an open field and rain-shelter house system. Hortic. Environ. Biotechnol. 2022, 63, 809–821. [Google Scholar] [CrossRef]
- Bousserouel, S.; Le Grandois, J.; Gossé, F.; Werner, D.; Barth, S.W.; Marchioni, E.; Marescaux, J.; Raul, F. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcin-ogenesis in preclinical model. Int. J. Oncol. 2013, 43, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, S.; Muriana, F.J.G.; Guillen, R.; Jimenez-Araujo, A.; Rodríguez-Arcos, R.; López, S. Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells. J. Funct. Foods 2016, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, J.; Fan, Y.; Zhao, Z.; Paraghamian, S.E.; Hawkins, G.M.; Buckingham, L.; O’Donnell, J.; Hao, T.; Suo, H.; et al. Asparagus officinalis combined with paclitaxel exhibited synergistic anti-tumor activity in paclitaxel-sensitive and-resistant ovarian cancer cells. J. Cancer Res. Clin. Oncol. 2022, 149, 3871–3883. [Google Scholar] [CrossRef]
- Khan, K.M.; Nahar, L.; Mannan, A.; Arfan, M.; Khan, G.A.; Al-Groshi, A.; Evans, A.; Dempster, N.M.; Ismail, F.M.D.; Sarker, S.D. Liquid chromatography mass spectrometry analysis and cytotoxicity of Asparagus adscendens roots against human cancer cell lines. Pharmacogn. Mag. 2017, 13, S890–S894. [Google Scholar] [CrossRef]
- Liu, W.; Ning, R.; Chen, R.N.; Huang, X.F.; Dai, Q.S.; Hu, J.H.; Wang, Y.W.; Wu, L.L.; Xiong, J.; Hu, G.; et al. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells. Mol. Carcinog. 2015, 55, 440–457. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, A.; Jaramillo-Carmona, S.; Srairi Beji, R.; Tej, R.; Zaouia, S.; Rodríguez-Arcos, R.; Jiménez-Araujo, A.; Kasri, M.; Lachaal, M.; Karray Bouraoui, N.; et al. The phytochemical and bioactivity profiles of wild Asparagus albus L. Food Res. Int. 2017, 99, 720–729. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, B.; Yan, J.; Zhao, F.; Xiao, J.; Yao, L.; Zhao, B.; Huang, Y. In vitro antioxidant and antitumor activities of polysaccharides extracted from Asparagus officinalis. Carbohydr. Polym. 2012, 87, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Jia, G.; Wang, X.; Liu, Y.; Li, Z.; Bao, H.; Guo, Q.; Wang, C.; Xiao, D. Fractionation, structural characteris-tics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin. Carbohydr. Polym. 2021, 256, 117514. [Google Scholar] [CrossRef] [PubMed]
- Chileh-Chelh, T.; Lyashenko, S.; Lahlou, A.; Belarbi, E.H.; Rincón-Cervera, M.Á.; Rodríguez-García, I.; Urrestarazu-Gavilán, M.; López-Ruiz, R.; Guil-Guerrero, J.L. Buglossoides spp. seeds, a land source of health-promoting n-3 PUFA and phenolic compounds. Food Res. Int. 2022, 157, 111421. [Google Scholar] [CrossRef]
- Kim, R. Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem. Biophys. Res. Commun. 2005, 333, 336–343. [Google Scholar] [CrossRef]
- Lyashenko, S.; Fabrikov, D.; González-Fernández, M.J.; Gómez-Mercado, F.; López-Ruiz, R.; Fedorov, A.; Guil-Guerrero, J.L. Phenolic composition and in vitro antiproliferative activity of Borago spp. seed extracts on HT-29 cancer cells. Food Biosci. 2021, 42, 101043. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zou, Y.; Lu, Y.; Wei, D. Antioxidant activity of flavonoid-rich extracts of Hypericum perforatum L. in vitro. J. Agric. Food Chem. 2004, 52, 5032–5039. [Google Scholar] [CrossRef]
- Volden, J.; Bengtsson, G.B.; Wicklund, T. Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem. 2009, 112, 967–976. [Google Scholar] [CrossRef]
- Forbes-Hernández, T.Y.; Giampieri, F.; Gasparrini, M.; Afrin, S.; Mazzoni, L.; Cordero, M.D.; Mezzetti, B.; Quiles, J.L.; Battino, M. Lipid accumulation in HepG2 cells is attenuated by strawberry extract through AMPK activation. Nutrients 2017, 9, 621. [Google Scholar] [CrossRef] [Green Version]
- Skenderidis, P.; Kerasioti, E.; Karkanta, E.; Stagos, D.; Kouretas, D.; Petrotos, K.; Hadjichristodoulou, C.; Tsakalof, A. Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicol. Rep. 2018, 5, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Sergio, L.; Gonnella, M.; Renna, M.; Linsalata, V.; Gatto, M.A.; Boari, F.; Di Venere, D. Biochemical traits of aspara-gus cultivars and quality changes in two differently coloured genotypes during cold storage. LWT 2019, 101, 427–434. [Google Scholar] [CrossRef]
- Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; González-Paramás, A.M.; Santos-Buelga, C.; Mezzetti, B.; Quiles, J.L.; Battino, M.; Giampieri, F.; et al. Strawberry (cv. Romina) methanolic extract and anthocyanin-enriched fraction improve lipid profile and antioxidant status in HepG2 cells. Int. J. Mol. Sci. 2017, 18, 1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahlou, A.; Chileh-Chelh, T.; Lyashenko, S.; Rincón-Cervera, M.Á.; Rodríguez-García, I.; López-Ruiz, R.; Urrestarazu, M.; Guil-Guerrero, J.L. Arecaceae fruits: Fatty acids, phenolic compounds and in vitro antitumor activity. Food Biosci. 2022, 50, 102181. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; González-Fernández, M.J.; Guil-Guerrero, J.L. Various acylglycerols from common oils exert different antitumor activities on colorectal cancer cells. Nutr. Cancer 2016, 68, 518–529. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; Romero-González, R.; González-Fernández, M.J.; Guil-Guerrero, J.L. Phytochemical composition and in vitro anti-tumour activities of selected tomato varieties. J. Sci. Food Agric. 2017, 97, 488–496. [Google Scholar] [CrossRef]
- Ayhan, N.K.; Rosenberg, E. Development of comprehensive liquid chromatography with diode array and mass spectrometric detection for the characterization of (poly-) phenolic and flavonoid compounds and application to asparagus. Food Chem. 2021, 354, 129518. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Ferreira, I.C.; Carvalho, A.M.; Santos-Buelga, C. Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chem. 2011, 127, 169–173. [Google Scholar] [CrossRef]
- Chen, X.H.; Ma, L.H.; Dong, Y.W.; Song, H.; Pu, Y.; Zhou, Q.Y. Evaluation of the differences in phenolic compounds and antioxidant activities of five green asparagus (Asparagus officinalis L.) cultivars. Qual. Assur. Saf. Crops Foods 2017, 9, 479–487. [Google Scholar] [CrossRef]
- Eum, H.L.; Yi, T.G.; Hong, S.J.; Park, N.I. Variations of bioactive compound contents and antioxidant capacity of asparagus seedlings in 23 varieties. Hortic. Sci. Technol. 2020, 38, 291–302. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szymanowska, D.; Szczepaniak, O.M.; Gramza-Michałowska, A.; Kmiecik, D.; Kulczyński, B.; Szulc, P.; Górnaś, P. Composition of polyphenols of asparagus spears (Asparagus officinalis) and their antioxidant potential. Ciência Rural 2019, 49. [Google Scholar] [CrossRef] [Green Version]
- Ku, Y.G.; Kang, D.H.; Lee, C.K.; Lee, S.Y.; Ryu, C.; Kim, D.E.; Polovka, M.; Namieśnik, J.; Gorinstein, S. Influence of different cultivation systems on bioactivity of asparagus. Food Chem. 2018, 244, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Yoo, K.S.; Patil, B.S. Development of a rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. J. Food Sci. 2010, 75, C703–C709. [Google Scholar] [CrossRef] [PubMed]
- Nindo, C.; Sun, T.; Wang, S.W.; Tang, J.; Powers, J.R. Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis L.). LWT-Food Sci. Technol. 2003, 36, 507–516. [Google Scholar] [CrossRef]
- Noperi-Mosqueda, L.C.; López-Moreno, F.J.; Navarro-León, E.; Sánchez, E.; Blasco, B.; Moreno, D.A.; Soriano, T.; Ruiz, J.M. Effects of asparagus decline on nutrients and phenolic compounds, spear quality, and allelopathy. Sci. Hortic. 2020, 261, 109029. [Google Scholar] [CrossRef]
- Poljuha, D.; Šola, I.; Bilić, J.; Dudaš, S.; Bilušić, T.; Markić, J.; Rusak, G. Phenolic composition, antioxidant capacity, energy content and gastrointestinal stability of Croatian wild edible plants. Eur. Food Res. Technol. 2015, 241, 573–585. [Google Scholar] [CrossRef]
- Redondo-Cuenca, A.; García-Alonso, A.; Rodríguez-Arcos, R.; Castro, I.; Alba, C.; Rodríguez, J.M.; Goñi, I. Nutritional composition of green asparagus (Asparagus officinalis L.), edible part and by-products, and assessment of their effect on the growth of human gut-associated bacteria. Food Res. Int. 2023, 163, 112284. [Google Scholar] [CrossRef]
- Rodríguez, R.; Jaramillo, S.; Guillén, R.; Jiménez, A.; Fernández-Bolaños, J.; Heredia, A. Cell wall phenolics of white and green asparagus. J. Sci. Food Agric. 2005, 85, 971–978. [Google Scholar] [CrossRef]
- Salvatore, S.; Pellegrini, N.; Brenna, O.V.; Del Rio, D.; Frasca, G.; Brighenti, F.; Tumino, R. Antioxidant characterization of some Sicilian edible wild greens. J. Agric. Food Chem. 2005, 53, 9465–9471. [Google Scholar] [CrossRef]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Di Venere, D. Bioactive phenolics and antioxidant capacity of some wild edible greens as affected by different cooking treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Sergio, L.; Boari, F.; Di Venere, D.; Gonnella, M.; Cantore, V.; Renna, M. Quality evaluation of wild and cultivated asparagus: A comparison between raw and steamed spears. Agriculture 2021, 11, 1213. [Google Scholar] [CrossRef]
- Slatnar, A.; Petkovsek, M.M.; Stampar, F.; Veberic, R.; Horvat, J.; Jakse, M.; Sircelj, H. Game of tones: Sugars, organic acids, and phenolics in green and purple asparagus (Asparagus officinalis L.) cultivars. Turk. J. Agric. For. 2018, 42, 55–66. [Google Scholar] [CrossRef]
- Solana, M.; Boschiero, I.; Dall’Acqua, S.; Bertucco, A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- Wang, M.; Tadmor, Y.; Wu, Q.L.; Chin, C.K.; Garrison, S.A.; Simon, J.E. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. J. Agric. Food Chem. 2003, 51, 6132–6136. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Su, Y.; Liu, D.; Ye, X. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus. J. Food Sci. 2011, 76, S126–S132. [Google Scholar] [CrossRef]
- Yu, Q.; Li, J.; Fan, L. Effect of drying methods on the microstructure, bioactivity substances, and antityrosinase activity of asparagus stems. J. Agric. Food Chem. 2019, 67, 1537–1545. [Google Scholar] [CrossRef]
Samples/Codes | Moisture g/100 g | Antioxidant Activity | Vitamin C mg/100 g fw | TPC mg GAE/100 g fw | TFC mg QE/100 g fw | |
---|---|---|---|---|---|---|
DPPH mmol TE/100 g dw | ABTS mmol TE/100 g dw | |||||
A. acutifolius | ||||||
AC1 | 81.4 ± 0.0 j | 3.13 ± 0.01 i | 1.97 ± 0.04 k | 27.1 ± 4.1 a | 320.2 ± 4.6 f | 189.2 ± 19.5 efg |
AC2 | 84.6 ± 0.3 gh | 2.07 ± 0.05 l | 2.58 ± 0.18 fgh | 13.4 ± 2.9 cde | 398.5 ± 24.8 cd | 306.9 ± 24.8 bc |
AC3 | 85.2 ± 0.3 fg | 4.20 ± 0.01 e | 2.87 ± 0.11 de | 9.5 ± 1.5 e | 398.3 ± 8.8 cd | 334.2 ± 25.0 b |
AC4 | 86.9 ± 0.3 de | 2.55 ± 0.05 j | 2.80 ± 0.03 def | 13.3 ± 1.0 cde | 294.4 ± 19.1 fg | 200.1 ± 27.7 e |
Mean ± SD | 84.5 ± 2.3 B | 2.99 ± 0.92 B | 2.56 ± 0.41 B | 15.8 ± 7.7 A | 352.9 ± 53.6 A | 257.6 ± 73.7 AB |
A. albus | ||||||
AL1 | 88.0 ± 0.2 bcd | 3.49 ± 0.02 g | 2.80 ± 0.06 def | 18.7 ± 6.7 abcd | 289.2 ± 4.3 g | 159.2 ± 8.6 fgh |
AL2 | 88.1 ± 0.2 bcd | 0.98 ± 0.03 m | 2.02 ± 0.11 jk | 13.5 ± 1.0 cde | 238.0 ± 1.7 h | 58.2 ± 6.8 k |
AL3 | 86.4 ± 1.2 ef | 0.72 ± 0.02 n | 2.28 ± 0.06 ij | 22.2 ± 7.1 abc | 413.2 ± 4.0 cd | 276.3 ± 7.5 cd |
AL4 | 89.0 ± 0.5 b | 4.17 ± 0.03 e | 2.94 ± 0.05 de | 9.9 ± 2.1 de | 245.9 ± 6.5 h | 168.2 ± 5.1 efgh |
AL5 | 88.8 ± 0.4 bc | 3.90 ± 0.16 f | 3.78 ± 0.06 c | 18.0 ± 2.5 abcde | 515.2 ± 21.7 a | 304.9 ± 34.5 bcd |
Mean ± SD | 88.1 ± 1.0 AB | 2.7 ± 1.7 B | 2.8 ± 0.7 B | 16.5 ± 4.8 A | 340.3 ± 120.3 A | 193.4 ± 99.2 AB |
A. aphyllus | ||||||
AP1 | 83.7 ± 0.9 hi | 3.05 ± 0.01 i | 2.30 ± 0.03 hi | 13.8 ± 3.6 cde | 300.6 ± 2.1 fg | 56.9 ± 5.5 k |
AP2 | 85.3 ± 0.5 fg | 4.57 ± 0.02 d | 2.79 ± 0.05 def | 13.5 ± 2.2 cde | 360.6 ± 15.7 e | 92.4 ± 3.5 jk |
AP3 | 86.5 ± 1.2 ef | 4.67 ± 0.01 c | 3.02 ± 0.11 d | 24.2 ± 5.3 ab | 355.3 ± 9.5 e | 139.1 ± 3.8 hi |
Mean ± SD | 85.2 ± 1.4 B | 4.10 ± 0.91 AB | 2.70 ± 0.37 B | 17.2 ± 6.1 A | 338.8 ± 33.2 A | 96.1 ± 41.2 B |
A. horridus | ||||||
H1 | 80.7 ± 1.4 j | 3.48 ± 0.01 g | 1.92 ± 0.01 k | 11.6 ± 5.3 de | 468.2 ± 0.5 b | 151.0 ± 14.6 gh |
H2 | 84.0 ± 0.7 ghi | 2.33 ± 0.01 k | 2.42 ± 0.07 ghi | 21.1 ± 2.8 abc | 362.3 ± 10.7 e | 128.7 ± 2.3 hij |
H3 | 83.3 ± 1.1 i | 3.03 ± 0.01 i | 1.86 ± 0.02 k | 15.3 ± 0.6 bcde | 418.5 ± 19.8 cd | 135.5 ± 2.4 hi |
H4 | 87.5 ± 0.1 cde | 3.49 ± 0.01 g | 2.67 ± 0.10 efg | 11.1 ± 4.8 de | 423.1 ± 12.0 c | 195.4 ± 19.5 ef |
H5 | 87.3 ± 0.5 de | 3.30 ± 0.01 h | 3.05 ± 0.02 d | 22.0 ± 7.1 abc | 319.7 ± 20.7 f | 107.4 ± 18.0 ij |
Mean ± SD | 84.6 ± 2.9 B | 3.13 ± 0.48 B | 2.38 ± 0.50 B | 16.2 ± 5.5 A | 398.4 ± 57.8 A | 143.6 ± 32.9 B |
A. officinalis | ||||||
O1 | 91.1 ± 0.2 a | 5.81 ± 0.03 b | 4.23 ± 0.49 b | 21.8 ± 7.3 abc | 393.0 ± 17.7 d | 265.7 ± 28.0 d |
O2 | 90.9 ± 0.3 a | 6.07 ± 0.09 a | 5.05 ± 0.03 a | 23.5 ± 4.5 ab | 412.1 ± 9.4 cd | 430.8 ± 38.6 a |
Mean ± SD | 91.0 ± 0.1 A | 5.94 ± 0.18 A | 4.64 ± 0.58 A | 22.7 ± 1.2 A | 402.6 ± 13.5 A | 348.3 ± 116.7 A |
α-Tocopherol | - | 17.54 ± 0.57 | 8.78 ± 0.45 | - | - | - |
Ascorbic acid | - | 23.34 ± 1.43 | 10.43 ± 0.16 | - | - | - |
Caffeic acid | - | 22.18 ± 0.32 | 10.34 ± 0.29 | - | - | - |
Samples/ Codes | Phenolic Compounds (mg/100 g dw) | |||||
---|---|---|---|---|---|---|
Asterin 4 | Rutin | Nicotiflorin 5 | Narcissin 5 | Quercetin | Total Identified Phenolics | |
A. acutifolius | ||||||
AC1 | n.d. | 303.6 ± 30.5 e | 6.6 ± 0.2 ij | 4.7 ± 0.5 fg | 14.4 ± 0.6 cd | 329.3 ± 30.5 de |
AC2 | 81.6 ± 7.7 a | 310.5 ± 62.0 de | 12.4 ± 1.2 hi | 11.6 ± 0.5 cd | 11.3 ± 0.6 efg | 427.4 ± 62.5 c |
AC3 | 8.1 ± 1.6 ef | 618.9 ± 64.3 ab | 35.7 ± 3.6 de | 31.4 ± 4.7 b | 14.3 ± 1.0 cde | 708.4 ± 64.6 a |
AC4 | 10.0 ± 2.9 e | 292.9 ± 64.4 ef | 37.3 ± 5.7 d | 0.7 ± 0.1 h | 17.8 ± 0.9 ab | 358.7 ± 64.7 cd |
Mean | 33.2 ± 41.9 A | 381.5 ± 158.4 AB | 23.0 ± 15.8 A | 12.1 ± 13.6 A | 14.5 ± 2.7 A | 456.0 ± 173.2 A |
A. albus | ||||||
AL1 | 0.5 ± 0.2 g | 243.8 ± 61.2 efg | 11.8 ± 0.2 i | 2.7 ± 0.7 gh | 14.9 ± 0.7 bc | 273.7 ± 61.2 def |
AL2 | 2.0 ± 0.3 g | 397.6 ± 64.5 d | 7.9 ± 1.0 ij | 5.9 ± 0.1 fg | 14.4 ± 0.3 cd | 427.8 ± 64.5 c |
AL3 | n.d. | 278.7 ± 52.7 ef | 7.3 ± 0.9 ij | 3.1 ± 0.3 gh | 10.6 ± 1.0 fg | 299.7 ± 52.7 def |
AL4 | n.d. | 536.7 ± 55.4 bc | 12.9 ± 0.5 hi | 9.6 ± 1.5 cde | 14.5 ± 0.7 cd | 573.7 ± 55.4 b |
AL5 | n.d. | 28.4 ± 8.8 j | 2.3 ± 0.4 j | n.d.f | 3.9 ± 0.8 h | 34.6 ± 8.8 g |
Mean | 1.3 ± 1.1 A | 297.0 ± 189.0 ABC | 8.4 ± 4.2 A | 5.3 ± 3.2 A | 11.7 ± 4.7 A | 321.9 ± 200.0 AB |
A. aphyllus | ||||||
AP1 | 2.8 ± 0.7 fg | 62.3 ± 7.7 ij | 23.3 ± 4.7 fg | 12.3 ± 1.6 c | 11.6 ± 3.2 defg | 112.3 ± 10.4 g |
AP2 | 0.6 ± 0.2 g | 62.0 ± 7.5 ij | 9.3 ± 0.7 ij | 6.8 ± 0.9 ef | 12.8 ± 2.0 cdef | 91.5 ± 7.8 g |
AP3 | 22.3 ± 4.8 c | 54.3 ± 9.6 j | 19.6 ± 2.0 gh | 9.1 ± 0.4 de | 13.5 ± 0.3 cdef | 118.8 ± 10.9 g |
Mean | 8.6 ± 11.9 A | 59.5 ± 4.5 C | 17.4 ± 7.3 A | 9.4 ± 2.8 A | 12.6 ± 1.0 A | 107.5 ± 14.3 B |
A. horridus | ||||||
H1 | 35.4 ± 4.5 b | 228.6 ± 22.5 efgh | 69.4 ± 0.4 c | 0.4 ± 0.1 h | 13.1 ± 0.8 cdef | 346.9 ± 23.0 cd |
H2 | 18.2 ± 4.9 cd | 235.0 ± 21.9 efgh | 117.8 ± 3.0 b | 35.9 ± 3.4 a | 14.0 ± 3.1 cde | 420.9 ± 23.1 c |
H3 | n.d. | 148.2 ± 17.6 hi | 136.2 ± 11.3 a | n.d. | 11.9 ± 2.0 cdefg | 296.3 ± 21.0 def |
H4 | 9.7 ± 2.3 e | 171.2 ± 11.5 gh | 10.4 ± 1.6 i | 7.6 ± 0.9 ef | 12.9 ± 0.1 cdef | 211.8 ± 11.9 f |
H5 | n.d. | 207.3 ± 20.7 fgh | 28.5 ± 4.5 ef | 1.1 ± 0.3 h | 18.4 ± 0.5 a | 255.3 ± 21.2 ef |
Mean | 21.1 ± 13.1 A | 198.1 ± 37.4 BC | 72.5 ± 54.6 A | 11.3 ± 16.8 A | 14.1 ± 2.5 A | 306.2 ± 81.3 AB |
A. officinalis | ||||||
O1 | 8.4 ± 0.3 ef | 512.2 ± 64.5 c | 8.5 ± 2.1 ij | n.d. | 9.5 ± 1.7 g | 538.6 ± 64.6 b |
O2 | 16.1 ± 3.1 d | 636.3 ± 14.3 a | 8.7 ± 2.0 ij | n.d. | 11.0 ± 1.6 fg | 672.1 ± 14.9 a |
Mean | 12.3 ± 5.4 A | 574.3 ± 87.8 A | 8.6 ± 0.1 A | - | 10.3 ± 1.1 A | 605.4 ± 94.4 A |
Species/Location | Code | Geographical Coordinates | Date |
---|---|---|---|
Asparagus acutifolius (Raviscanina) | |||
Arroyo Blanco, Santisteban del Puerto, Jaén | AC1 | 38.336873, −3.342487 | 3 April 2022 |
Mirador de las Latas, Laguna de Fuente Piedra, Málaga | AC2 | 37.085181, −4.792719 | 27 March 2022 |
Umbría de las Yeseras, Navas de San Juan, Jaén | AC3 | 38.200012, −3.302768 | 18 April 2022 |
Rodalquilar, Níjar | AC4 | 36.849231, −2.043093 | 7 February 2022 |
Asparagus albus (White Asparagus) | |||
Puerto de Galíz, Cádiz | AL1 | 36.531646, −5.651272 | 27 March 2022 |
Sierra Cabrera, Almería | AL2 | 37.134984, −1.868005 | 3 January 2022 |
Sierra Morena, Jaén | AL3 | 38.333413, −3.301199 | 3 March 2022 |
El Toyo, Almería | AL4 | 36.847975, −2.332920 | 8 February 2022 |
Rodalquilar, Níjar | AL5 | 36.849231, −2.043093 | 5 March 2023 |
Asparagus aphyllus (Prickly Asparagus) | |||
Alcalá de los Gazules, Cádiz | AP1 | 36.493973, −5.692664 | 27 March 2022 |
Puerto del Bujeo, Cádiz | AP2 | 36.071977, −5.516156 | 26 March 2022 |
Bujeos Altos, Ubrique, Cádiz | AP3 | 36.625536, −5.454016 | 27 March 2022 |
Asparagus horridus (Esparraguera) | |||
Cabo de Gata, Almería | H1 | 36.723495, −2.183220 | 13 March 2022 |
Calahonda, Granada | H2 | 36.702389, −3.409915 | 13 March 2022 |
Enix, Almería | H3 | 36.875594, −2.609560 | 20 March 2022 |
Las Amoladeras Almería | H4 | 36.817729, −2.253485 | 13 March 2022 |
Rodalquilar, Níjar | H5 | 36.849231, −2.043093 | 28 February 2022 |
Asparagus officinalis (cultured Asparagus) | |||
Láchar, Granada | O1 | Purchased | 4 April 2022 |
Loja, Granada | O2 | Purchased | 4 October 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chileh Chelh, T.; Rincon-Cervera, M.A.; Gomez-Mercado, F.; Lopez-Ruiz, R.; Gallon-Bedoya, M.; Ezzaitouni, M.; Guil-Guerrero, J.L. Wild Asparagus Shoots Constitute a Healthy Source of Bioactive Compounds. Molecules 2023, 28, 5786. https://doi.org/10.3390/molecules28155786
Chileh Chelh T, Rincon-Cervera MA, Gomez-Mercado F, Lopez-Ruiz R, Gallon-Bedoya M, Ezzaitouni M, Guil-Guerrero JL. Wild Asparagus Shoots Constitute a Healthy Source of Bioactive Compounds. Molecules. 2023; 28(15):5786. https://doi.org/10.3390/molecules28155786
Chicago/Turabian StyleChileh Chelh, Tarik, Miguel A. Rincon-Cervera, Francisco Gomez-Mercado, Rosalia Lopez-Ruiz, Manuela Gallon-Bedoya, Mohamed Ezzaitouni, and Jose L. Guil-Guerrero. 2023. "Wild Asparagus Shoots Constitute a Healthy Source of Bioactive Compounds" Molecules 28, no. 15: 5786. https://doi.org/10.3390/molecules28155786
APA StyleChileh Chelh, T., Rincon-Cervera, M. A., Gomez-Mercado, F., Lopez-Ruiz, R., Gallon-Bedoya, M., Ezzaitouni, M., & Guil-Guerrero, J. L. (2023). Wild Asparagus Shoots Constitute a Healthy Source of Bioactive Compounds. Molecules, 28(15), 5786. https://doi.org/10.3390/molecules28155786