Multi-Enzymatic Cascade for Efficient Deracemization of dl-Pantolactone into d-Pantolactone
Abstract
:1. Introduction
2. Results and Discussion
2.1. Three-Enzyme Cascade for Deracemization of dl-Pantolactone
2.2. Purification and Characterization of Key Enzymes AmeLPLDH and ZpaCPR
2.3. Advanced Engineering of Biocatalyst Co-Expressing AmeLPLDH, ZpaCPR, and BsGDH
2.4. Deracemization of dl-Pantolactone at High Concentrations
3. Materials and Methods
3.1. Chemicals, Genes, Plasmids, and Organisms
3.2. Construction of Toolbox through Homologous Protein-Search Analysis
3.3. Overexpression of Single LPLDH, CPR, or GDH in E. coli BL(DE3)
3.4. Screening of LPLDH, CPR, and GDH Co-Expressed in E. coli BL21 (DE3)
3.5. Purification of AmeLPLDH and ZpaCPR
3.6. Activity Assay of AmeLPLDH and ZpaCPR
3.7. Co-Expression of AmeLPLDH and Fusion Enzyme ZpaCPR-(GSG)-BsGDH
3.8. Optimization of Multi-Enzymatic Deracemization of dl-Pantolactone
3.9. Deracemization of 1.25 mM dl-Pantolactone through Supplementation with BsGDH
3.10. GC, GC-MS and NMR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pscheidt, B.; Avi, M.; Gaisberger, R.; Hartner, F.S.; Skranc, W.; Glieder, A. Screening hydroxynitrile lyases for (R)-pantolactone synthesis. J. Mol. Catal. B Enzym. 2008, 52–53, 183–188. [Google Scholar] [CrossRef]
- Pscheidt, B.; Liu, Z.; Gaisberger, R.; Avi, M.; Skranc, W.; Gruber, K.; Griengl, H.; Glieder, A. Efficient Biocatalytic Synthesis of (R)-Pantolactone. Adv. Synth. Catal. 2008, 350, 1943–1948. [Google Scholar] [CrossRef]
- Heidlindemann, M.; Hammel, M.; Scheffler, U.; Mahrwald, R.; Hummel, W.; Berkessel, A.; Gröger, H. Chemoenzymatic Synthesis of Vitamin B5-Intermediate (R)-Pantolactone via Combined Asymmetric Organo- and Biocatalysis. J. Org. Chem. 2015, 80, 3387–3396. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Fang, Y.; Luo, W.F.; Huang, L.N. Biocatalytic kinetic resolution of d,l-pantolactone by using a novel recombinant d-lactonase. RSC Adv. 2020, 11, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Yang, L.; Tang, Y.B.; Huang, L.N.; Luo, W.F. Industrial kinetic resolution of d,l-pantolactone by an immobilized whole-cell biocatalyst. RSC Adv. 2021, 11, 30373–30376. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zheng, P.; Wu, D.; Chen, P.; Bai, Y.; Wang, J. Biocatalysis of heterogenously-expressed d-lactonohydrolases and its efficient preparation of desirable d-pantoic acid. Enzyme Microb. Technol. 2022, 155, 109981. [Google Scholar] [CrossRef]
- Zhu, F.-Y.; Zhong, J.; Shen, Q.; Jia, D.-X.; Ma, S.-J.; Du, J.; Wu, H.; Yang, Q.; Cao, M.; Liu, Z.-Q.; et al. Development of an Escherichia coli whole cell catalyst harboring conjugated polyketone reductase from Candida glabrata for synthesis of d-(−)-pantolactone. Process Biochem. 2022, 112, 223–233. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, L.; Zhang, L.; Bai, Y.; Chen, L.; Yu, M.; Cheng, F.; Sun, J.; Wang, Z.; Ying, X. Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy. Biotechnol. Lett. 2017, 39, 1741–1746. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Wu, Y.; Jiang, X.; Pei, X.; Su, W. Recombinant expression and molecular insights into the catalytic mechanism of an NADPH-dependent conjugated polyketone reductase for the asymmetric synthesis of (R)-pantolactone. Enzyme Microb. Technol. 2019, 126, 77–85. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, P.; Wu, Y.; Wang, A.; Liu, F.; Pei, X. Discovery of a new NADPH-dependent aldo-keto reductase from Candida orthopsilosis catalyzing the stereospecific synthesis of (R)-pantolactone by genome mining. J. Biotechnol. 2019, 291, 26–34. [Google Scholar] [CrossRef]
- Cheng, P.; Tang, M.; Chen, Z.; Liu, W.; Jiang, X.; Pei, X.; Su, W. Dual-enzyme and NADPH co-embedded organic-inorganic hybrid nanoflowers prepared using biomimetic mineralization for the asymmetric synthesis of (R)-(-)-pantolactone. React. Chem. Eng. 2020, 5, 1973–1980. [Google Scholar] [CrossRef]
- Pei, X.; Wang, J.; Zheng, H.; Cheng, P.; Wu, Y.; Wang, A.; Su, W. Highly efficient asymmetric reduction of ketopantolactone to d-(−)-pantolactone by Escherichia coli cells expressing recombinant conjugated polyketone reductase and glucose dehydrogenase in a fed-batch biphasic reaction system. React. Chem. Eng. 2020, 5, 531–538. [Google Scholar] [CrossRef]
- Zhu, F.Y.; Yang, Q.; Cao, M.; Zheng, K.; Zhang, X.J.; Shen, Q.; Cai, X.; Liu, Z.Q.; Zheng, Y.G. Tuning an efficient Escherichia coli whole-cell catalyst expressing l-pantolactone dehydrogenase for the biosynthesis of d-(-)-pantolactone. J. Biotechnol. 2023, 367, 1–10. [Google Scholar] [CrossRef]
- Voss, C.V.; Gruber, C.C.; Faber, K.; Knaus, T.; Macheroux, P.; Kroutil, W. Orchestration of concurrent oxidation and reduction cycles for stereoinversion and deracemisation of sec-alcohols. J. Am. Chem. Soc. 2008, 130, 13969–13972. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Nie, Y.; Mu, X.Q.; Xu, Y. De novo construction of multi-enzyme system for one-pot deracemization of (R,S)-1-phenyl-1,2-ethanediol by stereoinversion of (S)-enantiomer to the corresponding counterpart. J. Mol. Catal. B-Enzym. 2016, 129, 21–28. [Google Scholar] [CrossRef]
- Xue, Y.P.; Zeng, H.; Jin, X.L.; Liu, Z.Q.; Zheng, Y.G. Enantioselective cascade biocatalysis for deracemization of 2-hydroxy acids using a three-enzyme system. Microb. Cell. Fact. 2016, 15, 162. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.H.; Gong, H.; Dong, Y.; Li, J.M.; Cheng, F.; Xue, Y.P.; Zheng, Y.G. Enzyme cascade for biocatalytic deracemization of d,l-phosphinothricin. J. Biotechnol. 2021, 325, 372–379. [Google Scholar] [CrossRef]
- Si, D.; Urano, N.; Nozaki, S.; Honda, K.; Shimizu, S.; Kataoka, M. L-pantoyl lactone dehydrogenase from Rhodococcus erythropolis: Genetic analyses and application to the stereospecific oxidation of L-pantoyl lactone. Appl. Microbiol. Biotechnol. 2012, 95, 431–440. [Google Scholar] [CrossRef]
- Zheng, G.-W.; Liu, Y.-Y.; Chen, Q.; Huang, L.; Yu, H.-L.; Lou, W.-Y.; Li, C.-X.; Bai, Y.-P.; Li, A.-T.; Xu, J.-H. Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase CgKR1. ACS Catal. 2017, 7, 7174–7181. [Google Scholar] [CrossRef]
- Liang, C.; Nie, Y.; Mu, X.; Xu, Y. Gene mining-based identification of aldo–keto reductases for highly stereoselective reduction of bulky ketones. Bioresour. Bioprocess. 2018, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Ricca, E.; Brucher, B.; Schrittwieser, J.H. Multi-Enzymatic Cascade Reactions: Overview and Perspectives. Adv. Synth. Catal. 2011, 353, 2239–2262. [Google Scholar] [CrossRef]
- Weber, D.; de Souza Bastos, L.; Winkler, M.; Ni, Y.; Aliev, A.E.; Hailes, H.C.; Rother, D. Multi-enzyme catalysed processes using purified and whole-cell biocatalysts towards a 1,3,4-substituted tetrahydroisoquinoline. RSC Adv. 2023, 13, 10097–10109. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wang, Q.; Qiao, J.; Feng, B.; Zhou, X.; Jin, L.; Feng, Y.; Yang, D.; Lu, C.; Ying, X. Cascading Old Yellow Enzyme, Alcohol Dehydrogenase and Glucose Dehydrogenase for Selective Reduction of (E/Z)-Citral to (S)-Citronellol. Catalysts. 2021, 11, 931. [Google Scholar] [CrossRef]
- Aalbers, F.S.; Fraaije, M.W. Enzyme Fusions in Biocatalysis: Coupling Reactions by Pairing Enzymes. Chembiochem. 2019, 20, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Ying, X.; Wang, C.; Shao, S.; Wang, Q.; Zhou, X.; Bai, Y.; Chen, L.; Lu, C.; Zhao, M.; Wang, Z. Efficient Oxidation of Methyl Glycolate to Methyl Glyoxylate Using a Fusion Enzyme of Glycolate Oxidase, Catalase and Hemoglobin. Catalysts 2020, 10, 943. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, C.; Zeng, Y.; Wang, T.; Qiao, J.; Lu, C.; Wang, Z.; Ying, X. Efficient whole-cell oxidation of α,β-unsaturated alcohols to α,β-unsaturated aldehydes through the cascade biocatalysis of alcohol dehydrogenase, NADPH oxidase and hemoglobin. Microb. Cell. Fact. 2021, 20, 17. [Google Scholar] [CrossRef]
- Siedentop, R.; Claassen, C.; Rother, D.; Luetz, S.; Rosenthal, K. Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts 2021, 11, 1183. [Google Scholar] [CrossRef]
- Siedentop, R.; Siska, M.; Moeller, N.; Lanzrath, H.; von Lieres, E.; Luetz, S.; Rosenthal, K. Bayesian Optimization for an ATP-Regenerating In Vitro Enzyme Cascade. Catalysts 2023, 13, 468. [Google Scholar] [CrossRef]
- Feng, B.; Li, X.; Jin, L.; Wang, Y.; Tang, Y.; Hua, Y.; Lu, C.; Sun, J.; Zhang, Y.; Ying, X. Engineering the Activity of Old Yellow Enzyme NemR-PS for Efficient Reduction of (E/Z)-Citral to (S)-Citronellol. Catalysts 2022, 12, 631. [Google Scholar] [CrossRef]
- Kataoka, M.; Shimizu, S.; Yamada, H. Purification and characterization of a novel FMN-dependent enzyme Membrane-bound l-(+)-pantoyl lactone dehydrogenase from Nocardia asteroides. Eur. J. Biochem. 1992, 204, 799–806. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Ye, J.-J.; Shen, Z.-Y.; Hong, H.-B.; Yan, J.-B.; Lin, Y.; Chen, Z.-X.; Zheng, Y.-G.; Shen, Y.-C. Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system. Appl. Microbiol. Biotechnol. 2015, 99, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.Z.; Ou, L.; Li, C.X.; Pan, J.; Xu, J.H.; Chen, Q.; Zheng, G.W. Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents. Chembiochem 2020, 21, 2680–2688. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.L.; Vinuela, E.; Maizel, J.V., Jr. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 1967, 28, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
Parameter | AmeLPLDH | ZpaCPR |
---|---|---|
Vmax (U/mg) | 52.55 ± 0.42 | 72.14 ± 3.16 |
Km (mM) | 0.57 ± 0.04 | 3.65 ± 0.58 |
kcat (s−1) | 36.41 ± 0.29 | 42.22 ± 1.85 |
kcat/Km (s−1 mM−1) | 63.85 ± 0.51 | 11.60 ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Liu, X.; Wang, T.; Wang, Y.; Zhou, X.; Mao, W.; Zhang, Y.; Wang, Z.; Sun, J.; Ying, X. Multi-Enzymatic Cascade for Efficient Deracemization of dl-Pantolactone into d-Pantolactone. Molecules 2023, 28, 5308. https://doi.org/10.3390/molecules28145308
Jin L, Liu X, Wang T, Wang Y, Zhou X, Mao W, Zhang Y, Wang Z, Sun J, Ying X. Multi-Enzymatic Cascade for Efficient Deracemization of dl-Pantolactone into d-Pantolactone. Molecules. 2023; 28(14):5308. https://doi.org/10.3390/molecules28145308
Chicago/Turabian StyleJin, Lijun, Xun Liu, Tairan Wang, Yi Wang, Xueting Zhou, Wangwei Mao, Yinjun Zhang, Zhao Wang, Jie Sun, and Xiangxian Ying. 2023. "Multi-Enzymatic Cascade for Efficient Deracemization of dl-Pantolactone into d-Pantolactone" Molecules 28, no. 14: 5308. https://doi.org/10.3390/molecules28145308
APA StyleJin, L., Liu, X., Wang, T., Wang, Y., Zhou, X., Mao, W., Zhang, Y., Wang, Z., Sun, J., & Ying, X. (2023). Multi-Enzymatic Cascade for Efficient Deracemization of dl-Pantolactone into d-Pantolactone. Molecules, 28(14), 5308. https://doi.org/10.3390/molecules28145308