Ru and Se Co-Doped Cobalt Hydroxide Electrocatalyst for Efficient Hydrogen Evolution Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphological Characterization
2.2. Electrochemical Performance
2.3. Reaction Mechanism
3. Materials and Methods
3.1. Preparation and Characterization
3.2. Performance Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Chen, L.; Msigwa, G.; Tang, K.H.D.; Yap, P.-S. Implications of COVID-19 on global environmental pollution and carbon emissions with strategies for sustainability in the COVID-19 era. Sci. Total Environ. 2022, 809, 151657. [Google Scholar] [CrossRef]
- Holdren, J.P. Population and the energy problem. Popul. Environ. 1991, 12, 231–255. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Q.; Yu, D. The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Haussener, S.; Patzke, G.R. Solar hydrogen production. Energy Technol. 2022, 10, 2101021. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 2018, 8, 1701620. [Google Scholar] [CrossRef]
- Kamat, P.V.; Sivula, K. Celebrating 50 Years of Photocatalytic Hydrogen Generation. ACS Energy Lett. 2022, 7, 3149–3150. [Google Scholar] [CrossRef]
- Bi, W.; Zhang, L.; Sun, Z.; Li, X.; Jin, T.; Wu, X.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Insight into electrocatalysts as co-catalysts in efficient photocatalytic hydrogen evolution. ACS Catal. 2016, 6, 4253–4257. [Google Scholar] [CrossRef]
- Jiang, H.; He, Q.; Zhang, Y.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 51, 2968–2977. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 2021, 5, 256–276. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, Y.; Dou, S.-X.; Sun, W.; Pan, H. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96. [Google Scholar] [CrossRef]
- Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single-At. Electrocatal. Angew. Chem. Int. Ed. 2017, 56, 13944–13960. [Google Scholar]
- Shao, Q.; Lu, K.; Huang, X. Platinum group nanowires for efficient electrocatalysis. Small Methods 2019, 3, 1800545. [Google Scholar] [CrossRef]
- Li, D.; Shi, J.; Li, C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: A mini review. Small 2018, 14, 1704179. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Wang, H. Electrocatalysis over graphene-defect-coordinated transition-metal single-atom catalysts. Chem 2018, 4, 194–195. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717. [Google Scholar] [CrossRef]
- Aggarwal, P.; Sarkar, D.; Awasthi, K.; Menezes, P.W. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord. Chem. Rev. 2022, 452, 214289. [Google Scholar] [CrossRef]
- Boppella, R.; Tan, J.; Yun, J.; Manorama, S.V.; Moon, J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord. Chem. Rev. 2021, 427, 213552. [Google Scholar] [CrossRef]
- Guo, T.; Li, L.; Wang, Z. Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2200827. [Google Scholar] [CrossRef]
- Jin, H.; Liu, X.; Chen, S.; Vasileff, A.; Li, L.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S.-Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 805–810. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Li, L.; Song, K.; Qian, P.; Feng, Y.P. Design of platinum single-atom doped metal nanoclusters as efficient oxygen reduction electrocatalysts by coupling electronic descriptor. Nano Res. 2022, 15, 7016–7025. [Google Scholar] [CrossRef]
- Duchesne, P.; Li, Z.; Deming, C.; Fung, V.; Zhao, X.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S.; et al. Golden Single-Atomic-Site Platinum Electrocatalysts. Nat. Mater 2018, 17, 1033–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Feng, Z.; Zhang, J. Super Toughened Poly (lactic acid) Ternary Blends by Simultaneous Dynamic Vulcanization and Interfacial Compatibilization. Macromolecules 2010, 43, 6058–6066. [Google Scholar] [CrossRef]
- Zhang, Q.; Duan, Z.; Wang, Y.; Li, L.; Nan, B.; Guan, J. Atomically dispersed iridium catalysts for multifunctional electrocatalysis. J. Mater. Chem. A 2020, 8, 19665–19673. [Google Scholar] [CrossRef]
- Xia, J.; Li, S.-m.; Gao, S.; Xie, S.; Liu, H. Preparation of CoNiP nanoparticles supported on nitrogen-doped carbon nanotubes as high performance electrocatalysts for the hydrogen evolution reaction. Carbon 2020, 167, 932. [Google Scholar] [CrossRef]
- Jiang, H.; Yan, L.; Zhang, S.; Zhao, Y.; Yang, X.; Wang, Y.; Shen, J.; Zhao, X.; Wang, L. Electrochemical surface restructuring of phosphorus-doped carbon@ MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 2021, 13, 215. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Guo, T.; Mu, Z.; Hu, X.; He, K.; Chen, X.; Dravid, V.P.; Wu, Z.; Wang, D. High-performance MoC electrocatalyst for hydrogen evolution reaction enabled by surface sulfur substitution. ACS Appl. Mater. Interfaces 2021, 13, 40705–40712. [Google Scholar] [CrossRef]
- Sun, Y.; Mao, K.; Shen, Q.; Zhao, L.; Shi, C.; Li, X.; Gao, Y.; Li, C.; Xu, K.; Xie, Y. Surface electronic structure modulation of cobalt nitride nanowire arrays via selenium deposition for efficient hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2109792. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, Z.; Xing, H.; Fei, S.; Li, J.; Ma, L.; Li, Y.; Liu, D. Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting. Appl. Catal. B Environ. 2022, 305, 121030. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Hao, P.; Li, M.; Zhang, Y.; Guo, J.; Ding, W.; Liu, M.; Wang, J.; Guo, X. N, OC Nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@ N, OC electrocatalyst. Appl. Catal. B Environ. 2022, 304, 120996. [Google Scholar] [CrossRef]
- Guo, R.; Shi, W.; Yang, X.; Xie, Y.; Yang, T.; Xiao, J. Ultralow noble metals doping enables metal-organic framework derived Ni (OH) 2ánanocages as efficient water oxidation electrocatalysts. Chem. Eng. J. 2022, 429, 132478. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Das, K.K.; Mansingh, S.; Sultana, S.; Parida, K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord. Chem. Rev. 2022, 469, 214666. [Google Scholar] [CrossRef]
- Mao, X.; Qin, Z.; Ge, S.; Rong, C.; Zhang, B.; Xuan, F. Strain engineering of electrocatalysts for hydrogen evolution reaction. Mater. Horiz. 2023, 10, 340–360. [Google Scholar] [CrossRef]
- Sharma, P.; Minakshi Sundaram, M.; Watcharatharapong, T.; Laird, D.; Euchner, H.; Ahuja, R. Zn metal atom doping on the surface plane of one-dimesional NiMoO4 nanorods with improved redox chemistry. ACS Appl. Mater. Interfaces 2020, 12, 44815–44829. [Google Scholar] [CrossRef]
- Wang, J.; Liao, T.; Wei, Z.; Sun, J.; Guo, J.; Sun, Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. Small Methods 2021, 5, 2000988. [Google Scholar] [CrossRef]
- Lee, C.-H.; Shie, J.-L.; Yang, Y.-T.; Chang, C.-Y. Photoelectrochemical characteristics, photodegradation and kinetics of metal and non-metal elements co-doped photocatalyst for pollution removal. Chem. Eng. J. 2016, 303, 477–488. [Google Scholar] [CrossRef]
- Guo, T.; Lin, Y.; Chen, X.; Lu, J.; Zhao, X.; Yao, X.; Meng, L.; Liu, Y.; Zhang, X. Metal-nonmetal atom co-doping engineered transition metal disulfide for highly efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 2990–2997. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Wang, G.; Zhang, P.; Zhuang, X.; Chen, M.; Weidinger, I.; Feng, X. Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2017, 5, 25314–25318. [Google Scholar] [CrossRef]
- Shen, P.; Zhou, B.; Chen, Z.; Xiao, W.; Fu, Y.; Wan, J.; Wu, Z.; Wang, L. Ruthenium-doped 3D Cu2O nanochains as efficient electrocatalyst towards hydrogen evolution and hydrazine oxidation. Appl. Catal. B Environ. 2023, 325, 122305. [Google Scholar] [CrossRef]
- Chen, D.; Lu, R.; Pu, Z.; Zhu, J.; Li, H.-W.; Liu, F.; Hu, S.; Luo, X.; Wu, J.; Zhao, Y. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B Environ. 2020, 279, 119396. [Google Scholar] [CrossRef]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641. [Google Scholar]
- Qiu, Y.; Liu, Z.; Sun, A.; Zhang, X.; Ji, X.; Liu, J. Electrochemical in situ self-healing of porous nanosheets based on the phase reconstruction of carbonate hydroxide to layered double hydroxides with unsaturated coordination metal sites for high-performance water oxidation. ACS Sustain. Chem. Eng. 2022, 10, 16417–16426. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Liu, Z.; Zhang, X.; Han, H.; Ji, X.; Liu, J. Solar-driven photoelectron injection effect on MgCo2O4@ WO3 core–shell heterostructure for efficient overall water splitting. Appl. Surf. Sci. 2022, 578, 152049. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Z.; Zhang, X.; Sun, A.; Ji, X.; Liu, J. Controllable atom implantation for achieving Coulomb-force unbalance toward lattice distortion and vacancy construction for accelerated water splitting. J. Colloid Interface Sci. 2022, 610, 194–201. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, X.; Liu, T.; Chen, H.; Chen, S.; Jiang, Z.; Liu, J.; Huang, J.; Liu, M. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 2018, 28, 1806207. [Google Scholar] [CrossRef]
- Tong, S.; Luo, C.; Li, J.; Mei, Z.; Wu, M.; O’Mullane, A.P.; Zhu, H. Utilizing a photocatalysis process to achieve a cathode with low charging overpotential and high cycling durability for a Li-O2 battery. Angew. Chem. 2020, 132, 21095–21099. [Google Scholar] [CrossRef]
- Xia, Z.; Pan, J.; Chen, H.; Deng, N.; Yang, C.; Liu, X.; Liu, Y.; Wu, L. Flexible one-dimensional yarn-like Ni-Zn battery: Micron-nano hierarchical-structure array, high energy density and excellent capacity retention. Chem. Eng. J. 2023, 456, 141048. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, G.; Wang, L.; Liu, X.; Qu, Y.; Zhou, Y.; Zhou, F.; Li, Z.; Li, Y.; Yao, T. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, M.; Tan, G.; Xie, J.; Tan, P.; Pan, J. The In-situ Growth of Ru Modified CoP Nanoflakes on Carbon Clothes as Efficient Electrocatalysts for HER. ChemElectroChem 2022, 9, e202101482. [Google Scholar] [CrossRef]
- Jiang, L.W.; Huang, Y.; Zou, Y.; Meng, C.; Xiao, Y.; Liu, H.; Wang, J.J. Boosting the Stability of Oxygen Vacancies in α-Co (OH)2 Nanosheets with Coordination Polyhedrons as Rivets for High-Performance Alkaline Hydrogen Evolution Electrocatalyst. Adv. Energy Mater. 2022, 12, 2202351. [Google Scholar] [CrossRef]
- Jing, C.; Yuan, T.; Li, L.; Li, J.; Qian, Z.; Zhou, J.; Wang, Y.; Xi, S.; Zhang, N.; Lin, H.-J. Electrocatalyst with dynamic formation of the dual-active site from the dual pathway observed by in situ Raman spectroscopy. ACS Catal. 2022, 12, 10276–10284. [Google Scholar] [CrossRef]
- Lu, J.; Yin, S.; Shen, P.K. Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2019, 2, 105–127. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Yu, M.; Yu, C.; Shen, P. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrogen. Energy 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Yuan, Y.; Huang, C.; Wu, Y.; Xiao, Z.; Zhan, G. Ru and Se Co-Doped Cobalt Hydroxide Electrocatalyst for Efficient Hydrogen Evolution Reactions. Molecules 2023, 28, 5736. https://doi.org/10.3390/molecules28155736
Peng W, Yuan Y, Huang C, Wu Y, Xiao Z, Zhan G. Ru and Se Co-Doped Cobalt Hydroxide Electrocatalyst for Efficient Hydrogen Evolution Reactions. Molecules. 2023; 28(15):5736. https://doi.org/10.3390/molecules28155736
Chicago/Turabian StylePeng, Weizhong, Yuting Yuan, Chao Huang, Yulong Wu, Zhaohui Xiao, and Guanghui Zhan. 2023. "Ru and Se Co-Doped Cobalt Hydroxide Electrocatalyst for Efficient Hydrogen Evolution Reactions" Molecules 28, no. 15: 5736. https://doi.org/10.3390/molecules28155736
APA StylePeng, W., Yuan, Y., Huang, C., Wu, Y., Xiao, Z., & Zhan, G. (2023). Ru and Se Co-Doped Cobalt Hydroxide Electrocatalyst for Efficient Hydrogen Evolution Reactions. Molecules, 28(15), 5736. https://doi.org/10.3390/molecules28155736