Differences in Ratio of Carbon Stable Isotopes among Barley Grain Milling Fractions with Various Concentrations of Beta-Glucans
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Analysis of b-G
3.3. Preparation of b-G-Enriched Fraction C3
3.4. Stable Carbon Isotope Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviation
b-G | beta-glucans |
References
- Ullrich, S.E. Barley: Production, Improvement and Uses; Wiley-Blackwell: Oxford, UK; Ames: Chicester, UK, 2011; p. 637. [Google Scholar] [CrossRef]
- Burke Miller, K. Review of whole grain and dietary fiber recommendations and intake levels in different countries. Nutr. Rev. 2020, 78, 29–36. [Google Scholar] [CrossRef]
- Habumugisha, T.; Stadskleiv Engebretsen, I.M.; Måren, I.E.; Kaiser, C.W.M.; Dierkes, J. Reducing meat and/or dairy consumption in adults: A systematic review and meta-analysis of effects on protein intake, anthropometric values, and body composition. Nutr. Rev. 2023, nuad055. [Google Scholar] [CrossRef]
- Bhatty, R.S. The potential of hull-less barley. Cereal Chem. 1999, 76, 589–599. [Google Scholar] [CrossRef]
- Bhatty, R.S. β-Glucan and flour yield of hull-less barley. Cereal Chem. 1999, 76, 314–315. [Google Scholar] [CrossRef]
- Schlormann, W.; Glei, M. Potential health benefits of beta-glucan from barley und oat. Ernahr. Umsch. 2017, 64, 555–559. [Google Scholar]
- Li, M.; Shan, L.; Tong, B.; Fan, L.; Liu, R.; Sun, R.-Q. Effect of pearling on composition, microstructure, water migration and cooking quality of highland barley (Hordeum vulgare var. Coeleste Linnaeus). Food Chem. 2022, 395, 133581. [Google Scholar] [CrossRef] [PubMed]
- Mio, K.; Ogawa, R.; Tadenuma, N.; Aoe, S. Arabinoxylan as well as β-glucan in barley promotes GLP-1 secretion by increasing short-chain fatty acids production. Biochem. Biophys. Rep. 2022, 32, 101343. [Google Scholar] [CrossRef] [PubMed]
- Reiners, S.; Hebestreit, S.; Wedekind, L.; Kiehntopf, M.; Klink, A.; Rummler, S.; Glei, M.; Lorkowski, S.; Schlörmann, W.; Dawczynski, C. Effect of a regular consumption of traditional and roasted oat and barley flakes on blood lipids and glucose metabolism–A randomized crossover trial. Front. Nutr. 2023, 10, 1095245. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to barley beta-glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No. 1924/2006. EFSA J. 2011, 9, 2471. [Google Scholar] [CrossRef]
- Geng, L.; Li, M.; Zhang, G.; Ye, L. Barley: A Potential Cereal for Producing Healthy and Functional Foods. Food Qual. Saf. 2022, 6, fyac012. [Google Scholar] [CrossRef]
- Pérez-Quirce, S.; Ronda, F.; Lazaridou, A.; Biliaderis, C.G. Effect of Microwave Radiation Pretreatment of Rice Flour on Gluten-Free Breadmaking and Molecular Size of β-Glucans in the Fortified Breads. Food Bioprocess Technol. 2017, 10, 1412–1421. [Google Scholar] [CrossRef] [Green Version]
- Ankrah, N.O.; Campbell, G.L.; Tyler, R.T.; Rossnagel, B.G.; Sokhansanj, S.R.T. Hydrothermal and β-glucanase effects on the nutritional and physical properties of starch in normal and waxy hull-less barley. Anim. Feed Sci. Technol. 1999, 81, 205–219. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities. Animals 2022, 12, 2525. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jiao, A.; Liu, Q.; Ren, X.; Zhu, K.; Jin, Z. The effects of removing endogenous proteins, β-glucan and lipids on the surface microstructure, water migration and glucose diffusion in vitro of starch in highland barley flour. Food Hydrocoll. 2022, 127, 107457. [Google Scholar] [CrossRef]
- Shelenga, T.V.; Kerv, Y.A.; Perchuk, I.N.; Solovyeva, A.E.; Khlestkina, E.K.; Loskutov, I.G.; Konarev, A.V. The Potential of Small Grains Crops in Enhancing Biofortification Breeding Strategies for Human Health Benefit. Agronomy 2021, 11, 1420. [Google Scholar] [CrossRef]
- Shvachko, N.A.; Loskutov, I.G.; Semilet, T.V.; Popov, V.S.; Kovaleva, O.N.; Konarev, A.V. Bioactive Components in Oat and Barley Grain as a Promising Breeding Trend for Functional Food Production. Molecules 2021, 26, 2260. [Google Scholar] [CrossRef]
- Khakimov, B.; Rasmussen, M.A.; Kannangara, R.M.; Jespersen, B.M.; Munck, L.; Engelsen, S.B. From metabolome to phenotype: GC-MS metabolomics of developing mutant barley seeds reveals effects of growth, temperature and genotype. Sci. Rep. 2017, 7, 8195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munck, L.; Karlsson, K.E.; Hagberg, A.; Eggum, B.O. Gene for improved nutritional value in barley seed protein. Science 1970, 168, 985–987. [Google Scholar] [CrossRef]
- Munck, L. A new holistic exploratory approach to Systems Biology by Near Infrared Spectroscopy evaluated by chemometrics and data inspection. J. Chemom. 2007, 21, 406–426. [Google Scholar] [CrossRef]
- Munck, L.; Nørgaard, L.; Engelsen, S.B.; Bro, R.; Andersson, C. Chemometrics in food science—A demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemom. Intell. Lab. Syst. 1998, 44, 31–60. [Google Scholar] [CrossRef]
- Oscarsson, M.; Andersson, R.; Salomonsson, A.C.; Åman, P. Chemical Composition of Barley Samples Focusing on Dietary Fibre Components. J. Cereal Sci. 1996, 24, 161–170. [Google Scholar] [CrossRef]
- Nakov, G.; Jukić, M.; Šimić, G.; Šumanovac, F.; Komlenić, D.K.; Lukinac, J. Effect of the Addition of Hulless Barley Flour on the Quality of Short-Dough Cookies. Foods 2022, 11, 2428. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.H.; Rossnagel, B.G.; Tyler, R.T.; Bhatty, R.S. Distribution of β-Glucan in the Grain of Hull-less Barley. Cereal Chem. 2000, 77, 140–144. [Google Scholar] [CrossRef]
- Martínez-Subirà, M.; Romero, M.P.; Macià, A.; Puig, E.; Romagosa, I.; Moralejo, M. Bioactive compounds and antioxidant capacity in pearling fractions of hulled, partially hull-less and hull-less food barley genotypes. Foods 2021, 10, 565. [Google Scholar] [CrossRef]
- Holmberg, E.; Kreft, I.; Munck, L. Genetic differences in nutritional performance of some specific pathogen-free mice strains. Hereditas 1975, 79, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Lineva, A.; Benkovič, E.T.; Kreft, S.; Kienzle, E. Remarkable Frequency of a History of Liver Disease in Dogs Fed Homemade Diets with Buckwheat. Tierarztl. Prax. Ausg. K Kleintiere. Heimtiere 2019, 47, 242–246. [Google Scholar] [CrossRef]
- Zhao, B.; Shang, J.; Liu, L.; Tong, L.T.; Zhou, X.; Wang, S.; Zhang, Y.; Wang, L.; Zhou, S. Effect of roasting process on enzymes inactivation and starch properties of highland barley. Int. J. Biol. Macromol. 2020, 165, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Z.; Zhang, X.; Tian, X.; Chen, K.; Zeng, X. Characterization of Volatile Compounds by HS-GC-IMS and Chemical Composition Analysis of Colored Highland Barley Roasted at Different Temperatures. Foods 2022, 11, 2921. [Google Scholar] [CrossRef]
- Wang, C.; Tian, X.; Zhang, X.; Zhang, Z.; Zhang, X.; Zeng, X. Physicochemical Characterizations, Digestibility, and Lipolysis Inhibitory Effects of Highland Barley Resistant Starches Prepared by Physical and Enzymatic Methods. Molecules 2023, 28, 1065. [Google Scholar] [CrossRef]
- Škrabanja, V.; Lærke, H.N.; Kreft, I. Protein-polyphenol interactions and in vivo digestibility of buckwheat groat proteins. Pflügers Arch. 2000, 440, R129–R131. [Google Scholar] [CrossRef]
- Hussain, M.I.; Khan, Z.I.; Farooq, T.H.; Al Farraj, D.A.; Elshikh, M.S. Comparative Plasticity Responses of Stable Isotopes of Carbon (δ 13C) and Nitrogen (δ 15N), Ion Homeostasis and Yield Attributes in Barley Exposed to Saline Environment. Plants 2022, 11, 1516. [Google Scholar] [CrossRef] [PubMed]
- Wadood, S.A.; Guo, B.; Liu, H.; Wei, S.; Bao, X.; Wei, Y. Study on the variation of stable isotopic fingerprints of wheat kernel along with milling processing. Food Control. 2018, 91, 427–433. [Google Scholar] [CrossRef]
- Liu, H.; Guo, B.; Zhang, B.; Zhang, Y.; Wei, S.; Li, M.; Wadood, S.A.; Wei, Y. Characterizations of stable carbon and nitrogen isotopic ratios in wheat fractions and their feasibility for geographical traceability: A preliminary study. Journal of Food Composition and Analysis. J. Food Compos. Anal. 2018, 69, 149–155. [Google Scholar] [CrossRef]
- Cajzek, F.; Bertoncelj, J.; Kreft, I.; Poklar Ulrih, N.; Polak, T.; Požrl, T.; Pravst, I.; Polišenská, I.; Vaculová, K.; Cigić, B. Preparation of β-glucan and antioxidant-rich fractions by stone milling of hull-less barley. Int. J. Food Sci. Technol. 2020, 55, 681–689. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Saurer, M.; Siegwolf, R.T.W. Human impacts on tree-ring growth reconstructed from stable isotopes. In Stable Isotopes as Indicators of Ecological Change; Dawson, T.E., Siegwolf, R.T.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 49–62. [Google Scholar]
A1 | A2 | B0 | B1 | B2 | C0 | C1 | C2 | C3 | |
---|---|---|---|---|---|---|---|---|---|
A0 | ns | *** | ns | ns | *** | *** | *** | ns | *** |
A1 | X | *** | ns | ns | *** | * | *** | ns | *** |
A2 | X | *** | *** | ns | *** | *** | *** | *** | |
B0 | X | ns | ns | *** | *** | ns | *** | ||
B1 | X | ** | *** | *** | ns | *** | |||
B2 | X | *** | *** | ** | *** | ||||
C0 | X | ns | ** | *** | |||||
C1 | X | *** | * | ||||||
C2 | X | *** | |||||||
C3 | X |
Barley Samples | Milling Fractions | Concentration of b-G [%] |
---|---|---|
Sandra (A0) | Whole barley | 3.6 |
Sandra (A1) | Fraction ˂ 124 µm | 1.5 |
Sandra (A2) | Fraction 140–250 µm | 5.8 |
Hyvido (B0) | Whole barley | 4.0 |
Hyvido (B1) | Fraction ˂ 124 µm | 1.8 |
Hyvido (B2) | Fraction 140–250 µm | 7.2 |
AF Cesar (C0) | Whole barley | 5.7 |
AF Cesar (C1) | Fraction ˂ 124 µm | 1.4 |
AF Cesar (C2) | Fraction 140–250 µm | 10.7 |
AF Cesar (C3) | b-G-enriched fraction | 24.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levanič, T.; Cigić, B.; Germ, M.; Polišenská, I.; Vaculová, K.; Pravst, I.; Kocjan Ačko, D.; Kreft, I. Differences in Ratio of Carbon Stable Isotopes among Barley Grain Milling Fractions with Various Concentrations of Beta-Glucans. Molecules 2023, 28, 5738. https://doi.org/10.3390/molecules28155738
Levanič T, Cigić B, Germ M, Polišenská I, Vaculová K, Pravst I, Kocjan Ačko D, Kreft I. Differences in Ratio of Carbon Stable Isotopes among Barley Grain Milling Fractions with Various Concentrations of Beta-Glucans. Molecules. 2023; 28(15):5738. https://doi.org/10.3390/molecules28155738
Chicago/Turabian StyleLevanič, Tom, Blaž Cigić, Mateja Germ, Ivana Polišenská, Kateřina Vaculová, Igor Pravst, Darja Kocjan Ačko, and Ivan Kreft. 2023. "Differences in Ratio of Carbon Stable Isotopes among Barley Grain Milling Fractions with Various Concentrations of Beta-Glucans" Molecules 28, no. 15: 5738. https://doi.org/10.3390/molecules28155738
APA StyleLevanič, T., Cigić, B., Germ, M., Polišenská, I., Vaculová, K., Pravst, I., Kocjan Ačko, D., & Kreft, I. (2023). Differences in Ratio of Carbon Stable Isotopes among Barley Grain Milling Fractions with Various Concentrations of Beta-Glucans. Molecules, 28(15), 5738. https://doi.org/10.3390/molecules28155738