Ultra-High Adsorption Capacity of Core–Shell-Derived Magnetic Zeolite Imidazolate Framework-67 as Adsorbent for Selective Extraction of Theophylline
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of the Prepared Materials
2.2. Optimization of Experimental Conditions of MSPE
2.2.1. Amount of Adsorbent
2.2.2. Adsorption Time
2.2.3. Adsorption pH
2.2.4. Ionic Strength
2.2.5. Adsorption Temperature
2.2.6. Desorption Conditions
2.3. Extraction Selectivity on TP of Fe3O4-COOH@ZIF-67
2.4. Evaluation of the Adsorption Performance of Fe3O4-COOH@ZIF-67
2.4.1. Adsorption Isotherms
2.4.2. Adsorption Kinetics
2.5. Possible Adsorption Mechanism of Fe3O4-COOH@ZIF-67
2.6. Reusability and Storage Stability of Fe3O4-COOH@ZIF-67
2.7. Method Validation and Real Samples Analysis
2.8. Comparison with Previously Reported Methods
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Instruments
3.3. Preparation of Core–Shell-Derived Structural Magnetic Adsorbent
3.4. Preparation of Sample Solutions
3.5. Procedure of Magnetic Solid-Phase Extraction
3.6. Evaluating the Selectivity of Fe3O4-COOH@ZIF-67
3.7. Evaluation of Adsorption Isotherms and Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Barnes, P.J. Theophylline. Am. J. Respir. Crit. Care Med. 2013, 188, 901–906. [Google Scholar] [CrossRef]
- Baek, G.H.; Yang, S.W.; Yun, C.I.; Lee, J.G.; Kim, Y.J. Determination of methylxanthine contents and risk characterisation for various types of tea in Korea. Food Control 2022, 132, 108543. [Google Scholar] [CrossRef]
- Aqel, A.; Almulla, A.; Al-Rifai, A.; Wabaidur, S.M.; Alothman, Z.A.; Badjah-Hadj-Ahmed, A.Y. Rapid and Sensitive Determination of Methylxanthines in Commercial Brands of Tea Using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry. Int. J. Anal. Chem. 2019, 2019, 2926580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuai, T.K.; Zhang, C.C.; Zhang, M.; Wang, Y.L.; Xiong, H.Y.; Huang, Q.R.; Liu, J. Low-dose theophylline in addition to ICS therapy in COPD patients: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251348. [Google Scholar] [CrossRef]
- Garcia-Marcos, L.; Chiang, C.Y.; Asher, M.I.; Marks, G.B.; El Sony, A.; Masekela, R.; Bissell, K.; Ellwood, E.; Ellwood, P.; Pearce, N.; et al. Asthma management and control in children, adolescents, and adults in 25 countries: A Global Asthma Network Phase I cross-sectional study. Lancet Glob. Health 2023, 11, E218–E228. [Google Scholar] [CrossRef] [PubMed]
- Sultan, K.; Zamir, A.; Ashraf, W.; Imran, I.; Saeed, H.; Rehman, A.U.; Majeed, A.; Rasool, M.F. Clinical pharmacokinetics of terbutaline in humans: A systematic review. Naunyn-Schmiedebergs Arch. Pharmacol. 2023, 396, 213–227. [Google Scholar] [CrossRef]
- Karamchand, S.; Williams, M.; Naidoo, P.; Decloedt, E.; Allwood, B. Post-tuberculous lung disease: Should we be using Theophylline? J. Thorac. Dis. 2021, 13, 1230–1238. [Google Scholar] [CrossRef]
- Montano, L.M.; Sommer, B.; Gomez-Verjan, J.C.; Morales-Paoli, G.S.; Ramirez-Salinas, G.L.; Solis-Chagoyan, H.; Sanchez-Florentino, Z.A.; Calixto, E.; Perez-Figueroa, G.E.; Carter, R.; et al. Theophylline: Old Drug in a New Light, Application in COVID-19 through Computational Studies. Int. J. Mol. Sci. 2022, 23, 4167. [Google Scholar] [CrossRef] [PubMed]
- Maric, S.; Jocic, A.; Krstic, A.; Momcilovic, M.; Ignjatovic, L.; Dimitrijevic, A. Poloxamer-based aqueous biphasic systems in designing an integrated extraction platform for the valorization of pharmaceutical waste. Sep. Purif. Technol. 2021, 275, 119101. [Google Scholar] [CrossRef]
- Dolatabadi, R.; Zaheri, M.; Ebrahimi, S.; Mohammadi, A. A study on determination of theophylline in plasma and urine sample using electromembrane extraction combined with high-performance liquid chromatography-ultraviolet. Chem. Pap. 2022, 76, 681–690. [Google Scholar] [CrossRef]
- Deng, Q.L.; Sun, L.P.; Zhu, T. Preparation of porous aromatic framework modified graphene oxide for pipette-tip solid-phase extraction of theophylline in tea. Electrophoresis 2019, 40, 2954–2961. [Google Scholar] [CrossRef] [PubMed]
- Ghoraba, Z.; Aibaghi, B.; Soleymanpour, A. Ultrasound-assisted surfactant-enhanced emulsification microextraction and determination of caffeine and theophylline in human plasma and cocoa powder. Chem. Pap. 2022, 76, 5487–5496. [Google Scholar] [CrossRef]
- Sereshti, H.; Samadi, S. A rapid and simple determination of caffeine in teas, coffees and eight beverages. Food Chem. 2014, 158, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, A.R.; Rashidpur, A. Design of a new cartridge for selective solid phase extraction using molecularly imprinted polymers: Selective extraction of theophylline from human serum samples. Biosens. Bioelectron. 2009, 25, 647–651. [Google Scholar] [CrossRef]
- Majd, M.; Yazdanpanah, M.; Bayatloo, M.R.; Nojavan, S. Recent advances and applications of cyclodextrins in magnetic solid phase extraction. Talanta 2021, 229, 122296. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, I.; Fernandes, C. Magnetic solid phase extraction for determination of drugs in biological matrices. Trac-Trends Anal. Chem. 2017, 89, 41–52. [Google Scholar] [CrossRef]
- Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trac-Trends Anal. Chem. 2014, 59, 50–58. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Row, K.H. Magnetic Solid-phase Extraction with Fe3O4/Molecularly Imprinted Polymers Modified by Deep Eutectic Solvents and Ionic Liquids for the Rapid Purification of Alkaloid Isomers (Theobromine and Theophylline) from Green Tea. Molecules 2017, 22, 1061. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.H.; Shen, J.W.; Wang, C.Z.; Wei, Y.M. Selective extraction of theophylline from plasma by copper-doped magnetic microspheres prior to its quantification by HPLC. Microchim. Acta 2018, 185, 113. [Google Scholar] [CrossRef]
- Yan, F.; Liu, Z.Y.; Chen, J.L.; Sun, X.Y.; Li, X.J.; Su, M.X.; Li, B.; Di, B. Nanoscale zeolitic imidazolate framework-8 as a selective adsorbent for theophylline over caffeine and diprophylline. RSC Adv. 2014, 4, 33047–33054. [Google Scholar] [CrossRef]
- Chai, L.L.; Pan, J.Q.; Hu, Y.; Qian, J.J.; Hong, M.C. Rational design and growth of MOF-on-MOF heterostructures. Small 2021, 17, 2100607. [Google Scholar] [CrossRef]
- Choi, K.M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C.A.; Barmanbek, J.T.D.; Alshammari, A.S.; Yang, P.; Yaghi, O.M. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Cadiau, A.; Liu, Y.; Adil, K.; Chernikova, V.; Carja, I.D.; Belmabkhout, Y.; Karunakaran, M.; Shekhah, O.; Zhang, C.; et al. Enabling fluorinated MOF-Based membranes for simultaneous removal of H2S and CO2 from natural gas. Angew. Chem.-Int. Ed. 2018, 57, 14811–14816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Xu, J.; Bu, X.H. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev. 2019, 378, 17–31. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef] [Green Version]
- Esfahanian, M.; Ghasemzadeh, M.A.; Razavian, S.M.H. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artif. Cell Nanomed. Biotechnol. 2019, 47, 2024–2030. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O'Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S.; Jang, M.S.; Kwon, H.J.; Ahn, W.S. Zeolitic imidazolate frameworks: Synthesis, functionalization, and catalytic/adsorption applications. Catal. Surv. Asia 2014, 18, 101–127. [Google Scholar] [CrossRef]
- Ping, E.; Ji, H.; Zhang, L.; Zhou, Y.; Ding, C.; Chen, X. Kinetic and chemical affinity quantum sieving effects of ZIF-67 for H2 and D2 and gas chromatographic separation of hydrogen isotopes on columns packed with ZIF-67@NH2-γ-Al2O3. ACS Appl. Energ. Mater. 2021, 4, 10857–10866. [Google Scholar] [CrossRef]
- Liu, H.; Chen, L.; Ding, J. A core-shell magnetic metal organic framework of type Fe3O4@ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis. Microchim. Acta 2017, 184, 4091–4098. [Google Scholar] [CrossRef]
- Selahle, S.K.; Mpupa, A.; Nomngongo, P.N. Combination of zeolitic imidazolate framework-67 and magnetic porous porphyrin organic polymer for preconcentration of neonicotinoid insecticides in river water. J. Chromatogr. A 2022, 1661, 462685. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Y.A.; Chang, H.A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 2015, 139, 624–631. [Google Scholar] [CrossRef]
- Huo, S.H.; Yan, X.P. Facile magnetization of metal–organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Analyst 2012, 137, 3445–3451. [Google Scholar] [CrossRef]
- Saikia, M.; Bhuyan, D.; Saikia, L. Facile synthesis of Fe3O4 nanoparticles on metal organic framework MIL-101(Cr): Characterization and catalytic activity. New J. Chem. 2015, 39, 64–67. [Google Scholar] [CrossRef]
- Huang, C.; Qiao, X.; Sun, W.; Chen, H.; Chen, X.; Zhang, L.; Wang, T. Effective extraction of domoic acid from seafood based on postsynthetic-modified magnetic zeolite imidazolate framework-8 particles. Anal. Chem. 2019, 91, 2418–2424. [Google Scholar] [CrossRef]
- Silvestre, M.E.; Franzreb, M.; Weidler, P.G.; Shekhah, O.; Wöll, C. Magnetic cores with porous coatings: Growth of metal-organic frameworks on particles using liquid phase epitaxy. Adv. Funct. Mater. 2013, 23, 1210–1213. [Google Scholar] [CrossRef]
- Zhang, X.M.; Ji, G.B.; Liu, W.; Quan, B.; Liang, X.H.; Shang, C.M.; Cheng, Y.; Du, Y.W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942. [Google Scholar] [CrossRef]
- Ding, Y.W.; Jin, L.; Feng, S.L.; Chen, J. Core-shell magnetic zeolite imidazolate framework-8 as adsorbent for magnetic solid phase extraction of brucine and strychnine from human urine. J. Chromatogr. B 2021, 1173, 122702. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Nie, B.; Song, D. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223. [Google Scholar] [CrossRef]
- Yin, S.J.; Zhou, X.; Peng, L.J.; Li, F.; Zheng, G.C.; Yang, F.Q.; Hu, Y.J. Preparation of Fe3O4@SW-MIL-101-NH2 for selective pre-concentration of chlorogenic acid metabolites in rat plasma, urine, and feces samples. J. Pharm. Anal. 2022, 12, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Feng, L.; Wang, K.C.; Pang, J.D.; Bosch, M.; Lollar, C.; Sun, Y.J.; Qin, J.S.; Yang, X.Y.; Zhang, P.; et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Li, G.; Row, K.H.; Zhu, T. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea. Talanta 2016, 152, 1–8. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem.-Int. Ed. 2005, 44, 2782–2785. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Hu, X.; Sun, Z. Magnetic zeolite imidazole framework material-8 as an effective and recyclable adsorbent for removal of ceftazidime from aqueous solution. J. Hazard. Mater. 2020, 384, 121406. [Google Scholar] [CrossRef] [PubMed]
Sample | TP (μg/g) | RSD (%) a |
---|---|---|
jasmine tea | 5.80 ± 0.20 | 3.4 |
black tea | 4.31 ± 0.11 | 2.5 |
green tea | 1.53 ± 0.02 | 1.3 |
oolong tea | ND b | ND |
rabbit plasma | ND | ND |
Extraction Method | Analytes | Extraction Time (min) | Capacity (mg/g) | Recovery (%) | Application | Ref. |
---|---|---|---|---|---|---|
MIP/SPE | TP | >250 | 0.167 | 79–83 | human serum | [14] |
MIP/MSPE | TP, TB | >270 | 5.07, 4.87 | 87.51, 92.27 | green tea | [15] |
MIP/MSPE | TP, CA | >720 | 3.301, 2.436 | 98.7–100.8, 98.3–100.2 | green tea | [45] |
MSPE | TP | >100 | - | 91.2–100.4 | rabbit and rat plasma | [17] |
MSPE | TP | 120 | 146 | 54.80–77.90 | plasma and milk | [16] |
PT-SPE | TP | >400 | 93.25 | 82.83–93.08 | tea | [11] |
UA-SEME | TP, caffeine | 10 | - | 96.3–104.0, 98.8–102.0 | human plasma and cocoa powder | [12] |
MSPE | TP | 30 | 1764 | 74.41–86.07 | four types of tea and rabbit plasma | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-X.; Yin, S.-J.; Chai, T.-Q.; Wang, J.-L.; Chen, G.-Y.; Zhou, X.; Yang, F.-Q. Ultra-High Adsorption Capacity of Core–Shell-Derived Magnetic Zeolite Imidazolate Framework-67 as Adsorbent for Selective Extraction of Theophylline. Molecules 2023, 28, 5573. https://doi.org/10.3390/molecules28145573
Chen L-X, Yin S-J, Chai T-Q, Wang J-L, Chen G-Y, Zhou X, Yang F-Q. Ultra-High Adsorption Capacity of Core–Shell-Derived Magnetic Zeolite Imidazolate Framework-67 as Adsorbent for Selective Extraction of Theophylline. Molecules. 2023; 28(14):5573. https://doi.org/10.3390/molecules28145573
Chicago/Turabian StyleChen, Ling-Xiao, Shi-Jun Yin, Tong-Qing Chai, Jia-Li Wang, Guo-Ying Chen, Xi Zhou, and Feng-Qing Yang. 2023. "Ultra-High Adsorption Capacity of Core–Shell-Derived Magnetic Zeolite Imidazolate Framework-67 as Adsorbent for Selective Extraction of Theophylline" Molecules 28, no. 14: 5573. https://doi.org/10.3390/molecules28145573
APA StyleChen, L. -X., Yin, S. -J., Chai, T. -Q., Wang, J. -L., Chen, G. -Y., Zhou, X., & Yang, F. -Q. (2023). Ultra-High Adsorption Capacity of Core–Shell-Derived Magnetic Zeolite Imidazolate Framework-67 as Adsorbent for Selective Extraction of Theophylline. Molecules, 28(14), 5573. https://doi.org/10.3390/molecules28145573