Preparation of Alcohol Dehydrogenase–Zinc Phosphate Hybrid Nanoflowers through Biomimetic Mineralization and Its Application in the Inhibitor Screening
Abstract
:1. Introduction
2. Results and Discussion
2.1. Monitoring the Enzyme Activity of ADH HNFs by UV Analysis
2.2. Optimization of Preparation Conditions of ADH HNFs
2.3. Optimization of Enzymatic Reaction Conditions
2.4. Kinetics Study of ADH HNFs
2.5. Screening of Inhibitors and Molecular Docking
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Instruments
3.3. Synthesis of ADH HNFs
3.4. Optimization of Preparation Conditions of ADH HNFs
3.5. Determination of ADH HNFs Enzymatic Activity
3.6. Determination of Free ADH Enzymatic Activity
3.7. Enzyme Kinetics Assay
3.8. Evaluation of ADH Inhibitory Activity of P. chinense and Its Small-Molecule Compounds
3.9. Molecular Docking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wolszczak-Biedrzycka, B.; Zasimowicz-Majewska, E.; Bieńkowska, A.; Biedrzycki, G.; Dorf, J.; Jelski, W. Activity of total alcohol dehydrogenase, alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in the serum of patients with alcoholic fatty liver disease. Medicina 2022, 58, 25. [Google Scholar] [CrossRef]
- Shah, A.M.; Mohamed, H.; Fazili, A.B.A.; Yang, W.; Song, Y. Investigating the effect of alcohol dehydrogenase gene knockout on lipid accumulation in mucor circinelloides WJ11. J. Fungi 2022, 8, 917. [Google Scholar] [CrossRef]
- Langley, C.; Tatsis, E.; Hong, B.; Nakamura, Y.; Paetz, C.; Stevenson, C.E.M.; Basquin, J.; Lawson, D.M.; Caputi, L.; O’Connor, S.E. Expansion of the catalytic repertoire of alcohol dehydrogenases in plant metabolism. Angew. Chem. Int. Ed. 2022, 61, e202210934. [Google Scholar] [CrossRef]
- Tran, S.; Nowicki, M.; Facciol, A.; Chatterjee, D.; Gerlai, R. Ethanol-induced ADH activity in zebrafish: Differential concentration-dependent effects on high-versus low-affinity ADH enzymes. Zebrafish Apr. 2016, 75–78. [Google Scholar] [CrossRef]
- Arigos, P.; Garavito, R.M.; Eventoff, W.; Rossmann, M.G.; Brändén, C.I. Similarities in active center geometries of zinc-containing enzymes, proteases, and dehydrogenases. J. Mol. Biol. 1978, 126, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.G.; Yin, H.H.; Yu, D.F.; Chen, X.; Tang, X.L.; Zhang, X.J.; Xue, Y.P.; Wang, Y.J.; Liu, Z.Q. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl. Microbiol. Biotechnol. 2017, 101, 987–1001. [Google Scholar] [CrossRef]
- Di, L.; Balesano, A.; Jordan, S.; Shi, S.M. The role of alcohol dehydrogenase in drug metabolism: Beyond ethanol oxidation. AAPS J. 2021, 23, 20. [Google Scholar] [CrossRef]
- Wolszczak-Biedrzycka, B.; Bieńkowska, A.; Zasimowicz, E.; Biedrzycki, G.; Dorf, J.; Jelski, W. An assessment of the serum activity of ADH and ALDH in patients with primary biliary cholangitis. Arch. Immunol. Ther. Exp. 2023, 71, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Han, Z.; Zhang, J.; Ding, Y.; Chen, J.; Qiao, H.; Gao, N. Effect of ADHI on hepatic stellate cell activation and liver fibrosis in mice. Biochem. Biophys. Res. Commun. 2023, 651, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Duester, G.; Shimizu, A.; Yamamoto, I.; Kameyama, K.; Ohno, Y. In vivo contribution of Class III alcohol dehydrogenase (ADH3) to alcohol metabolism through activation by cytoplasmic solution hydrophobicity. Biochim. Biophys. Acta 2006, 1762, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Liu, L.L.; Chen, X.Q. Rapid screening and analysis of alcohol dehydrogenase binders from Glycyrrhiza uralensis root extract using functionalized magnetic nanoparticles coupled with HPLC–MS/MS. Can. J. Chem. 2013, 91, 1147–1154. [Google Scholar] [CrossRef]
- Akakpo, J.Y.; Ramachandran, A.; Orhan, H.; Curry, S.C.; Rumack, B.H.; Jaeschke, H. 4-methylpyrazole protects against acetaminophen-induced acute kidney injury. Toxicol. Appl. Pharmacol. 2020, 409, 115317. [Google Scholar] [CrossRef]
- Beaulieu, J.; Roberts, D.M.; Gosselin, S.; Hoffman, R.S.; Lavergne, V.; Hovda, K.E.; Megarbane, B.; Lung, D.; Thanacoody, R.; Ghammoum, M. Treating ethylene glycol poisoning with alcohol dehydrogenase inhibition, but without extracorporeal treatments: A systematic review. Clin. Toxicol. 2022, 60, 784–797. [Google Scholar] [CrossRef]
- Mégarbane, B.; Borron, S.W.; Baud, F.J. Current recommendations for treatment of severe toxic alcohol poisonings. Intensive Care Med. 2005, 31, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, J.; Zhang, D.; Liu, J.; Wu, Q.; Chen, J.; Tan, P.; Xing, B.; Han, Y.; Zhang, P.; et al. Mechanism of drug-induced liver injury and hepatoprotective effects of natural drugs. Chin. Med. 2021, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Luo, P.; Zheng, L.; Chen, J.; Zhang, J.; Tang, H.; Liu, D.; He, X.; Shi, Q.; Gu, L.; et al. 18beta-glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs. J. Pharm. Anal. 2022, 12, 570–582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.W.; Guo, W.W.; Guo, J.F.; Wang, X.; Chen, X.Q.; Wu, X. Three new flavonoids from Penthorum chinense Pursh and their docking studies. Nat. Prod. Res. 2021, 35, 49–56. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, S.; Luo, C.; Sun, Y.; Lu, Q.; Huang, L.; Chen, F.; Tang, L. Functional teas from the stems of Penthorum chinense Pursh.: Phenolic constituents, antioxidant and hepatoprotective activity. Plant Foods Hum. Nutr. 2019, 74, 83–90. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.J.; Feng, R.; Jiang, Y.; Zhang, D.Y.; He, C.; Li, P.; Wan, J.B. Hepatoprotective properties of Penthorum chinense Pursh against carbon tetrachloride-induced acute liver injury in mice. Chin. Med. 2017, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Jin, Z.; Dong, J.; Wang, Z.; Jiang, K.; Ye, Y.; Dou, X.; Ding, B. Bioactivity evaluation of pinocembrin derivatives from Penthorum chinense Pursh stems. Nat. Prod. Commun. 2019, 14, 1934578X–1987589X. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Lei, J.D.; Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef]
- Songa, E.A.; Okonkwo, J.O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016, 155, 289–304. [Google Scholar] [CrossRef]
- Lee, H.R.; Chung, M.; Kim, M.I.; Ha, S.H. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Enzym. Microb. Technol. 2017, 105, 24–29. [Google Scholar] [CrossRef]
- Somturk, B.; Hancer, M.; Ocsoy, I.; Özdemir, N. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans. 2015, 44, 13845–13852. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ge, J.; Liu, W.; Lan, M.; Zhang, H.; Wang, P.; Wang, Y.; Niu, Z. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: Synthesis and application as a colorimetric sensor. Nanoscale 2014, 6, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; He, R.; Zhuang, A.; Wang, X.; Zheng, J.; Hou, J.H. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J. Am. Chem. Soc. 2013, 135, 1272–1275. [Google Scholar] [CrossRef]
- Smoturk, B.; Yilmaz, I.; Altinkaynak, C.; Karatepe, A.; Özdemir, N.; Ocsoy, I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb. Technol. 2016, 86, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Xiao, Y.; Wang, L.; Yin, Y.Q.; Zheng, J.N.; Yang, H.H.; Chen, G.N. Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion. RSC Adv. 2014, 4, 13888–13891. [Google Scholar] [CrossRef]
- Yin, Y.; Xiao, Y.; Lin, G.; Xiao, Q.; Lin, Z.; Cai, Z. An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J. Mater. Chem. B 2015, 3, 2295–2300. [Google Scholar] [CrossRef]
- Liang, L.; Fei, X.; Li, Y.; Tian, J.; Xu, L.; Wang, X.; Wang, Y. Hierarchical assembly of enzyme-inorganic composite materials with extremely high enzyme activity. RSC Adv. 2015, 5, 96997–97002. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, H.; Wang, X.; Jiang, H.; Hu, G.; Yang, F. Preparation of phytic acid modified α-glucosidase/Cu3(PO4)2·3H2O hybrid nanoflower and its application. Enzyme Microb. Technol. 2021, 146, 109776. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Tao, Y.; Chen, Y.; Yang, Y.; Liang, X.; Li, Q. Construction of β-galactosidase-inorganic hybrid nanoflowers through biomimetic mineralization for lactose degradation. Biochem. Eng. J. 2023, 197, 108980. [Google Scholar] [CrossRef]
- Xu, H.; Liang, H. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance. Int. J. Biol. Macromol. 2022, 220, 124–134. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, X.B.; Zhao, Z.L.; Zhu, G.Z.; Chen, T.; Fu, T.; Tan, W.H. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew. Chem. Int. Ed. 2014, 126, 5931–5936. [Google Scholar] [CrossRef]
- Zhang, B.; Li, P.; Zhang, H.; Wang, H.; Li, X.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 2016, 291, 287–297. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, P.; Fang, Z.; Jiang, H. Trypsin/Zn3(PO4)2 hybrid nanoflowers: Controlled synthesis and excellent performance as an immobilized enzyme. Int. J. Mol. Sci. 2022, 23, 11853. [Google Scholar] [CrossRef]
- Yang, H.; He, P.; Yin, Y.; Mao, Z.; Zhang, J.; Zhong, C.; Xie, T.; Wang, A. Succinic anhydride-based chemical modification making laccase@Cu3(PO4)2 hybrid nanoflowers robust in removing bisphenol a in wastewater. Bioproc. Biosyst. Eng. 2021, 44, 2061–2073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, P.; Zhang, H.; Fan, L.; Wang, H.; Li, X.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Papain/Zn3(PO4)2 hybrid nanoflower: Preparation, characterization and its enhanced catalytic activity as an immobilized enzyme. RSC Adv. 2016, 6, 46702–46710. [Google Scholar] [CrossRef]
- Uygun, D.A.; Akduman, B.; Uygun, M.; Akgöl, S.; Denizli, A. Immobilization of alcohol dehydrogenase onto metal-chelated cryogels. J. Biomater. Sci. Polym. Ed. 2015, 26, 446–457. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, T.; Liu, C.; Ling, X.; Zhuang, M.; Zhang, J.; Zhang, Y. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. Int. J. Biol. Macromol. 2016, 88, 9–17. [Google Scholar] [CrossRef]
- Xia, H.; Li, Z.; Zhong, X.; Li, B.; Jiang, Y.; Jiang, Y. HKUST-1 catalyzed efficient in situ regeneration of NAD+ for dehydrogenase mediated oxidation. Chem. Eng. Sci. 2019, 203, 43–53. [Google Scholar] [CrossRef]
- Shakir, M.; Nasir, Z.; Khan, M.S.; Lutfullah; Alam, M.F.; Younus, H.; Al-Resayes, S.I. Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support. Int. J. Biol. Macromol. 2015, 72, 1196–1204. [Google Scholar] [CrossRef]
- Alam, M.F.; Laskar, A.A.; Zubair, M.; Baig, U.; Younus, H. Immobilization of yeast alcohol dehydrogenase on polyaniline coated silver nanoparticles formed by green synthesis. J. Mol. Catal. B Enzym. 2015, 119, 78–84. [Google Scholar] [CrossRef]
- Baig, U.; Gondal, M.A.; Alam, M.F.; Laskar, A.A.; Alam, M.; Younus, H. Enzyme immobilization and molecular modeling studies on an organic-inorganic polypyrrole-titanium(iv) phosphate nanocomposite. New J. Chem. 2015, 39, 6976–6986. [Google Scholar] [CrossRef]
- Ghannadi, S.; Abdizadeh, H.; Miroliaei, M.; Saboury, A.A. Immobilization of alcohol dehydrogenase on titania nanoparticles to enhance enzyme stability and remove substrate inhibition in the reaction of formaldehyde to methanol. Ind. Eng. Chem. Res. 2019, 58, 9844–9854. [Google Scholar] [CrossRef]
- Wegner, S.A.; Pollard, K.A.; Kharazia, V.; Darevsky, D.; Perez, L.; Roychowdhury, S.; Xu, A.; Ron, D.; Nagy, L.E.; Hopf, F.W. Limited excessive voluntary alcohol drinking leads to liver dysfunction in mice. Alcohol. Clin. Exp. Res. 2017, 41, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.F.; Yang, J.L. Advances in screening enzyme inhibitors by capillary electrophoresis. Electrophoresis 2019, 40, 2075–2083. [Google Scholar] [CrossRef]
- Svensson, S.; Höög, J.; Schneider, G.; Sandalova, T. Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency. J. Mol. Biol. 2000, 302, 441–453. [Google Scholar] [CrossRef]
- Zheng, L.; Xie, X.N.; Wang, Z.; Zhang, Y.X.; Wang, L.; Cui, X.Y.; Huang, H.; Zhuang, H. Fabrication of a nano-biocatalyst for regioselective acylation of arbutin. Green Chem. Lett. Rev. 2018, 11, 55–61. [Google Scholar] [CrossRef]
- Kaya, N.; Aktaş Uygun, D.; Akgöl, S.; Denizli, A. Purification of alcohol dehydrogenase from saccharomyces cerevisiae using magnetic dye-ligand affinity nanostructures. Appl. Biochem. Biotechnol. 2013, 169, 2153–2164. [Google Scholar] [CrossRef]
- Yang, M.; Shi, D.; Wang, Y.; Ebadi, A.G.; Toughani, M. Study on interaction of coomassie brilliant blue g-250 with bovine serum albumin by multispectroscopic. Int. J. Pept. Res. Ther. 2021, 27, 421–431. [Google Scholar] [CrossRef]
- Chen, G.Y.; Qian, Z.M.; Yin, S.J.; Zhou, X.; Yang, F.Q. A Sensitive and selective colorimetric method based on the acetylcholinesterase-like activity of zeolitic imidazolate framework-8 and its applications. Molecules 2022, 27, 7491. [Google Scholar] [CrossRef] [PubMed]
- El-Bakary, A.A.; El-Dakrory, S.A.; Attalla, S.M.; Hasanein, N.A.; Malek, H.A. Ranitidine as an alcohol dehydrogenase inhibitor in acute methanol toxicity in rats. Hum. Exp. Toxicol. 2010, 29, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, Z.; Zhang, H.; Yin, S.; Xia, F.; Zhang, Q.; Wan, J.; Gao, J.; Yang, F. LC–MS-based multivariate statistical analysis for the screening of potential thrombin/factor Xa inhibitors from Radix Salvia Miltiorrhiza. Chin. Med. 2020, 15, 38. [Google Scholar] [CrossRef] [Green Version]
Immobilization Carrier | Substrate | Km (mM) | Vmax (μM·min−1) | Kcat (min−1) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Immobilized | Free | Immobilized | Free | Immobilized | Free | ||||
Fe3O4@SiO2-epoxy NPs | Ethanol | NAD+ | 31.32 | 11.54 | 44.27 | 56.72 | – a | – | [40] |
HKUST-1 | Ethanol | NAD+ | 34.3 | 26.2 | 2300 | 10700 | 13.5 | 62.6 | [41] |
Metal-chelated cryogels | Phenylglyoxylic acid | NAD+ | 35 | 143 | 0.034 | 71.43 | 3165.7 | 3743.9 | [39] |
Ni-Co nanoferrites | Ethanol | NAD+ | 237 | 154 | 190.83 | 315.55 | – | – | [42] |
Polyaniline coated AgNPs | Ethanol | NAD+ | 205.3 | 163.7 | 233.0 | 321.2 | – | – | [43] |
PPy-TiP | Ethanol | NAD+ | 223.71 | 153.6 | 201.53 | 340.7 | – | – | [44] |
TiO2 NPs | Formaldehyde | NAD+ | 23.3 | 11.5 | 65.8 | 100 | 1.45 | 2.2 | [45] |
HNFs | Ethanol | NAD+ | 3.54 | 5.33 | 15.72 | 47.58 | 0.4546 | 0.9366 | This work |
Compounds | Inhibition (%) | Compounds | Inhibition (%) |
---|---|---|---|
Aqueous extract of P. chinense | 57.9 ± 1.2 | L-Epicatechin | – a |
Apigenin | 52.5 ± 5.5 | Naringenin | 75.5 ± 2.1 |
Cianidanol | 34.9 ± 4.0 | Protocatechuic acid | 68.3 ± 2.9 |
Ellagic acid | 58.2 ± 10.3 | Quercetin | – |
Gallic acid | 61.9 ± 2.8 | Vanillic acid | 55.1 ± 1.0 |
Compounds | Binding Energy (Kcal/mol) | Hydrogen Bonds | Distance (10−10 m) | Other Amino Acid Residues |
---|---|---|---|---|
Ranitidine a | −6.77 | PHE321, THR48 | 2.00 2.65 | CYS46, CYS178, GLY297, GLY322, HIS67, ILE311, MET145, VAL296, THR319, THR121, PRO120, PHE93, PHE320, ZN380, VAL207, SER182 |
Gallic acid | −7.94 | PHE321, THR48 | 2.09 2.21 | VAL207, CYS178, PHE93, SER182, GLY322, PHE320, THR319, VAL296, ILE311, HIS67, ZN380, CYS46 |
Naringenin | −5.53 | HIS47, ALA298, LYS299 | 2.18 2.66 2.60 | GLY297, CYS272, CYS46, MET364, VAL207, VAL45, ARG371, CYS205, CYS206, ALA273 |
Protocatechuic acid | −7.86 | VAL296, THR48 | 1.93 2.38 | MET145, GLY297, ILE311, THR319, PHE320, PHE321, SER182, CYS178, PHE93, ARG371, CYS46, ZN380, HIS67 |
Vanillic acid | −8.27 | PHE321, THR48 | 1.79 2.48 | MET145, PHE93, ILE311, THR319, PHE320, GLY322, VAL296, SER182, VAL207, CYS46, ZN480, HIS67, CYS178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.-L.; Chen, H.; Chen, G.-Y.; Wang, S.; Wang, Y.; Yang, F.-Q. Preparation of Alcohol Dehydrogenase–Zinc Phosphate Hybrid Nanoflowers through Biomimetic Mineralization and Its Application in the Inhibitor Screening. Molecules 2023, 28, 5429. https://doi.org/10.3390/molecules28145429
Luo M-L, Chen H, Chen G-Y, Wang S, Wang Y, Yang F-Q. Preparation of Alcohol Dehydrogenase–Zinc Phosphate Hybrid Nanoflowers through Biomimetic Mineralization and Its Application in the Inhibitor Screening. Molecules. 2023; 28(14):5429. https://doi.org/10.3390/molecules28145429
Chicago/Turabian StyleLuo, Mao-Ling, Hua Chen, Guo-Ying Chen, Shengpeng Wang, Yitao Wang, and Feng-Qing Yang. 2023. "Preparation of Alcohol Dehydrogenase–Zinc Phosphate Hybrid Nanoflowers through Biomimetic Mineralization and Its Application in the Inhibitor Screening" Molecules 28, no. 14: 5429. https://doi.org/10.3390/molecules28145429