An Oxidant-Free and Mild Strategy for Quinazolin-4(3H)-One Synthesis via CuAAC/Ring Cleavage Reaction
Abstract
:1. Introduction
2. Results
3. Experimental Procedure
3.1. General Information
3.2. Compound Characterization and Preparations
- 3-Benzyl-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4a). White solid, 30.5 mg, yield: 89%, m.p: 180–182 °C. 1H NMR (400 MHz, CDCl3) δ 9.86 (s, 1H), 8.08–7.93 (m, 1H), 7.59–7.52 (m, 1H), 7.42 (dt, J = 9.6, 4.7 Hz, 2H), 7.36–7.20 (m, 4H), 7.10 (d, J = 7.2 Hz, 2H), 6.82 (d, J = 5.4 Hz, 2H), 6.74 (d, J = 7.7 Hz, 1H), 5.13 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 161.8, 158.3, 156.8, 145.2, 135.8 (2C), 134.9, 131.0, 129.2 (2C), 128.0, 127.9, 127.5, 126.4 (2C), 124.9, 119.8, 119.7, 115.4, 113.6, 46.3, 41.5; IR νmax (KBr): 3308, 2928, 1682, 1591, 1456, 1265, 1165, 976, 775, 731 cm−1; HRMS (ESITOF) m/z calcd for C22H18N2O2, [M + H]+ 343.1441, found 343.1443.
- 3-Benzyl-2-(3-hydroxybenzyl)-7-methylquinazolin-4(3H)-one (4b). White solid, 30.6 mg, yield: 86%, m.p: 184–186 °C. 1H NMR (400 MHz, CDCl3) δ 9.86 (s, 1H), 7.90 (dd, J = 8.5, 2.9 Hz, 1H), 7.38–7.28 (m, 3H), 7.27–7.20 (m, 2H), 7.15 (d, J = 2.5 Hz, 1H), 7.13–7.08 (m, 2H), 6.80 (d, J = 4.9 Hz, 2H), 6.73 (d, J = 7.6 Hz, 1H), 5.12 (s, 2H), 3.97 (s, 2H), 2.37 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.7, 158.4, 156.8, 146.4, 145.4, 136.0, 135.9, 130.9, 129.9, 129.2, 129.0, 128.0, 127.8, 126.6, 126.4, 124.6, 119.7, 117.3, 115.3, 113.6, 46.0, 41.4, 22.1; IR νmax (KBr): 3055, 1682, 1592, 1456, 1342, 1265, 1163, 974, 879, 737 cm−1; HRMS (ESITOF) m/z calcd for C23H20N2O2, [M + H]+ 357.1598, found 357.1599.
- 3-Benzyl-6-chloro-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4c). white solid, 34.2 mg, yield: 91%, m.p: 197–199 °C. 1H NMR (400 MHz, CDCl3) δ 9.23 (s, 1H), 8.11 (d, J = 2.6 Hz, 1H), 7.50 (dt, J = 8.3, 2.5 Hz, 1H), 7.37–7.21 (m, 5H), 7.10 (dd, J = 7.7, 3.2 Hz, 2H), 6.81 (d, J = 8.5 Hz, 1H), 6.78–6.72 (m, 2H), 5.15 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 160.9, 158.1, 157.2, 143.9, 135.7, 135.5, 135.4, 133.5, 131.1, 129.3 (2C), 128.2, 127.0, 126.7, 126.5 (2C), 120.9, 120.0, 115.5, 113.5, 46.5, 41.5; IR νmax (KBr): 3034, 2947, 1688, 1587, 1473, 1277, 1155, 980, 764, 717 cm−1; HRMS (ESITOF) m/z calcd for C22H17ClN2O2, [M + H]+ 377.1051, found 377.1056.
- 3-Benzyl-7-chloro-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4d). white solid, 32.7 mg, yield: 87%, m.p: 190–192 °C. 1H NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 8.14–8.03 (m, 1H), 7.47 (d, J = 2.7 Hz, 1H), 7.44–7.38 (m, 1H), 7.37–7.29 (m, 3H), 7.28–7.22 (m, 1H), 7.13 (d, J = 7.1 Hz, 2H), 6.81 (d, J = 8.3 Hz, 1H), 6.75 (d, J = 15.3 Hz, 2H), 5.17 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 161.3, 156.0, 157.7, 146.8, 141.3, 135.8, 135.7, 131.0, 129.3 (2C), 129.2, 128.1 (2C), 126.4 (2C), 125.3, 120.2, 118.5, 115.4, 113.9, 46.5, 41.7; IR νmax (KBr): 2924, 1684, 1601, 1456, 1331, 1232, 1265, 1159, 974, 731 cm−1; HRMS (ESITOF) m/z calcd for C22H17ClN2O2, [M + H]+ 377.1051, found 377.1056.
- 3-Benzyl-8-chloro-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4e). white solid, 30.1 mg, yield: 80%, m.p: 197–199 °C. 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.1, 3.0 Hz, 1H), 7.75 (dd, J = 7.9, 3.0 Hz, 1H), 7.42–7.27 (m, 4H), 7.18 (td, J = 7.7, 7.2, 4.2 Hz, 1H), 7.13 (d, J = 7.5 Hz, 2H), 6.83 (s, 1H), 6.75 (t, J = 9.9 Hz, 2H), 5.98 (s, 1H), 5.25 (s, 2H), 4.09 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.2, 156.9, 156.7, 143.9, 136.5, 135.8, 134.9, 131.4, 130.5, 129.2 (2C), 128.0, 127.1, 126.3 (2C), 126.2, 122.2, 120.5, 115.1, 114.8, 46.6, 41.9; IR νmax (KBr): 3007, 1676, 1580, 1445, 1389, 1275, 1159, 980, 849, 764 cm−1; HRMS (ESITOF) m/z calcd for C22H17ClN2O2, [M + H]+ 377.1051, found 377.1056.
- 3-Benzyl-6-bromo-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4f). white solid, 38.6 mg, yield: 92%, m.p: 176–178 °C. 1H NMR (400 MHz, CDCl3) δ 9.33 (s, 1H), 8.30 (q, J = 2.2 Hz, 1H), 7.68–7.57 (m, 1H), 7.38–7.21 (m, 5H), 7.10 (d, J = 7.2 Hz, 2H), 6.81 (d, J = 8.4 Hz, 1H), 6.75 (d, J = 10.2 Hz, 2H), 5.15 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 160.7, 158.2, 157.4, 144.2, 138.2, 135.6, 135.5, 131.1, 130.3, 129.3 (2C), 128.2, 126.7, 126.5 (2C), 121.3, 121.2, 120.0, 115.5, 113.4, 46.5, 41.5; IR νmax (KBr): 3026, 1684, 1587, 1456, 1389, 1277, 1153, 966, 831, 750 cm−1; HRMS (ESITOF) m/z calcd for C22H17BrN2O2, [M + H]+ 421.0546, found 421.0551.
- 3-Benzyl-2-(3-hydroxybenzyl)-6-methoxyquinazolin-4(3H)-one (4g). White solid, 28.3 mg, yield: 76%, m.p: 183–185 °C. 1H NMR (400 MHz, CDCl3) δ 10.06 (s, 1H), 7.42 (q, J = 2.7 Hz, 1H), 7.37–7.19 (m, 5H), 7.11 (td, J = 5.6, 2.7 Hz, 3H), 6.81 (d, J = 2.8 Hz, 2H), 6.73 (d, J = 7.6 Hz, 1H), 5.13 (s, 2H), 3.99 (s, 2H), 3.97 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.7, 158.5, 158.4, 154.4, 139.6, 136.1, 136.0, 130.9, 129.8, 129.2, 128.0, 126.6, 126.4 (2C), 124.1, 120.8, 119.7, 115.4, 113.6, 108.1, 55.8, 46.4, 41.2; IR νmax (KBr): 3005, 1670, 1593, 1495, 1456, 1362, 1275, 1155, 1028, 750 cm−1; HRMS (ESITOF) m/z calcd for C23H20N2O3, [M + H]+ 373.1547, found 373.1549.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)quinazolin-4(3H)-one (4j). Oil, 40.6 mg, yield: 94%. 1H NMR (400 MHz, CDCl3) δ 8.33 (dd, J = 8.1, 2.8 Hz, 1H), 7.82–7.70 (m, 2H), 7.50 (d, J = 8.1 Hz, 1H), 7.44–7.21 (m, 8H), 7.17–7.11 (m, 4H), 6.93 (dd, J = 7.8, 3.1 Hz, 2H), 5.26 (s, 2H), 5.04 (s, 2H), 4.02 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.8, 158.2, 155.9, 147.4, 136.9, 136.3, 134.6, 129.3 (2C), 129.1 (2C), 128.7 (2C), 128.1, 127.7, 127.6 (2C), 127.5, 127.4, 127.3, 127.0, 126.3 (2C), 120.6, 115.6 (2C), 70.2, 46.3, 41.6; IR νmax (KBr): 3032, 1672, 1591, 1508, 1454, 1240, 1172, 1013, 750, 694 cm−1; HRMS (ESITOF) m/z calcd for C29H24N2O2, [M + H]+ 433.1911, found 433.1910.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-6-methylquinazolin-4(3H)-one (4k). White solid, 41.1 mg, yield: 92%, m.p: 137–139 °C. 1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1H), 7.64 (dd, J = 8.3, 2.8 Hz, 1H), 7.61–7.57 (m, 1H), 7.45–7.22 (m, 8H), 7.13 (d, J = 7.3 Hz, 4H), 6.92 (dd, J = 8.3, 3.0 Hz, 2H), 5.26 (s, 2H), 5.04 (s, 2H), 4.01 (s, 2H), 2.50 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.9, 158.2, 155.0, 145.5, 137.2, 137.0, 136.4, 136.0, 129.2 (2C), 129.1 (2C), 128.7 (2C), 128.1, 127.7 (2C), 127.6 (2C), 127.2, 126.7, 126.3 (2C), 120.4, 115.6 (2C), 70.2, 46.2, 41.5, 21.5; IR νmax (KBr): 3032, 1670, 1591, 1508, 1454, 1340, 1275, 1013, 831, 750 cm−1; HRMS (ESITOF) m/z calcd for C30H26N2O2, [M + H]+ 447.2067, found 447.2069.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-7-methylquinazolin-4(3H)-one (4l). Oil, 40.2 mg, yield: 90%. 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.5, 3.0 Hz, 1H), 7.54 (s, 1H), 7.44–7.23 (m, 9H), 7.13 (d, J = 7.2 Hz, 4H), 6.95–6.89 (m, 2H), 5.25 (s, 2H), 5.03 (s, 2H), 4.00 (s, 2H), 2.51 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.8, 158.2, 155.9, 147.5, 145.6, 137.0, 136.5, 129.3 (2C), 129.1 (2C), 128.7 (2C), 128.5, 128.1, 127.7, 127.6, 127.5 (2C), 127.1, 127.0, 126.3 (2C), 118.2, 115.6 (2C), 70.2, 46.1, 41.6, 22.0; IR νmax (KBr): 3032, 1672, 1593, 1508, 1454, 1259, 1173, 1011, 750, 696 cm−1; HRMS (ESITOF) m/z calcd for C30H26N2O2, [M + H]+ 447.2067, found 447.2069.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-6-chloroquinazolin-4(3H)-one (4m). White solid, 44.7 mg, yield: 96%, m.p: 174–176 °C. 1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.66–7.55 (m, 2H), 7.38–7.15 (m, 8H), 7.04 (dd, J = 8.1, 2.9 Hz, 4H), 6.85 (dd, J = 8.7, 3.0 Hz, 2H), 5.17 (s, 2H), 4.96 (s, 2H), 3.93 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 161.9, 158.3, 156.2, 146.0, 136.9, 136.0, 135.0, 132.7, 129.3 (2C), 129.2 (2C), 129.1, 128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.2, 126.6, 126.3 (2C), 121.7, 115.6 (2C), 70.2, 46.4, 41.5; IR νmax (KBr): 3034, 1676, 1591, 1508, 1472, 1335, 1275, 1013, 835, 750 cm−1; HRMS (ESITOF) m/z calcd for C29H23ClN2O2, [M + H]+ 467.1521, found 467.1528.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-7-chloroquinazolin-4(3H)-one (4n). Oil, 43.4 mg, yield: 93%. 1H NMR (400 MHz, CDCl3) δ 8.24 (dd, J = 9.0, 3.1 Hz, 1H), 7.73 (d, J = 3.0 Hz, 1H), 7.47–7.23 (m, 9H), 7.13 (d, J = 6.8 Hz, 4H), 6.93 (dd, J = 8.1, 3.2 Hz, 2H), 5.25 (s, 2H), 5.04 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.3, 158.3, 157.3, 148.4, 140.8, 136.9, 136.1, 129.3 (2C), 129.2 (2C), 128.8, 128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.5, 127.2, 127.0, 126.3 (2C), 119.1, 115.6 (2C), 70.2, 46.3, 41.5; IR νmax (KBr): 3034, 1676, 1591, 1508, 1454, 1383, 1240, 1013, 748, 694 cm−1; HRMS (ESITOF) m/z calcd for C29H23ClN2O2, [M + H]+ 467.1521, found 467.1528.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-8-chloroquinazolin-4(3H)-one (4o). White solid, 38.2 mg, yield: 82%, m.p: 111–113 °C. 1H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.0, 2.8 Hz, 1H), 7.84 (dd, J = 7.9, 2.8 Hz, 1H), 7.44–7.35 (m, 5H), 7.34–7.26 (m, 4H), 7.16 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 6.7 Hz, 2H), 6.93 (dd, J = 8.0, 2.6 Hz, 2H), 5.26 (s, 2H), 5.04 (s, 2H), 4.07 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.3, 158.3, 156.8, 144.2, 137.0, 135.9, 134.8, 129.5 (2C), 129.2 (2C), 128.91, 128.7 (2C), 128.1, 127.9, 127.6 (2C), 127.3, 126.9, 126.3 (2C), 126.1, 122.2, 115.6 (2C), 70.2, 46.5, 41.7; IR νmax (KBr): 3030, 1676, 1591, 1508, 1445, 1261, 1163, 987, 748, 696 cm−1; HRMS (ESITOF) m/z calcd for C29H23ClN2O2, [M + H]+ 467.1521, found 467.1528.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-6-bromoquinazolin-4(3H)-one (4p). White solid, 49.5 mg, yield: 97%, m.p: 167–169 °C. 1H NMR (400 MHz, CDCl3) δ 8.45 (t, J = 2.4 Hz, 1H), 7.83 (dd, J = 8.7, 2.6 Hz, 1H), 7.59 (dd, J = 9.4, 3.0 Hz, 1H), 7.44–7.29 (m, 8H), 7.12 (d, J = 6.8 Hz, 4H), 6.93 (dd, J = 7.8, 2.8 Hz, 2H), 5.25 (s, 2H), 5.04 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 161.7, 158.3, 156.3, 146.3, 137.7, 136.9, 136.0, 129.8, 129.3 (2C), 129.2, 129.1 (2C), 128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.2, 126.3 (2C), 122.0, 120.4, 115.6 (2C), 70.2, 46.4, 41.5; IR νmax (KBr): 2905, 1676, 1589, 1510, 1467, 1333, 1275, 985, 750, 692 cm−1; HRMS (ESITOF) m/z calcd for C29H23BrN2O2, [M + H]+ 511.1016, found 511.1021.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-7-bromoquinazolin-4(3H)-one (4q). Oil, 45.4 mg, yield: 89%. 1H NMR (400 MHz, CDCl3) δ 8.16 (dd, J = 8.8, 3.0 Hz, 1H), 7.91 (s, 1H), 7.58 (dd, J = 8.6, 2.7 Hz, 1H), 7.45–7.23 (m, 8H), 7.13 (d, J = 6.9 Hz, 4H), 6.97–6.90 (m, 2H), 5.25 (s, 2H), 5.04 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.4, 158.3, 157.3, 148.4, 136.9, 136.0, 130.3, 130.2, 129.4 (2C), 129.3, 129.2 (2C), 128.8, 128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.2, 126.3 (2C), 119.5, 115.6 (2C), 70.2, 46.4, 41.5; IR νmax (KBr): 3032, 1676, 1591, 1508, 1454, 1259, 1013, 883, 750, 694 cm−1; HRMS (ESITOF) m/z calcd for C29H23BrN2O2, [M + H]+ 511.1016, found 511.1021.
- 3-Benzyl-2-(4-(benzyloxy)benzyl)-6-methoxyquinazolin-4(3H)-one (4r). Oil, 37.9 mg, yield: 82%. 1H NMR (400 MHz, CDCl3) δ 7.72–7.64 (m, 2H), 7.44–7.25 (m, 9H), 7.13 (dd, J = 8.3, 3.0 Hz, 4H), 6.96–6.90 (m, 2H), 5.27 (s, 2H), 5.03 (s, 2H), 4.01 (s, 2H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.7, 158.5, 158.2, 153.5, 142.1, 137.0, 136.4, 129.2 (2C), 129.1 (2C), 129.0, 128.7 (2C), 128.1, 127.8, 127.7, 127.6 (2C), 126.3 (2C), 124.9, 121.4, 115.5 (2C), 106.5, 70.2, 55.9, 46.4, 41.4; IR νmax (KBr): 3032, 1667, 1591, 1489, 1360, 1240, 1026, 837, 750, 694 cm−1; HRMS (ESITOF) m/z calcd for C30H26N2O3, [M + H]+ 463.2016, found 463.2022.
- 2-(4-(Benzyloxy)benzyl)-3-butylquinazolin-4(3H)-one (4s). Oil, 39.0 mg, yield: 98%. 1H NMR (400 MHz, CDCl3) δ 8.26 (dd, J = 8.1, 2.9 Hz, 1H), 7.72 (tt, J = 8.3, 5.3 Hz, 2H), 7.49–7.43 (m, 1H), 7.43–7.28 (m, 5H), 7.18 (d, J = 7.7 Hz, 2H), 6.93 (dd, J = 7.9, 2.8 Hz, 2H), 5.04 (s, 2H), 4.18 (s, 2H), 4.01–3.88 (m, 2H), 1.60–1.49 (m, 2H), 1.36 (q, J = 7.5 Hz, 2H), 0.92 (td, J = 7.8, 2.5 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 162.5, 158.2, 155.6, 147.4, 137.0, 134.3, 129.4 (2C), 128.7 (2C), 128.1, 127.8, 127.6 (2C), 127.2, 126.9, 126.7, 120.9, 115.5 (2C), 70.2, 44.4, 41.8, 30.9, 20.4, 13.8; IR νmax (KBr): 3034, 1672, 1589, 1510, 1474, 1259, 1175, 1022, 750, 696 cm−1; HRMS (ESITOF) m/z calcd for C26H26N2O2, [M + H]+ 399.2067, found 399.2065.
- 3-Benzyl-2-(4-methoxybenzyl)quinazolin-4(3H)-one (4t). Oil, 33.1 mg, yield: 93%. 1H NMR (400 MHz, CDCl3) δ 8.33 (dd, J = 8.1, 3.0 Hz, 1H), 7.75 (td, J = 9.6, 8.2, 3.9 Hz, 2H), 7.50 (t, J = 7.1 Hz, 1H), 7.37–7.23 (m, 3H), 7.16–7.12 (m, 4H), 6.86 (dt, J = 8.8, 2.1 Hz, 2H), 5.26 (s, 2H), 4.03 (s, 2H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.9, 159.0, 155.9, 147.5, 136.3, 134.6, 129.2 (2C), 129.1 (2C), 127.7, 127.4, 127.3, 127.2, 127.0, 126.3 (2C), 120.7, 114.7 (2C), 55.4, 46.3, 41.6; IR νmax (KBr): 3032, 1672, 1593, 1510, 1454, 1246, 1175, 1030, 750, 694 cm−1; HRMS (ESITOF) m/z calcd for C23H20N2O2, [M + H]+ 357.1598, found 357.1599.
Gram-Scale Synthesis and Synthesis of HBQ
- 3-Benzyl-2-(4-(benzyloxy)benzyl)quinazolin-4(3H)-one (4j). CuI (48 mg, 10 mol%) was added to an oven-dried 50 mL round-bottomed flask containing a mixture of 2-amino-N-benzylbenzamide 1a (678 mg, 3.0 mmol, 1.0 equiv.), 1-(benzyloxy)-4-ethynylbenzene 2b (686 mg, 3.3 mmol, 1.1 equiv.), TsN3 3a (650 mg, 3.3 mmol, 1.1 equiv.), and Et3N (333 mg, 3.3 mmol, 1.1 equiv.) in MeCN (20 mL). The reaction mixture was stirred for 12 h. After completion of the reaction as indicated by TLC, the solvent was removed by evaporation in a vacuum. The residue was directly purified by flash column chromatography on silica gel (eluting with hexanes/EtOAc = 2:1) to obtain 4j (1.22 g, 94% yield) as oil.
- 2-(4-Hydroxybenzyl)quinazolin-4(3H)-one (HBQ). To a stirred solution of 4j (0.86 g, 2.0 mmol, 1.0 equiv.) in dry EtOAc (15 mL) was added palladium (10%) on carbon (15.0 mg). Then, the reaction mixture was stirred under an atmosphere of H2 at room temperature for 3 h. The reaction mixture was then filtered on a silica pad and rinsed with EtOAc. After evaporation of the solvent, the residue was purified by flash column chromatography on silica gel (eluting with petroleum ether/EtOAc = 1:1) to obtain HBQ as a white solid, 460 mg, yield: 92%, m.p: 210–212 °C (literature [15], m.p: no report). 1H NMR (400 MHz, CD3OD) δ 8.17 (dd, J = 8.2, 2.9 Hz, 1H), 7.84–7.76 (m, 1H), 7.71–7.65 (m, 1H), 7.50 (td, J = 7.8, 2.9 Hz, 1H), 7.22–7.15 (m, 2H), 6.75 (dt, J = 8.7, 2.1 Hz, 2H), 4.57 (s, 1H), 3.90 (s, 2H); 13C NMR (100 MHz, CD3OD) δ 164.4, 158.4, 157.8, 150.1, 136.0, 130.9 (2C), 127.8, 127.7, 127.6, 127.1, 121.8, 116.6 (2C), 41.5; IR νmax (KBr): 3383, 2492, 1682, 1609, 1452, 1269, 1119, 972, 827, 756 cm−1; HRMS (ESITOF) m/z calcd for C15H12N2O2, [M + H]+ 253.0972, found 253.0969.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, H.; Fu, G.; Zhong, W. Natural quinazolinones: From a treasure house to promising anticancer leads. Eur. J. Med. Chem. 2023, 245, 114915. [Google Scholar] [CrossRef] [PubMed]
- El-Subbagh, H.; Sabry, M. 2-Substituted-mercapto-quinazolin-4(3H)-ones as DHFR inhibitors. Mini Rev. Med. Chem. 2021, 21, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
- Gatadi, S.; Lakshmi, T.; Nanduri, S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur. J. Med. Chem. 2019, 170, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Auti, P.S.; George, G.; Paul, A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv. 2020, 10, 41353–41392. [Google Scholar] [CrossRef]
- Al-Shamma, A.; Drake, S.; Flynn, D.L.; Mitscher, L.A.; Park, Y.H.; Rao, G.S.R.; Simpson, A.; Swayze, J.K.; Veysoglu, T.; Wu, S.T.S. Antimicrobial agents from higher plants. Antimicrobial agents from Peganum harmala seeds. J. Nat. Prod. 1981, 44, 745–747. [Google Scholar] [CrossRef]
- Iwaki, K.; Ohashi, E.; Arai, N.; Kohno, K.; Ushio, S.; Taniguchi, M.; Fukuda, S.J. Tryptanthrin inhibits Th2 development, and IgE-mediated degranulation and IL-4 production by rat basophilic leukemia RBL-2H3 cells. J. Ethnopharmacol. 2011, 134, 450–459. [Google Scholar] [CrossRef]
- Moon, S.Y.; Lee, J.H.; Choi, H.Y.; Cho, I.J.; Kim, S.C.; Kim, Y.W. Tryptanthrin protects hepatocytes against oxidative stress via activation of the extracellular signal-regulated kinase/NF-E2-related factor 2 pathway. Biol. Pharm. Bull. 2014, 37, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences. Nat. Prod. Bioprospect. 2020, 10, 297–306. [Google Scholar] [CrossRef]
- Li, C.S.; An, C.Y.; Li, X.M.; Gao, S.S.; Cui, C.M.; Sun, H.F.; Wang, B.G. Triazole and dihydroimidazole alkaloids from the marine sediment-derived fungus penicillium paneum SD-44. J. Nat. Prod. 2011, 74, 1331–1334. [Google Scholar] [CrossRef]
- Shen, S.; Li, W.; Wang, J. A novel and other bioactive secondary metabolites from a marine fungus Penicillium oxalicum 0312F1. Nat. Prod. Res. 2013, 27, 2286–2291. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, R.A.K.; Albadrani, R.F.N.; Abbas, S.Y. Synthesis and characterization of 2-trifluoromethyl-4(3H)-quinazolinone derivatives with various 3-substituents. J. Heterocycl. Chem. 2023, 60, 614–622. [Google Scholar] [CrossRef]
- Snodgrass, H.M.; Mondal, D.; Lewis, J.C. Directed evolution of flavin-dependent halogenases for site- and atroposelective halogenation of 3-aryl-4(3H)-quinazolinones via kinetic or dynamic kinetic resolution. J. Am. Chem. Soc. 2022, 144, 16676–16682. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, K.; Reddy, M.B.; Anandhan, R. Visible-light-induced photocatalyst-free oxidative cyclization of primary alcohols by selectfluor via HAT process: Synthesis of quinazolinones and benzothiadiazines. Asian J. Org. Chem. 2022, 11, e202100590. [Google Scholar] [CrossRef]
- Sonawane, A.D.; Sonawane, R.A.; Win, K.M.; Ninomiya, M.; Koketsu, M. In situ air oxidation and photophysical studies of isoquinoline-fused N-heteroacenes. Org. Biomol. Chem. 2020, 18, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.K.; Nagarajan, R. Total synthesis of penipanoid C, 2-(4-hydroxybenzyl) quinazolin-4-(3H)-one and NU1025. Tetrahedron Lett. 2016, 57, 4277–4279. [Google Scholar] [CrossRef]
- Shen, G.; Zhou, H.; Sui, Y.; Liu, Q.; Zou, K. FeCl3-catalyzed tandem condensation/intramolecular nucleophilic addition/C–C bond cleavage: A concise synthesis of 2-substitued quinazolinones from 2-aminobenzamides and 1,3-diketones in aqueous media. Tetrahedron Lett. 2016, 57, 587–590. [Google Scholar]
- Li, Z.; Dong, J.; Chen, X.; Li, Q.; Zhou, Z.; Yin, S. Metal- and oxidant-free synthesis of quinazolinones from β-ketoesters with o-aminobenzamides via phosphorous acid-catalyzed cyclocondensation and selective C–C bond cleavage. J. Org. Chem. 2015, 80, 9392–9400. [Google Scholar] [CrossRef] [PubMed]
- Abuelhassan, S.; Bakhite, E.A.; Abdel-Rahman, A.E.; El-Mahdy, A.F.M.; Saddik, A.A.; Marae, I.S.; Abdel-Hafez, S.H.; Tolba, M. Synthesis, photophysical properties, and biological activities of some new thienylpyridines, thienylthieno[2.3-b]pyridines and related fused heterocyclic compounds. J. Heterocycl. Chem. 2023, 60, 458–470. [Google Scholar] [CrossRef]
- Yang, W.; Qiao, R.; Chen, J.; Huang, X.; Liu, M.; Gao, W.; Ding, J.; Wu, H. Palladium-catalyzed cascade reaction of 2-amino-N′-arylbenzohydrazides with triethyl orthobenzoates to construct indazolo[3,2-b]quinazolinones. J. Org. Chem. 2015, 80, 482–489. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Xiao, F.; Liu, S.; Deng, G.J. Iron-catalyzed one-pot 2,3-diarylquinazolinone formation from 2-Nitrobenzamides and alcohols. Org. Lett. 2013, 15, 4900–4903. [Google Scholar] [CrossRef]
- Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. Pd-catalyzed benzylic C–H amidation with benzyl alcohols in water: A strategy to construct quinazolinones. J. Org. Chem. 2012, 77, 7046–7051. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, J. One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers. J. Org. Chem. 2011, 76, 7730–7736. [Google Scholar] [CrossRef] [PubMed]
- Adib, M.; Sheikhi, E.; Bijanzadeh, H.R. One-pot three-component synthesis of 4-(3H)-quinazolinones from benzyl halides, isatoic anhydride, and primary amines. Synlett 2012, 1, 85–88. [Google Scholar] [CrossRef]
- Jayaram, A.; Govindan, K.; Kannan, V.R.; Seenivasan, V.T.; Chen, N.Q.; Lin, W.Y. Iodine-promoted oxidative cyclization of acylated and alkylated derivatives from epoxides toward the synthesis of aza heterocycles. J. Org. Chem. 2023, 88, 1749–1761. [Google Scholar] [CrossRef] [PubMed]
- Seifu, G.W.; Birhan, Y.S.; Beshay, B.Y.; Hymete, A.; Bekhit, A.A. Synthesis, antimalarial, antileishmanial evaluation, and molecular docking study of some 3-aryl-2-styryl substituted-4-(3H)-quinazolinone derivatives. BMC Chem. 2022, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Chiba, Y.; Kawaguchi, S.; Koitaya, Y.; Yoneta, Y.; Yamada, K.; Abe, T. Total synthesis of pyrano[3,2-e] indole alkaloid fontanesine B by a double cyclization strategy. RSC Adv. 2019, 9, 10420–10424. [Google Scholar] [CrossRef] [PubMed]
- Sabale, S.S.; Degani, M.S. Magnetically recoverable nano sulfated titania catalysed one pot synthesis of 4-(3H)-quinazolinone derivatives. Curr. Catal. 2018, 7, 167–175. [Google Scholar] [CrossRef]
- Schroeder, C.E.; Neuenswander, S.A.; Yao, T.; Aube, J.; Golden, J.E. One-pot, regiospecific assembly of (E)-benzamidines from δ- and γ-amino acids via an intramolecular aminoquinazolinone rearrangement. Org. Biomol. Chem. 2016, 14, 3950–3955. [Google Scholar] [CrossRef] [Green Version]
- Zhichkin, P.; Kesicki, E.; Treiberg, J.; Bourdon, L.; Ronsheim, M.; Ooi, H.C.; White, S.; Judkins, A.; Fairfax, D. A novel highly stereoselective synthesis of 2,3-disubstituted 3H-quinazoline-4-one derivatives. Org. Lett. 2007, 9, 1415–1418. [Google Scholar] [CrossRef]
- Ravindran, N.E.A.; Yadav, M.; Tamizh, M.M.; Bhuvanesh, N.; Sarkar, S.; Karvembu, R. Solvent-free synthesis of substituted benzimidazoles and quinazolinones via acceptorless dehydrogenative coupling using ferrocene-hydrazone-based Ru(II)-p-cymene catalysts. Asian J. Org. Chem. 2023, 12, e202200675. [Google Scholar] [CrossRef]
- Pinkerton, A.B.; Peddibhotla, S.; Yamamoto, F.; Slosky, L.M.; Bai, Y.; Maloney, P.; Hershberger, P.; Hedrick, M.P.; Hedrick, M.P.; Falter, B.; et al. Discovery of β-arrestin biased, orally bioavailable, and CNS penetrant neurotensin receptor 1 (NTR1) allosteric modulators. J. Med. Chem. 2019, 62, 8357–8363. [Google Scholar] [CrossRef] [PubMed]
- Phakhodee, W.; Wangngae, S.; Pattarawarapan, M. Approach to the synthesis of 2,3-disubstituted-3H-quinazolin-4-ones mediated by Ph3P-I2. J. Org. Chem. 2017, 82, 8058–8066. [Google Scholar] [CrossRef]
- Lv, X.Y.; Abrams, R.; Martin, R. Copper-catalyzed C(sp3)-amination of ketone-derived dihydroquinazolinones by aromatization-driven C−C bond scission. Angew. Chem., Int. Ed. 2023, 62, e202217386. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Li, L.Y.; Tsai, Z.N.; Lee, Y.H.; Tsao, Y.T.; Huang, P.G.; Cheng, C.K.; Lin, H.B.; Chen, T.W.; Yang, C.H.; et al. Aromatization as an impetus to harness ketones for metallaphotoredox-catalyzed benzoylation/benzylation of (hetero) arenes. Org. Lett. 2022, 24, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Hou, J.Y.; Retailleau, P. Sulfur-promoted synthesis of 2-aroylquinazolin-4-(3H)-ones by oxidative condensation of anthranilamide and acetophenones. Adv. Synth. Catal. 2019, 361, 3337–3341. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Fei, Z.; Liu, M.C.; Jia, F.C.; Wu, A.X. Direct one-pot synthesis of luotonin F and analogues via rational logical design. Org. Lett. 2013, 15, 378–381. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, T.; Li, J.X. Metal-free oxidative synthesis of quinazolinones via dual amination of sp3 C–H bonds. Chem. Commun. 2014, 50, 6471–6474. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, X.; Zhang, J.; Yu, J.T.; Pan, C. Metal-free photoinduced hydrocyclization of unactivated alkenes toward ring-fused quinazolin-4-(3H)-ones via intermolecular hydrogen atom transfer. Org. Lett. 2023, 25, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Li, K.; Ye, C.; Yu, W.; Chang, J. Iodine-mediated C=C double bond cleavage toward pyrido[2,1-b]quinazolinones. Org. Lett. 2022, 24, 3286–3290. [Google Scholar] [CrossRef] [PubMed]
- Bae, I.; Han, H.; Chang, S. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine. J. Am. Chem. Soc. 2005, 127, 2038–2039. [Google Scholar] [CrossRef]
- Cho, S.H.; Yoo, E.J.; Bae, I.; Chang, S. Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water. J. Am. Chem. Soc. 2005, 127, 16046–16047. [Google Scholar] [CrossRef] [PubMed]
- Bahadorikhalili, S.; Divar, M.; Damghani, T.; Moeini, F.; Ghassamipour, S.; Iraji, A.; Miller, M.A.; Larijani, B.; Mahdavi, M. N-sulfonyl ketenimine as a versatile intermediate for the synthesis of heteroatom containing compounds. J. Organomet. Chem. 2021, 939, 121773. [Google Scholar] [CrossRef]
- Lu, P.; Wang, Y. The thriving chemistry of ketenimines. Chem. Soc. Rev. 2012, 41, 5687–5705. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, S.H.; Choi, J.H.; Chang, S. Sulfonyl and phosphoryl azides: Going further beyond the click realm of alkyl and aryl azides. Chem. Asian J. 2011, 6, 2618–2634. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhao, Y.; Bu, Q.; Li, L.; Zhou, B.; Huang, Z. Tandem CuAAC/ring cleavage/[4+2] annulation reaction to synthesize dihydrooxazines and conversion to 2-aminopyrimidines. Org. Lett. 2022, 24, 457–461. [Google Scholar] [CrossRef]
- Luo, X.; Yang, Z.; Zheng, J.; Liang, G.; Luo, H.; Yang, W. CuX dual catalysis: Construction of oxazolo[2,3-b][1,3]oxazines via a tandem CuAAC/ring cleavage/[4+2+3] annulation reaction. Org. Lett. 2022, 24, 7300–7304. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, X.; Zhang, Z.; Luo, X.; Zheng, J.; Luo, H.; Yang, W. Silver-catalyzed [3+2] cycloaddition for the diastereoselective synthesis of anti-3-substituted hydroindolin-2-imines. Adv. Synth. Catal. 2022, 364, 4433–4439. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, H.; Yi, W.; Li, G.; Chen, L.; Yang, W. Synthesis of isoxazolidine by tandem CuAAC/ring cleavage/5-endo-trig cyclization. Eur. J. Org. Chem. 2022, 2022, e202201214. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Z.; Liu, L.; Chen, M.; Yang, W.; Chen, Q.; Gardiner, M.G.; Banwell, M.G. The copper-catalyzed reaction of 2-(1-hydroxyprop-2-yn-1-yl)phenols with sulfonyl azides leading to C3-unsubstituted N-sulfonyl-2-iminocoumarins. J. Org. Chem. 2021, 86, 9155–9162. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Yan, Y.; Xu, K.; Su, J.; Zha, Z.; Wang, Z. Copper-catalyzed radical methylation/C–H amination/oxidation cascade for the synthesis of quinazolinones. J. Org. Chem. 2015, 80, 4736–4742. [Google Scholar] [CrossRef]
- Patel, S.M.; Chada, H.; Biswal, S.; Sharma, S.; Sharada, D.S. Copper-catalyzed intramolecular α-C–H amination via ring opening cyclization strategy to quinazolin-4-ones: Development and application in rutaecarpine synthesis. Synthesis 2019, 51, 3160–3170. [Google Scholar] [CrossRef] [Green Version]
Entry | Cat. (10 mol%) | Base (0.11 mmol) | Solvent (2 mL) | Yield (%) b |
1 | CuI | Et3N | CHCl3 | 71 |
2 | CuI | Et3N | DCE | 74 |
3 | CuI | Et3N | DCM | 67 |
4 | CuI | Et3N | Toluene | 63 |
5 | CuI | Et3N | MeCN | 89 |
6 | CuI | Et3N | THF | 70 |
7 | CuI | Et3N | DMSO | 58 |
8 | CuI | Et3N | DMF | 63 |
9 | CuI | Et3N | Dioxane | 52 |
10 | CuI | Et3N | EtOH | 34 |
11 | CuCl | Et3N | MeCN | 85 |
12 | CuBr | Et3N | MeCN | 82 |
13 | CuBr2 | Et3N | MeCN | 72 |
14 | CuCl2·2H2O | Et3N | MeCN | 68 |
15 | Cu(OAc)2 | Et3N | MeCN | 74 |
16 | Cu(acac)2 | Et3N | MeCN | 44 |
17 | Cu(OTf)2 | Et3N | MeCN | 22 |
18 | CuI | DAMP | MeCN | 21 |
19 | CuI | DIPEA | MeCN | 86 |
20 | CuI | NaOH | MeCN | 12 |
21 | CuI | Et3N | MeCN | 89 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Yang, Z.; Luo, D.; Luo, X.; Chen, X.; Yang, W. An Oxidant-Free and Mild Strategy for Quinazolin-4(3H)-One Synthesis via CuAAC/Ring Cleavage Reaction. Molecules 2023, 28, 5734. https://doi.org/10.3390/molecules28155734
He Y, Yang Z, Luo D, Luo X, Chen X, Yang W. An Oxidant-Free and Mild Strategy for Quinazolin-4(3H)-One Synthesis via CuAAC/Ring Cleavage Reaction. Molecules. 2023; 28(15):5734. https://doi.org/10.3390/molecules28155734
Chicago/Turabian StyleHe, Yueling, Zhongtao Yang, Danyang Luo, Xiai Luo, Xiaodong Chen, and Weiguang Yang. 2023. "An Oxidant-Free and Mild Strategy for Quinazolin-4(3H)-One Synthesis via CuAAC/Ring Cleavage Reaction" Molecules 28, no. 15: 5734. https://doi.org/10.3390/molecules28155734
APA StyleHe, Y., Yang, Z., Luo, D., Luo, X., Chen, X., & Yang, W. (2023). An Oxidant-Free and Mild Strategy for Quinazolin-4(3H)-One Synthesis via CuAAC/Ring Cleavage Reaction. Molecules, 28(15), 5734. https://doi.org/10.3390/molecules28155734