An Extremely Highly Sensitive ELISA in pg mL−1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Coupling Ratio in OTA–Protein Conjugates
2.2. Production of mAb against OTA
2.3. Optimization of ELISA Conditions
2.4. Sensitivity of the ELISA for OTA
2.5. Specificity of the ELISA
2.6. Sample Spiking and Extraction
2.7. Validation of the ELISA with HPLC-FLD
3. Materials and Methods
3.1. Reagents, Materials, and Apparatus
3.2. Buffers and Solutions
3.3. Synthesis of OTA–Protein Conjugates
3.4. Production of Monoclonal Antibody against OTA
3.5. Procedures of ELISA
3.6. Cross-Reactivity Testing
3.7. Sample Spiking and Extraction
3.8. HPLC-FLD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kokkonen, M.; Jestoi, M.; Rizzo, A. The effect of substrate on mycotoxin production of selected Penicillium strains. Int. J. Food Microbiol. 2005, 99, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. 2018, 112, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; Sharma, B.; Borah, R.; Haque, S. Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon 2020, 187, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, W.; Ma, Z.; Zhang, Q.; Li, H. The occurrence and contamination level of ochratoxin A in plant and animal-derived food commodities. Molecules 2021, 26, 6928. [Google Scholar] [CrossRef]
- Mantle, P.G. Risk assessment and the importance of ochratoxins. Int. Biodeterior. Biodegrad. 2002, 50, 143–146. [Google Scholar] [CrossRef]
- Dall’asta, C.; Galaverna, G.; Bertuzzi, T.; Moseriti, A.; Pietri, A.; Dossena, A. Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet. Food Chem. 2010, 120, 978–983. [Google Scholar] [CrossRef]
- Bondy, G.S.; Curran, I.H.C.; Coady, L.C.; Armstrong, C.; Bourque, C.; Bugiel, S.; Caldwell, D.; Kwong, K. A one-generation reproductive toxicity study of the mycotoxin ochratoxin A in Fischer rats. Food Chem. Toxicol. 2021, 153, 112247. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Mohan, K.; Karthick Rajan, D.; Pillay, A.A.; Palanisami, T.; Sathishkumar, P.; Conterno, L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem. 2022, 378, 131978. [Google Scholar] [CrossRef]
- Samuel, M.S.; Jeyaram, K.; Datta, S.; Chandrasekar, N.; Balaji, R.; Selvarajan, E. Detection, contamination, toxicity, and prevention methods of ochratoxins: An update review. J. Agric. Food Chem. 2021, 69, 13974–13989. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 123/2005 of 26 January 2005 amending Regulation (EC) No. 466/2001. Of. J. Eur. Communities Legis. 2005, 25, 3–5. [Google Scholar]
- Mishra, R.K.; Catanante, G.; Hayat, A.; Marty, J.L. Evaluation of extraction methods for ochratoxin A detection in cocoa beans employing HPLC. Food Addit. Contam. Part A 2016, 33, 500–508. [Google Scholar] [CrossRef]
- Běláková, S.; Benešová, K.; Mikulíková, R.; Svoboda, Z. Determination of ochratoxin A in brewing materials and beer by ultra performance liquid chromatography with fluorescence detection. Food Chem. 2011, 126, 321–325. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Gamiz-Gracia, L.; García-Campana, A.M. Determination of ochratoxin A in wines by capillary liquid chromatography with laser induced fluorescence detection using dispersive liquid-liquid microextraction. Food Chem. 2012, 135, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Mario-Repizo, L.; Gargantini, R.; Manzano, H.; Raba, J.; Cerutti, S. Assessment of ochratoxin A occurrence in argentine red wines using a novel sensitive quechers-solid phase extraction approach prior to ultra high performance liquid chromatography-tandem mass spectrometry methodology. J. Sci. Food Agric. 2017, 97, 2487–2497. [Google Scholar] [CrossRef] [PubMed]
- Marino-Repizo, L.; Kero, F.; Vandell, V.; Senior, A.; Isabel Sanz-Ferramola, M.; Cerutti, S. A novel solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry method for the quantification of ochratoxin A in red wines. Food Chem. 2015, 172, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Reinsch, M.; Töpfer, A.; Lehmann, A.; Nehls, I.; Panne, U. Determination of ochratoxin A in beer by LC-MS/MS ion trap detection. Food Chem. 2007, 100, 312–317. [Google Scholar] [CrossRef]
- Jeong, S.; Park, M.J.; Song, W.; Kim, H.S. Current immunoassay methods and their applications to clinically used biomarkers of breast cancer. Clin. Biochem. 2020, 78, 43–57. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Beier, R.C.; Lei, H.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Anal. Chem. 2017, 88, 25–40. [Google Scholar] [CrossRef]
- Henares, T.G.; Mizutani, F.; Hisamoto, H. Current development in microfluidic immunosensing chip. Anal. Chim. Acta. 2008, 611, 17–30. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, Z.; Fu, X.; Du, D. Establishment of a chemiluminescence immunoassay combined with immunomagnetic beads for rapid analysis of ochratoxin A. J. AOAC Int. 2022, 105, 346–351. [Google Scholar] [CrossRef]
- Huang, B.; Xiao, H.; Zhang, J.; Zhang, L.; Yang, H.; Zhang, Y.; Jin, J. Dual-label time-resolved fluoroimmunoassay for simultaneous detection of aflatoxin B1 and ochratoxin A. Arch. Toxicol. 2009, 83, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Simón, B.; Campàs, M.; Marty, J.L.; Noguer, T. Novel highly-performing immunosensor-based strategy for ochratoxin A detection in wine samples. Biosens. Bioelectron. 2008, 23, 995–1002. [Google Scholar] [CrossRef]
- Thirumala Devi, K.; Mayo, M.A.; Gopal, R.; Reddy, S.V.; Delfosse, P.; Reddy, D.V.R. Production of polyclonal antibodies against ochratoxin A and its detection in chilies by ELISA. J. Agric. Food Chem. 2000, 48, 5079–5082. [Google Scholar] [CrossRef] [PubMed]
- Uchigashima, M.; Yamaguchi Murakami, Y.; Narita, H.; Nakajima, M.; Miyake, S. Development of an immuno-affinity column for ochratoxin analysis using an organic solvent-tolerant monoclonal antibody. Methods 2012, 56, 180–185. [Google Scholar] [CrossRef]
- Zhang, A.; Ma, Y.; Feng, L.; Wang, Y.; He, C.; Wang, X.; Zhang, H. Development of a sensitive competitive indirect ELISA method for determination of ochratoxin A levels in cereals originating from Nanjing, China. Food Control 2011, 22, 1723–1728. [Google Scholar] [CrossRef]
- Cho, Y.J.; Lee, D.H.; Kim, D.O.; Min, W.K.; Bong, K.T.; Lee, G.G.; Seo, J.H. Production of a monoclonal antibody against ochratoxin A and its application to immunochromatographic assay. J. Agric. Food Chem. 2005, 53, 8447–8451. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Chi, T.; Liu, B.; Su, C. Development of a sensitive enzyme-linked immunosorbent assay for the determination of ochratoxin A. J. Agric. Food Chem. 2005, 53, 6947–6953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Shen, X.; Wei, X.; Huang, X.; Liu, Y.; Sun, X.; Wang, Z.; Sun, Y.; Xu, Z. Broad-specificity immunoassay for simultaneous detection of ochratoxins A, B, and C in millet and maize. J. Agric. Food Chem. 2017, 65, 4830–4838. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, M.; Kang, Y.; Xie, H.; Wang, X.; Song, H.; Li, X.; Fang, W. Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay. Toxicon 2015, 106, 89–96. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, J.; Lv, J.; Ke, T.; Tian, J.; Miao, K.; Wang, Y.; Kong, D.; Ruan, H.; Luo, J. Development of broad-specific monoclonal antibody-based immunoassays for simultaneous ochratoxin screening in medicinal and edible herbs. Food Control 2023, 148, 109626. [Google Scholar] [CrossRef]
- Liu, B.; Tsao, Z.J.; Wang, J.; Yu, F. Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip. Anal. Chem. 2008, 80, 7029–7035. [Google Scholar] [CrossRef] [PubMed]
- Fadlalla, M.H.; Ling, S.; Wang, R.; Li, X.; Yuan, J.; Xiao, S.; Wang, K.; Tang, S.; Elsir, H.; Wang, S. Development of elisa and lateral flow immunoassays for ochratoxins (OTA and OTB) detection based on monoclonal antibody. Front. Cell. Infect. Microbiol. 2020, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Puertollano, D.; Agullo, C.; Mercader, J.V.; Abad-Somovilla, A.; Abad-Fuentes, A. Immunoanalytical methods for ochratoxin A monitoring in wine and must based on innovative immunoreagents. Food Chem. 2021, 345, 128828. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Xu, N.; Zhang, Y.; Wang, S. Enzyme-linked immunosorbent assay and colloidal gold immunoassay for ochratoxin A: Investigation of analytical conditions and sample matrix on assay performance. Anal. Bioanal. Chem. 2007, 389, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Zhang, Q.; Zhang, Z.; Li, R.; Zhang, W.; Ding, X.; Chen, X.; Tang, X. A sensitive immunoaffinity column-linked indirect competitive elisa for ochratoxin A in cereal and oil products based on a new monoclonal antibody. Food Anal. Methods 2013, 6, 1433–1440. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, L.; Liu, H.; Xu, L.; Kuang, H. Rapid and sensitive detection of ochratoxin A in rice flour using a fluorescent microsphere immunochromatographic test strip assay. Food Agric. Immunol. 2020, 31, 563–574. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Lin, Y.; Chu, W.; Luo, Z.; Zhao, M.; Hu, J.; Miao, X.; He, F. A catalytic hairpin assembly–based Förster resonance energy transfer sensor for ratiometric detection of ochratoxin A in food samples. Anal. Bioanaly. Chem. 2023, 415, 867–874. [Google Scholar] [CrossRef]
- Mukherjee, M.; Nandhini, C.; Bhatt, P. Colorimetric and chemiluminescence based enzyme linked apta-sorbent assay (ELASA) for ochratoxin A detection. Spectrochim. Acta A 2021, 244, 118875. [Google Scholar] [CrossRef]
- Suea-Ngam, A.; Howes, P.; Stanley, C.; de Mello, A. An exonuclease I-assisted silver-metallized electrochemical aptasensor for Ochratoxin A detection. ACS Sens. 2019, 4, 1560–1568. [Google Scholar] [CrossRef]
- Tong, W.; Fang, H.; Xiong, H.; Wei, D.; Leng, Y.; Hu, X.; Huang, X.; Xiong, Y. Eco-friendly fluorescent ELISA based on bifunctional phage for ultrasensitive detection of Ochratoxin A in corn. Foods 2021, 10, 2429. [Google Scholar] [CrossRef]
ELISA | Antibody | IC50 (ng mL−1) | LOD (ng mL−1) | Ref. |
---|---|---|---|---|
ic-ELISA | pAb | 5.0 | / | [23] |
dc-ELISA | mAb | 2.0 | 0.18 | [24] |
ic-ELISA | mAb | 1.7 | 0.15 | [25] |
dc-ELISA | mAb | 1.2 | 0.12 | [26] |
dc-ELISA | pAb | 0.9 | / | [27] |
ic-ELISA | pAb | 0.5 | / | [28] |
ic-ELISA | mAb | 0.38 | 0.07 | [29] |
ic-ELISA | mAb | 0.37 | 0.08 | [30] |
dc-ELISA | mAb | 0.32 | / | [31] |
ic-ELISA | mAb | 0.2 | 0.03 | [32] |
dc-ELISA | mAb | 0.08 | / | [33] |
dc-ELISA | pAb | 0.07 | / | [34] |
ic-ELISA | mAb | 0.058 | / | [35] |
ic-ELISA | mAb | 0.052 | 0.008 | [36] |
ic-ELISA | mAb | 0.0348 | 0.0015 | This work |
Compound | Molecular Structure | IC50 (ng mL−1) | CR (%) |
---|---|---|---|
OTA | 0.0348 | 100 | |
OTB | 0.0356 | 96.67 | |
OTC | 0.158 | 22.02 | |
AFB1 | >1000 | <0.01 | |
ZEN | >1000 | <0.01 | |
DON | >1000 | <0.01 | |
T-2 | >1000 | <0.01 |
Sample a | Spiked Volume b (μL) | Con. Spiked (ng g−1) | Dilution Times | Con. Measured ± SD (ng g−1) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|---|---|
Wheat | 0 | 0 | 30 | 0.23 ± 0.015 | / | 6.5 |
2 | 1 | 30 | 1.34 ± 0.18 | 110.8 | 13.6 | |
10 | 5 | 150 | 5.01 ± 0.37 | 95.6 | 7.3 | |
20 | 10 | 200 | 10.57 ± 0.55 | 103.4 | 5.2 | |
Corn | 0 | 0 | 30 | 0.26 ± 0.023 | / | 8.8 |
2 | 1 | 30 | 1.20 ± 0.16 | 94.4 | 13.0 | |
10 | 5 | 100 | 4.89 ± 0.40 | 92.6 | 8.2 | |
20 | 10 | 300 | 9.21 ± 0.98 | 89.5 | 10.6 | |
feed | 0 | 0 | 500 | 6.30 ± 0.71 | / | 11.2 |
50 | 25 | 1000 | 34.63 ± 2.67 | 113.3 | 7.7 | |
100 | 50 | 2000 | 54.85 ± 7.51 | 97.1 | 13.7 | |
200 | 100 | 3000 | 98.10 ± 12.75 | 91.8 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Tian, R.; Wang, T.; Cao, J.; Li, J.; Deng, A. An Extremely Highly Sensitive ELISA in pg mL−1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples. Molecules 2023, 28, 5743. https://doi.org/10.3390/molecules28155743
Ren Y, Tian R, Wang T, Cao J, Li J, Deng A. An Extremely Highly Sensitive ELISA in pg mL−1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples. Molecules. 2023; 28(15):5743. https://doi.org/10.3390/molecules28155743
Chicago/Turabian StyleRen, Yexuan, Ruwen Tian, Ting Wang, Junlin Cao, Jianguo Li, and Anping Deng. 2023. "An Extremely Highly Sensitive ELISA in pg mL−1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples" Molecules 28, no. 15: 5743. https://doi.org/10.3390/molecules28155743