Supramolecular Assemblies of Fluorescent Nitric Oxide Photoreleasers with Ultrasmall Cyclodextrin Nanogels
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. NO Photorelease Quantum Yields
3.4. Preparation of the Supramolecular Complexes
3.5. Biological Assays
3.5.1. Antibacterial Activity
3.5.2. Fluorescence Microscopy
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ignarro, L.J. Nitric Oxide: Biology and Pathobiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2017; p. 411. [Google Scholar]
- Wink, D.A.; Mitchell, J.B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 1998, 25, 434–456. [Google Scholar] [CrossRef] [PubMed]
- Malone-Povolny, M.J.; Maloney, S.E.; Schoenfisch, M.H. Nitric Oxide Therapy for Diabetic Wound Healing. Adv. Healthc. Mater. 2019, 8, 1801210. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Feura, E.S.; Ahonen, M.J.R.; Schoenfisch, M.H. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv. Healthc. Mater. 2018, 7, 1800155. [Google Scholar] [CrossRef] [PubMed]
- Navale, G.R.; Singh, S.; Ghosh, K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord. Chem. Rev. 2023, 481, 215052. [Google Scholar] [CrossRef]
- Wang, P.G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A.J. Nitric oxide donors: Chemical activities and biological applications. Chem. Rev. 2002, 102, 1091–1134. [Google Scholar] [CrossRef]
- Riccio, D.A.; Schoenfisch, M.H. Nitric oxide release: Part I. Macromolecular scaffolds. Chem. Soc. Rev. 2012, 41, 3731–3741. [Google Scholar] [CrossRef]
- Carpenter, A.W.; Schoenfisch, M.H. Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev. 2012, 41, 3742–3752. [Google Scholar] [CrossRef] [Green Version]
- Seabra, A.B.; Durán, N. Nitric oxide-releasing vehicles for biomedical applications. J. Mat. Chem. 2010, 20, 1624–1637. [Google Scholar] [CrossRef] [Green Version]
- Sortino, S. Light-controlled nitric oxide delivering molecular assemblies. Chem. Soc. Rev. 2010, 39, 2903–2913. [Google Scholar] [CrossRef]
- Fraix, A.; Parisi, C.; Seggio, M.; Sortino, S. Nitric Oxide Photoreleasers with Fluorescent Reporting. Chem. Eur. J. 2021, 27, 12714–12725. [Google Scholar] [CrossRef]
- Ford, P.C. Photochemical delivery of nitric oxide. Nitric Oxide 2013, 34, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, A.D.; Ford, P.C. Metal complexes as photochemical nitric oxide precursors: Potential applications in the treatment of tumors. Dalton Trans. 2009, 48, 10660–10669. [Google Scholar] [CrossRef]
- Fry, N.L.; Mascharak, P.K. Photoactive Ruthenium Nitrosyls as NO Donors: How to Sensitize Them toward Visible Light. Acc. Chem. Res. 2011, 44, 289–298. [Google Scholar] [CrossRef]
- Ieda, N.; Oka, Y.; Yoshihara, T.; Tobita, S.; Sasamori, T.; Kawaguchi, M.; Nakagawa, H. Structure-efficiency relationship of photoinduced electron transfer-triggered nitric oxide releasers. Sci. Rep. 2019, 9, 1430. [Google Scholar] [CrossRef] [Green Version]
- de Lima, R.G.; Rios, R.R.; Machado, A.E.D.H.; da Silva, R.S. Ruthenium phthalocyanines in nitric oxide modulation and singlet oxygen release: Selectivity and cytotoxic effect on cancer cell lines. Adv. Inorg. Chem. 2022, 80, 355–379. [Google Scholar]
- Fraix, A.; Marino, N.; Sortino, S. Phototherapeutic Release of Nitric Oxide with Engineered Nanoconstructs. Top. Curr. Chem. 2016, 370, 225–257. [Google Scholar]
- Suhail, M.; Rosenholm, J.M.; Minhas, M.U.; Badshah, S.F.; Naeem, A.; Khan, K.U.; Fahad, M. Nanogels as drug-delivery systems: A comprehensive overview. Ther. Deliv. 2019, 10, 697–717. [Google Scholar] [CrossRef]
- Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 2002, 54, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Szejtli, J. Cyclodextrin Technology, 1st ed.; Kluwer: Dordrecht, The Netherlands, 1988; p. 450. [Google Scholar]
- Liu, Y.Y.; Yu, Y.; Tian, W.; Sun, L.; Fan, X.-D. Preparation and Properties of Cyclodextrin/PNIPAm Microgels. Macromol. Biosci. 2009, 9, 525–534. [Google Scholar] [CrossRef]
- Swaminathan, S.; Pastero, L.; Serpe, L.; Trotta, F.; Vavia, P.; Aquilano, D.; Trotta, M.; Zara, G.; Cavalli, R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 2010, 74, 193–201. [Google Scholar] [CrossRef]
- Lu, D.; Yang, L.; Zhou, T.; Lei, Z. Synthesis, characterization and properties of biodegradable polylactic acid-β-cyclodextrin cross-linked copolymer microgels. Eur. Polym. J. 2008, 44, 2140–2145. [Google Scholar] [CrossRef]
- Moya-Ortega, M.D.; Alvarez-Lorenzo, C.; Sigurdsson, H.H.; Concheiro, A.; Loftsson, T. Cross-linked hydroxypropyl-β-cyclodextrin and γ-cyclodextrin nanogels for drug delivery: Physicochemical and loading/release properties. Carbohydr. Polym. 2012, 87, 2344–2351. [Google Scholar] [CrossRef]
- Takeuchi, S.; Cesari, A.; Soma, S.; Suzuki, Y.; Casulli, M.A.; Sato, K.; Mancin, F.; Hashimoto, T.; Hayashita, T. Preparation of ultrasmall cyclodextrin nanogels by an inverse emulsion method using a cationic surfactant. Chem. Commun. 2023, 59, 4071–4074. [Google Scholar] [CrossRef] [PubMed]
- Parisi, C.; Seggio, M.; Fraix, A.; Sortino, S. A High-Performing Metal-Free Photoactivatable Nitric Oxide Donor with a Green Fluorescent Reporter. ChemPhotoChem 2020, 4, 742–748. [Google Scholar] [CrossRef]
- Parisi, C.; Failla, M.; Fraix, A.; Rolando, B.; Gianquinto, E.; Spyrakis, F.; Gazzano, E.; Riganti, C.; Lazzarato, L.; Fruttero, R.; et al. Fluorescent nitric oxide photodonors based on BODIPY and rhodamine antennae. Chem. Eur. J. 2019, 25, 11080–11084. [Google Scholar] [CrossRef]
Sample | Time (min) | Dark Log CFU mL−1 | Light Log CFU mL−1 |
---|---|---|---|
Inoculum | 0 | 6.36 ± 0.03 | |
PBS | 4 | 6.23 ± 0.03 | 6.19 ± 0.06 |
γ-CDng | 4 | 6.18 ± 0.10 | 6.15 ± 0.04 |
γ-CDng/NBF-NO | 4 | 6.07 ± 0.08 | 6.07 ± 0.04 |
γ-CDng/RHD-NO | 4 | 6.15 ± 0.11 | 3.36 ± 0.08 |
PBS | 8 | 6.21 ± 0.08 | 6.14 ± 0.09 |
γ-CDng | 8 | 6.17 ± 0.05 | 6.13 ± 0.05 |
γ-CDng/NBF-NO | 8 | 6.07 ± 0.09 | 6.06 ± 0.09 |
γ-CDng/RHD-NO | 8 | 5.84 ± 0.04 | 1.46 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, T.J.; Parisi, C.; Suzuki, Y.; Hashimoto, T.; Nostro, A.; Ginestra, G.; Hayashita, T.; Sortino, S. Supramolecular Assemblies of Fluorescent Nitric Oxide Photoreleasers with Ultrasmall Cyclodextrin Nanogels. Molecules 2023, 28, 5665. https://doi.org/10.3390/molecules28155665
Martins TJ, Parisi C, Suzuki Y, Hashimoto T, Nostro A, Ginestra G, Hayashita T, Sortino S. Supramolecular Assemblies of Fluorescent Nitric Oxide Photoreleasers with Ultrasmall Cyclodextrin Nanogels. Molecules. 2023; 28(15):5665. https://doi.org/10.3390/molecules28155665
Chicago/Turabian StyleMartins, Tassia J., Cristina Parisi, Yota Suzuki, Takeshi Hashimoto, Antonia Nostro, Giovanna Ginestra, Takashi Hayashita, and Salvatore Sortino. 2023. "Supramolecular Assemblies of Fluorescent Nitric Oxide Photoreleasers with Ultrasmall Cyclodextrin Nanogels" Molecules 28, no. 15: 5665. https://doi.org/10.3390/molecules28155665
APA StyleMartins, T. J., Parisi, C., Suzuki, Y., Hashimoto, T., Nostro, A., Ginestra, G., Hayashita, T., & Sortino, S. (2023). Supramolecular Assemblies of Fluorescent Nitric Oxide Photoreleasers with Ultrasmall Cyclodextrin Nanogels. Molecules, 28(15), 5665. https://doi.org/10.3390/molecules28155665