Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties
Abstract
:1. Introduction
2. Phosphorus Dendrimers Built via Vinyl/Amine Coupling
3. Synthesis of Dendrimers via Staudinger Reaction
4. Synthesis via Coupling of AB5 Cyclotriphosphazene Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caminade, A.-M.; Turrin, C.-O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B. Dendrimers: Towards Catalytic, Material and Biomedical Uses, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2011. [Google Scholar]
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing Dendrimers for Biological Applications. Nat. Biotechnol. 2005, 23, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Pedziwiatr-Werbicka, E.; Milowska, K.; Dzmitruk, V.; Ionov, M.; Shcharbin, D.; Bryszewska, M. Dendrimers and Hyperbranched Structures for Biomedical Applications. Eur. Polym. J. 2019, 119, 61–73. [Google Scholar] [CrossRef]
- Riegert, D.; Bareille, L.; Laurent, R.; Majoral, J.P.; Caminade, A.-M.; Chaumonnot, A. Silica Functionalized by Bifunctional Dendrimers: Hybrid Nanomaterials for Trapping CO2. Eur. J. Inorg. Chem. 2016, 19, 3103–3110. [Google Scholar] [CrossRef]
- Ali, B.M.; Kumar, K.A.; Sultan Nasar, A.S. Fifth Generation Polyurethane Dendrimers Decorated with Protected Amine, Free Amine and Blocked Isocyanate End Groups: Synthesis and Electrolytic Performance to Increase the Efficiency of Dye-Sensitized Solar Cell. ChemistrySelect 2019, 4, 12983–12991. [Google Scholar] [CrossRef]
- Reek, J.N.H.; Arévalo, S.; van Heerbeek, R.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. Dendrimers in Catalysis. Adv. Catal. 2006, 49, 71–151. [Google Scholar] [CrossRef]
- Neumann, P.; Dib, H.; Caminade, A.-M.; Hey-Hawkins, E. Redox Control of a Dendritic Ferrocenyl-Based Homogeneous Catalyst. Angew. Chem. Int. Ed. 2015, 54, 311–314. [Google Scholar] [CrossRef]
- Caminade, A.-M.; Laurent, R. Homogeneous Catalysis with Phosphorus Dendrimer Complexes. Coord. Chem. Rev. 2019, 389, 59–72. [Google Scholar] [CrossRef]
- Thakare, S.; Shaikh, A.; Bodas, D.; Gajbhiye, V. Application of Dendrimer-Based Nanosensors in Immunodiagnosis. Colloids Surf. B 2022, 209, 112174. [Google Scholar] [CrossRef]
- Satija, J.; Sai, V.V.R.; Mukherji, S. Dendrimers in Biosensors: Concept and Applications. J. Mater. Chem. 2011, 21, 14367–14386. [Google Scholar] [CrossRef]
- Petriccone, M.; Laurent, R.; Turrin, C.-O.; Sebastián, R.M.; Caminade, A.-M. Specific Bifunctionalization on the Surface of Phosphorus Dendrimers Syntheses and Properties. Organics 2022, 3, 240–261. [Google Scholar] [CrossRef]
- Najafi, F.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Janus-Type Dendrimers: Synthesis, Properties, and Applications. J. Mol. Liq. 2022, 347, 118396. [Google Scholar] [CrossRef]
- Caminade, A.-M.; Laurent, R.; Delavaux-Nicot, B.; Majoral, J.P. “Janus” Dendrimers: Syntheses and Properties. New J. Chem. 2012, 36, 217–226. [Google Scholar] [CrossRef]
- de Gennes, P.G. Nanoparticles and Dendrimers: Hopes and Illusions. Croat. Chem. Acta 1998, 71, 833–836. Available online: https://hrcak.srce.hr/132422 (accessed on 21 June 2023).
- Yanagimoto, Y.; Takaguchi, Y.; Tuboi, S. Novel Synthesis of Surface-Block Dendrimer Using [4+4] Photocycloaddition of Anthryl Dendrons. Polym. J. 2006, 38, 1230–1236. [Google Scholar] [CrossRef] [Green Version]
- Nierengarten, J.F.; Eckert, J.F.; Rio, Y.; Del Pilar Carrion, M.; Gallani, J.L.; Guillon, D. Amphiphilic Diblock Dendrimers: Synthesis and Incorporation in Langmuir and Langmuir-Blodgett Films. J. Am. Chem. Soc. 2001, 123, 9743–9748. [Google Scholar] [CrossRef]
- Wooley, K.L.; Hawker, C.J.; Fréchet, J.M.J. Polymers with Controlled Molecular Architecture: Control of Surface Functionality in the Synthesis of Dendritic Hyperbranched Macromolecules Using the Convergent Approach. J. Chem. Soc. Perkin Trans. 1 1991, 5, 1059–1076. [Google Scholar] [CrossRef]
- Hawker, C.J.; Wooley, K.L.; Fréchet, J.M.J. Unimolecular Micelles and Globular Amphiphiles: Dendritic Macromolecules as Novel Recyclable Solubilization Agents. J. Chem. Soc. Perkin Trans. 1 1993, 12, 1287–1297. [Google Scholar] [CrossRef]
- Wooley, K.L.; Hawker, C.J.; Fréchet, J.M.J. Unsymmetrical Three-Dimensional Macromolecules: Preparation and Characterization of Strongly Dipolar Dendritic Macromolecules. J. Am. Chem. Soc. 1993, 115, 11496–11505. [Google Scholar] [CrossRef]
- Wooley, K.L.; Hawker, C.J.; Pochan, J.M.; Fréchet, J.M.J. Physical Properties of Dendritic Macromolecules: A Study of Glass Transition Temperature. Macromolecules 1993, 26, 1514–1519. [Google Scholar] [CrossRef]
- Bo, Z.; Rabe, J.P.; Schlüter, A.D. A Poly(para-phenylene) with Hydrophobic and Hydrophilic Dendrons: Prototype of an Amphiphilic Cylinder with the Potential to Segregate Lengthwise. Angew. Chem. Int. Ed. 1999, 38, 2370–2372. [Google Scholar] [CrossRef]
- Aoi, K.; Itoh, K.; Okada, M. Divergent/Convergent Joint Approach with a Half-Protected Initiator Core To Synthesize Surface-Block Dendrimers. Macromolecules 1997, 30, 8072–8074. [Google Scholar] [CrossRef]
- Rosati, M.; Acocella, A.; Pizzi, A.; Turtù, G.; Neri, G.; Demitri, N.; Raffaini, G.; Donnio, B.; Zerbetto, F.; Baldelli Bombelli, F.; et al. Janus-Type Dendrimers Based on Highly Branched Fluorinated Chains with Tunable Self-Assembly and 19F Nuclear Magnetic Resonance Properties. Macromolecules 2022, 55, 2486–2496. [Google Scholar] [CrossRef]
- Căta, A.; Ienașcu, I.M.C.; Ştefănuț, M.N.; Roșu, D.; Pop, O.R. Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review. Pharmaceutics 2023, 15, 589. [Google Scholar] [CrossRef] [PubMed]
- Maraval, V.; Laurent, R.; Donnadieu, B.; Mauzac, M.; Caminade, A.-M.; Majoral, J.P. Rapid Synthesis of Phosphorus-Containing Dendrimers with Controlled Molecular Architectures: First Example of Surface-Block, Layer-Block, and Segment-Block Dendrimers Issued from the Same Dendron. J. Am. Chem. Soc. 2000, 122, 2499–2511. [Google Scholar] [CrossRef]
- Maraval, V.; Laurent, R.; Merino, S.; Caminade, A.-M.; Majoral, J.P. Michael-Type Addition of Amines to the Vinyl Core of Dendrons—Application to the Synthesis of Multidendritic Systems. Eur. J. Org. Chem. 2000, 21, 3555–3568. [Google Scholar] [CrossRef]
- Launay, N.; Caminade, A.-M.; Majoral, J.P. Synthesis and Reactivity of Unusual Phosphorus Dendrimers. A Useful Divergent Growth Approach Up to the Seventh Generation. J. Am. Chem. Soc. 1995, 117, 3282–3283. [Google Scholar] [CrossRef]
- Galliot, C.; Prévoté, D.; Caminade, A.-M.; Majoral, J.P. Polyaminophosphines Containing Dendrimers. Syntheses and Characterizations. J. Am. Chem. Soc. 1995, 117, 5470–5476. [Google Scholar] [CrossRef]
- Maraval, V.; Maraval, A.; Spataro, G.; Caminade, A.-M.; Majoral, J.P.; Kim, D.H.; Knoll, W. Design of Tailored Multi-Charged Phosphorus Surface-Block Dendrimers. New J. Chem. 2006, 30, 1731–1736. [Google Scholar] [CrossRef]
- Blanzat, M.; Turrin, C.O.; Aubertin, A.M.; Couturier-Vidal, C.; Caminade, A.-M.; Majoral, J.P.; Rico-Lattes, I.; Lattes, A. Dendritic Catanionic Assemblies: In Vitro Anti-HIV Activity of Phosphorus-Containing Dendrimers Bearing Galβ1cer Analogues. ChemBioChem 2005, 6, 2207–2213. [Google Scholar] [CrossRef]
- Solassol, J.; Crozet, C.; Perrier, V.; Leclaire, J.; Béranger, F.; Caminade, A.-M.; Meunier, B.; Dormont, D.; Majoral, J.P.; Lehmann, S. Cationic Phosphorus-Containing Dendrimers Reduce Prion Replication Both in Cell Culture and in Mice Infected with Scrapie. J. Gen. Virol. 2004, 85, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Lebedeva, O.V.; Kim, D.H.; Caminade, A.-M.; Majoral, J.P.; Knoll, W.; Vinogradova, O.I. Assembly and Mechanical Properties of Phosphorus Dendrimer/Polyelectrolyte Multilayer Microcapsules. Langmuir 2005, 21, 7200–7206. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.J.; Maraval, V.; Caminade, A.-M.; Chung, K.; Lau, K.H.A.; Shin, K.; Majoral, J.P.; Knoll, W.; Kim, D.H. Layer-by-Layer Self-Assembly of Bisdendrons: An Unprecedented Route to Multilayer Thin Films. Macromol. Res. 2016, 24, 851–855. [Google Scholar] [CrossRef] [Green Version]
- Staudinger, H.; Hauser, E. Über Neue Organische Phosphorverbindungen IV Phosphinimine. Helv. Chim. Acta 1921, 2, 861–887. [Google Scholar] [CrossRef] [Green Version]
- Gololobov, Y.G.; Zhmurova, I.N.; Kasukhin, L.F. Sixty Years of Staudinger. Tetrahedron 1981, 37, 437–472. [Google Scholar] [CrossRef]
- Gololobov, Y.G. Recent Advances in the Staudinger Reaction. Tetrahedron 1992, 48, 1353–1406. [Google Scholar] [CrossRef]
- Fresneda, P.M.; Molina, P. Application of Iminophosphorane-Based Methodologies for the Synthesis Of Natural Products. Synlett 2004, 1, 1–17. [Google Scholar] [CrossRef]
- Brauge, L.; Magro, G.; Caminade, A.-M.; Majoral, J.P. First Divergent Strategy Using Two AB2 Unprotected Monomers for the Rapid Synthesis of Dendrimers. J. Am. Chem. Soc. 2001, 123, 6698–6699. [Google Scholar] [CrossRef]
- Gottis, S.; Rodriguez, L.I.; Laurent, R.; Angurell, I.; Seco, M.; Rossell, O.; Majoral, J.P.; Caminade, A.-M. Janus Carbosilane/Phosphorhydrazone Dendrimers Synthesized by the ‘Click’ Staudinger Reaction. Tetrahedron Lett. 2013, 54, 6864–6867. [Google Scholar] [CrossRef]
- Maraval, V.; Sebastián, R.M.; Ben, F.; Laurent, R.; Caminade, A.-M.; Majoral, J.P. Varying Topology of Dendrimers—A New Approach toward the Synthesis of Di-Block Dendrimers. Eur. J. Inorg. Chem. 2001, 7, 1681–1691. [Google Scholar] [CrossRef]
- Mitjaville, J.; Caminade, A.-M.; Mathieu, R.; Majoral, J. New Synthetic Strategies for Phosphorus-Containing Cryptands and the First Phosphorus Spherand Type Compound. J. Am. Chem Soc. 1994, 116, 5007–5008. [Google Scholar] [CrossRef]
- Caminade, A.-M.; Hameau, A.; Majoral, J.-P. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans. 2016, 45, 1810–1822. [Google Scholar] [CrossRef]
- Maraval, V.; Caminade, A.-M.; Majoral, J.P.; Blais, J.C. Dendrimer Design: How to Circumvent the Dilemma of a Reduction of Steps or an Increase of Function Multiplicity? Angew. Chem. Int. Ed. 2003, 42, 1822–1826. [Google Scholar] [CrossRef]
- Zibarov, A.; Oukhrib, A.; Catot, J.A.; Turrin, C.O.; Caminade, A.-M. AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications. Molecules 2021, 26, 4017. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ferrero, E.; Franc, G.; Mazères, S.; Turrin, C.O.; Boissière, C.; Caminade, A.-M.; Majoral, J.P.; Sanchez, C. Optical Properties of Hybrid Dendritic-Mesoporous Titania Nanocomposite Films. Chem. Eur. J. 2008, 14, 7658–7669. [Google Scholar] [CrossRef]
- Fuchs, S.; Pla-Quintana, A.; Mazères, S.; Caminade, A.-M.; Majoral, J.P. Cationic and Fluorescent “Janus” Dendrimers. Org. Lett. 2008, 10, 4751–4754. [Google Scholar] [CrossRef]
- Branchi, B.; Ceroni, P.; Bergamini, G.; Balzani, V.; Maestri, M.; Van Heyst, J.; Lee, S.K.; Luppertz, F.; Vögtle, F. A Cyclam Core Dendrimer Containing Dansyl and Oligoethylene Glycol Chains in the Branches: Protonation and Metal Coordination. Chem. Eur. J. 2006, 12, 8926–8934. [Google Scholar] [CrossRef]
- Fuchs, S.; Otto, H.; Jehle, S.; Henklein, P.; Schlüter, A.D. Fluorescent Dendrimers with a Peptide Cathepsin B Cleavage Site for Drug Delivery Applications. Chem. Commun. 2005, 1, 1830–1832. [Google Scholar] [CrossRef]
- Fuchs, S.; Kapp, T.; Otto, H.; Schöneberg, T.; Franke, P.; Gust, R.; Schüter, A.D. A Surface-Modified Dendrimer Set for Potential Application as Drug Delivery Vehicles: Synthesis, In Vitro Toxicity, and Intracellular Localization. Chem. Eur. J. 2004, 10, 1167–1192. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.L.; Zhong, X.H.; Steinhart, M.; Caminade, A.-M.; Majoral, J.P.; Knoll, W. Functional Quantum-Dot/Dendrimer Nanotubes for Sensitive Detection of DNA Hybridization. Small 2008, 4, 566–571. [Google Scholar] [CrossRef]
- Mongin, O.; Krishna, T.R.; Werts, M.H.V.; Caminade, A.-M.; Majoral, J.P.; Blanchard-Desce, M. A Modular Approach to Two-Photon Absorbing Organic Nanodots: Brilliant Dendrimers as an Alternative to Semiconductor Quantum Dots? Chem. Commun. 2006, 8, 915–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolland, O.; Griffe, L.; Poupot, M.; Maraval, A.; Ouali, A.; Coppel, Y.; Fournié, J.J.; Bacquet, G.; Turrin, C.O.; Caminade, A.-M.; et al. Tailored Control and Optimisation of the Number of Phosphonic Acid Termini on Phosphorus-Containing Dendrimers for the Ex-Vivo Activation of Human Monocytes. Chem. Eur. J. 2008, 14, 4836–4850. [Google Scholar] [CrossRef] [PubMed]
- Griffe, L.; Poupot, M.; Marchand, P.; Maraval, A.; Turrin, C.O.; Rolland, O.; Métivier, P.; Bacquet, G.; Fournié, J.J.; Caminade, A.-M.; et al. Multiplication of Human Natural Killer Cells by Nanosized Phosphonate-Capped Dendrimers. Angew. Chem. Int. Ed. 2007, 46, 2523–2526. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.L.; Vandyukova, I.I.; Vandyukov, A.E.; Fuchs, S.; Majoral, J.P.; Caminade, A.-M.; Kovalenko, V.I. DFT Study of Structure, IR and Raman Spectra of the Fluorescent “Janus” Dendron Built from Cyclotriphosphazene Core. J. Mol. Struct. 2011, 1005, 25–30. [Google Scholar] [CrossRef]
- Caminade, A.M.; Laurent, R.; Turrin, C.O.; Rebout, C.; Delavaux-Nicot, B.; Ouali, A.; Zablocka, M.; Majoral, J.P. Phosphorus dendrimers as viewed by 31P NMR spectroscopy; synthesis and characterization. Comp. Rend. Chimie 2010, 13, 1006–1027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cejas-Sánchez, J.; Kajetanowicz, A.; Grela, K.; Caminade, A.-M.; Sebastián, R.M. Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties. Molecules 2023, 28, 5570. https://doi.org/10.3390/molecules28145570
Cejas-Sánchez J, Kajetanowicz A, Grela K, Caminade A-M, Sebastián RM. Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties. Molecules. 2023; 28(14):5570. https://doi.org/10.3390/molecules28145570
Chicago/Turabian StyleCejas-Sánchez, Joel, Anna Kajetanowicz, Karol Grela, Anne-Marie Caminade, and Rosa María Sebastián. 2023. "Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties" Molecules 28, no. 14: 5570. https://doi.org/10.3390/molecules28145570
APA StyleCejas-Sánchez, J., Kajetanowicz, A., Grela, K., Caminade, A. -M., & Sebastián, R. M. (2023). Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties. Molecules, 28(14), 5570. https://doi.org/10.3390/molecules28145570