New Synthetic Methodology for Drug-like Molecules
Acknowledgments
Conflicts of Interest
References
- Xu, J. Synthetic methods of phosphonopeptides. Molecules 2020, 25, 5894. [Google Scholar] [CrossRef] [PubMed]
- Chernov, S.V.; Shul’ts, E.E.; Shakirov, M.M.; Tolstikov, G.A. Synthetic transformations of higher terpenoids: XII. Transformation of lambertianic acid into 14, 16-epoxyabietane diterpenoids. Russ. J. Org. Chem. 2006, 42, 36–41. [Google Scholar] [CrossRef]
- Shults, E.E.; Velder, J.; Schmalz, H.G.; Chernov, S.V.; Rubalova, T.V.; Gatilov, Y.V.; Henze, G.; Tolstikov, G.A.; Prokop, A. Gram-scale synthesis of pinusolide and evaluation of its antileukemic potential. Bioorganic Med. Chem. Lett. 2006, 16, 4228–4232. [Google Scholar] [CrossRef]
- Kharitonov, Y.V.; Shul’ts, E.E.; Rybalova, T.V.; Pavlova, A.V.; Tolstikova, T.G. Synthetic Transformations of Higher Terpenoids. 40. Synthesis and Assessment of Analgesic Activity of N-Containing Derivatives of Lambertianic Acid. Chem. Nat. Compd. 2021, 57, 879–886. [Google Scholar] [CrossRef]
- Kharitonov, Y.V.; Shults, E.E. An Approach toward 17-Arylsubstituted Marginatafuran-Type Isospongian Diterpenoids via a Palladium-Catalyzed Heck–Suzuki Cascade Reaction of 16-Bromolambertianic Acid. Molecules 2022, 27, 2643. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, M.; Yamada, H.; Hayashi, Y. Cyclization control of ambliofuran analog: Effective total synthesis of (.+-.)-baiyunol. J. Org. Chem. 1987, 52, 4878–4884. [Google Scholar] [CrossRef]
- Pandey, U.C.; Sarmah, P.; Sharma, R.P. Polyene cyclization: Cyclization studies on an acyclic furanoditerpene and its epoxide. Tetrahedron 1984, 40, 3739–3748. [Google Scholar] [CrossRef]
- Zhao, J.F.; Zhao, Y.J.; Loh, T.P. Indium tribromide-promoted arene-terminated epoxy olefin cyclization. Chem. Commun. 2008, 11, 1353–1355. [Google Scholar] [CrossRef]
- Ruddell, S.; Sugrue, E.; Memarzadeh, S.; Hellam, L.M.; Wilson, S.J.; France, D.J. Synthesis, Enantiomeric Resolution and Biological Evaluation of HIV Capsid Inhibition Activity for Racemic,(S)-and (R)-PF74. Molecules 2021, 26, 3919. [Google Scholar] [CrossRef]
- Blair, W.S.; Pickford, C.; Irving, S.L.; Brown, D.G.; Anderson, M.; Bazin, R.; Cao, J.; Ciaramella, G.; Isaacson, J.; Jackson, L.; et al. HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog. 2010, 6, e1001220. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.X.; Horsfall, L.E.; Hulme, A.N. New methods for the synthesis of spirocyclic cephalosporin analogues. Molecules 2021, 26, 6035. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Tice, C.M. The utilization of spirocyclic scaffolds in novel drug discovery. Expert Opin. Drug Discov. 2016, 11, 831–834. [Google Scholar] [CrossRef] [Green Version]
- SBukhari, S.N.A.; Ejaz, H.; Elsherif, M.A.; Janković, N. Synthesis and Characterization of Dihydrouracil Analogs Utilizing Biginelli Hybrids. Molecules 2022, 27, 2939. [Google Scholar] [CrossRef] [PubMed]
- Inada, M.; Hirao, Y.; Koga, T.; Itose, M.; Kunizaki, J.I.; Shimizu, T.; Sato, H. Relationships among plasma [2-13C] uracil concentrations, breath 13CO2 expiration, and dihydropyrimidine dehydrogenase (DPD) activity in the liver in normal and DPD-deficient dogs. Drug Metab. Dispos. 2005, 33, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Janusz, J.M. Solid-phase synthesis of 3-aminohydantoin, dihydrouracil, thiohydantoin and dihydrothiouracil derivatives. Tetrahedron Lett. 2000, 41, 1165–1169. [Google Scholar] [CrossRef]
- Blanco-Ania, D.; Valderas-Cortina, C.; Hermkens, P.H.; Sliedregt, L.A.; Scheeren, H.W.; Rutjes, F.P. Synthesis of dihydrouracils spiro-fused to pyrrolidines: Druglike molecules based on the 2-arylethyl amine scaffold. Molecules 2010, 15, 2269–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheich, C.; Puetter, V.; Schade, M. Novel small molecule inhibitors of MDR Mycobacterium tuberculosis by NMR fragment screening of antigen 85C. J. Med. Chem. 2010, 53, 8362–8367. [Google Scholar] [CrossRef]
- Narlawar, R.; Lane, J.R.; Doddareddy, M.; Lin, J.; Brussee, J.; IJzerman, A.P. Hybrid ortho/allosteric ligands for the adenosine A1 receptor. J. Med. Chem. 2010, 53, 3028–3037. [Google Scholar] [CrossRef]
- Tang, J.; Huber, A.D.; Pineda, D.L.; Boschert, K.N.; Wolf, J.J.; Kankanala, J.; Xie, J.; Sarafianos, S.G.; Wang, Z. 5-Aminothiophene-2, 4-dicarboxamide analogues as hepatitis B virus capsid assembly effectors. Eur. J. Med. Chem. 2019, 164, 179–192. [Google Scholar] [CrossRef]
- Duvauchelle, V.; Bénimélis, D.; Meffre, P.; Benfodda, Z. Catalyst-free site selective hydroxyalkylation of 5-phenylthiophen-2-amine with α-trifluoromethyl ketones through electrophilic aromatic substitution. Molecules 2022, 27, 925. [Google Scholar] [CrossRef]
- Sun, X.T.; Hu, Z.G.; Huang, Z.; Zhou, L.L.; Weng, J.Q. A Novel PIFA/KOH Promoted Approach to Synthesize C2-arylacylated Benzothiazoles as Potential Drug Scaffolds. Molecules 2022, 27, 726. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.D.; MacCoss, M.; Lawson, A.D. Rings in drugs: Miniperspective. J. Med. Chem. 2014, 57, 5845–5859. [Google Scholar] [CrossRef] [PubMed]
- Miralinaghi, P.; Schmitt, C.; Hartmann, R.W.; Frotscher, M.; Engel, M. 6-Hydroxybenzothiophene Ketones: Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Owing to Favorable Molecule Geometry and Conformational Preorganization. ChemMedChem 2014, 9, 2294–2308. [Google Scholar] [CrossRef]
- Komiya, M.; Asano, S.; Koike, N.; Koga, E.; Igarashi, J.; Nakatani, S.; Isobe, Y. Synthesis of novel benzo-fused heteroaryl derivatives as Ca2+/Calmodulin-dependent protein kinase II inhibitors. Chem. Pharm. Bull. 2013, 61, 1094–1097. [Google Scholar] [CrossRef] [Green Version]
- Myllymäki, M.J.; Saario, S.M.; Kataja, A.O.; Castillo-Melendez, J.A.; Nevalainen, T.; Juvonen, R.O.; Järvinen, T.; Koskinen, A.M. Design, synthesis, and in vitro evaluation of carbamate derivatives of 2-benzoxazolyl-and 2-benzothiazolyl-(3-hydroxyphenyl)-methanones as novel fatty acid amide hydrolase inhibitors. J. Med. Chem. 2007, 50, 4236–4242. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Nikolovska-Coleska, Z.; Qiu, S.; Yang, C.Y.; Guo, J.; Wang, S. Acylpyrogallols as inhibitors of antiapoptotic Bcl-2 proteins. J. Med. Chem. 2008, 51, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, C.M.; Wang, J.; Ahn, S.; Wang, Z.; Lu, Y.; Dalton, J.T.; Miller, D.D.; Li, W. Synthesis and antiproliferative activity of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization. Bioorg. Med. Chem. 2011, 19, 4782–4795. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.; Kunz, R.K.; Chen, N.; Rumfelt, S.; Siegmund, A.; Andrews, K.; Chmait, S.; Zhao, S.; Davis, C.; Chen, H.; et al. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A). J. Med. Chem. 2013, 56, 8781–8792. [Google Scholar] [CrossRef]
- Borsoi, A.F.; Paz, J.D.; Pissinate, K.; Rambo, R.S.; Pestana, V.Z.; Bizarro, C.V.; Basso, L.A.; Machado, P. Ultrasound-Assisted synthesis of 4-alkoxy-2-methylquinolines: An efficient method toward antitubercular drug candidates. Molecules 2021, 26, 1215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barker, G.; Rapposelli, S. New Synthetic Methodology for Drug-like Molecules. Molecules 2023, 28, 5632. https://doi.org/10.3390/molecules28155632
Barker G, Rapposelli S. New Synthetic Methodology for Drug-like Molecules. Molecules. 2023; 28(15):5632. https://doi.org/10.3390/molecules28155632
Chicago/Turabian StyleBarker, Graeme, and Simona Rapposelli. 2023. "New Synthetic Methodology for Drug-like Molecules" Molecules 28, no. 15: 5632. https://doi.org/10.3390/molecules28155632
APA StyleBarker, G., & Rapposelli, S. (2023). New Synthetic Methodology for Drug-like Molecules. Molecules, 28(15), 5632. https://doi.org/10.3390/molecules28155632