Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Acute Toxicity
2.3. Analgesic Activity
2.3.1. Effect of P. peltatum Fresh Leaf Essential Oil on Tail Immersion of Rats in Hot Water
2.3.2. Effect of P. peltatum Dry Leaf Essential Oil on Tail Immersion of Rats in Hot Water
2.3.3. Effect of P. peltatum Fresh Twig Essential Oil on Tail Immersion of Rats in Hot Water
2.3.4. Effect of P. peltatum Dry Twig Essential Oil on Tail Immersion of Rats in Hot Water
2.4. Anti-Inflammatory Activity
2.4.1. Effect of P. peltatum Fresh Leaf Essential Oil on Egg-Albumin-Induced Paw Oedema in Rats
2.4.2. Effect of P. peltatum Dry Leaf Essential Oil on Egg-Albumin-Induced Paw Oedema in Rats
2.4.3. Effect of P. peltatum Fresh Twig Essential Oil on Egg-Albumin-Induced Paw Oedema in Rats
2.4.4. Effect of P. peltatum Dry Twig Essential Oil on Egg-Albumin-Induced Paw Oedema in Rats
3. Discussion
3.1. Chemical Composition of P. peltatum Essential Oils
3.2. Acute Toxicity and Analgesic Activity of P. peltatum Essential Oils
3.3. Anti-Inflammatory Activity of P. peltatum Essential Oils
4. Materials and Methods
4.1. Plant Material
4.2. Extraction of Essential Oils
4.3. Analysis of Essential Oils
4.4. Identification of Essential Oils
4.5. Biological Studies
4.5.1. Experimental Animals
4.5.2. Drug Used
4.5.3. Acute Toxicity
4.5.4. Analgesic Activity: Tail immersion Test
- Group I: treated with 5% tween 80, 10 mg/kg (negative control);
- Group II: treated with 100 mg/kg diclofenac (positive group);
- Group III: treated with 1 mL of 2% of P. peltatum fresh leaf essential oil (P.P.F.L) (100 mg/kg);
- Group IV: treated with 1 mL of 2% of P. peltatum fresh leaf essential oil (P.P. F.L) (200 mg/kg);
- Group V: treated with 1 mL of 2% of P. peltatum fresh leaf essential oil (P.P.F. L) (400 mg/kg).
4.5.5. Anti-Inflammatory Activity: Egg-Albumin-Induced Right Hind Paw Oedema
- Group I: treated with 5% tween 80, 10 mg/kg (negative control);
- Group II: treated with 100 mg/kg diclofenac (positive group);
- Group III: treated with 1 mL of 2% of P. peltatum fresh leaf essential oil (P.P.F.L) (100 mg/kg);
- Group IV: treated with 1 mL of 2% of P. peltatum fresh leaf essential oil (P.P. F.L) (200 mg/kg);
- Group V: treated with 1 mL of 2% of P. peltatum fresh leaf essential oil (P.P.F.-L) (400 mg/kg).
4.5.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lis-Balchin, M. Geranium and Pelargonium: The Genera Geranium and Pelargonium, 1st ed.; Taylor & Francis Inc.: New York, NY, USA, 2002; pp. 5–10. Available online: https://www.proquest.com/docview/218930410 (accessed on 27 March 2016).
- Röschenbleck, J.; Albers, F.; Muller, K.; Weinl, S.; Kudla, J. Phylogenetics, character evolution and a subgeneric revision of the genus Pelargonium (Geraniaceae). Phytotaxa 2014, 159, 31–76. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, G. In the ivy league: The indigenous garden. Farmers Wkly. 2005, 78, 79. [Google Scholar]
- Sharma, V. Comparative studies on essential oil compositions of rose scented geranium Pelargonium graveolens from different higher altitude ranges of North Indian Himalayas. Int. J. Rec. Sci. Res. 2013, 4, 742–746. Available online: http://www.recentscientific.com (accessed on 27 March 2016).
- Miller, D. Geranium and Pelargonium, 1st ed.; CRC Press: London, UK, 2002; pp. 61–91. [Google Scholar] [CrossRef]
- SANBI. Available online: http://pza.sanbi.org/sites/default/files/info_library/pelargpeltat.pdf (accessed on 27 March 2016).
- Parađiković, N.; Tkalec, M.; Mustapić-Karlić, J.; Križan, I.; Vinković, T. Growing Pelargonium peltatum and Pelargonium x hortum from Cuttings. Agro-Knowl. J. 2012, 13, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Random Harvest Nursery. Available online: https://www.randomharvest.co.za/South-African-Indigenous-Plants/Show-Plant/Plant=Pelargoniumpeltatum (accessed on 27 March 2016).
- Mirik, M.; Aysan, Y.; Baysal-Gurel, F. Bacterial spot and blight diseases of ornamental plants caused by different Xanthomonas species in Turkey. Plant Prot. Sci. 2018, 54, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Yovkova, M.; Petrović-Obradović, O.; Tasheva-Terzieva, E.; Pencheva, A. Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouse in Bulgaria. ZooKeys 2013, 319, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Euro-Mediterranean Plant Diversity. Available online: http://ww2.bgbm.org/euroPlusMed (accessed on 27 March 2016).
- Randall, R.P. (Ed.) A Global Compendium of Weeds, 3rd ed.; Weeds Society of Western Australia: Perth, Australia, 2017; p. 1124. Available online: https://www.researchgate.net/publication/313645439 (accessed on 27 March 2016).
- Catalogue of the Vascular Plants of Ecuador. Available online: http://legacy.tropicos.org/Project/CE (accessed on 27 March 2016).
- Herb Society of America. Available online: https://www.herbsociety.org/file_download/inline/2b2f9fc8-e827-446c-99da-1c1e8b6559d0 (accessed on 27 March 2016).
- Adams, R.P. Identification of Essential Oil Components by Ion Trap Mass Spectroscopy, 5th ed.; Academic Press: New York, NY, USA, 2012; pp. 2–11. [Google Scholar]
- ESO. ESO 2000—The Complete Database of Essential Oil; Boelens Aroma Chemical Information Service: Huizen, The Netherlands, 1999; Available online: https://scholar.google.com/scholar_lookup?title=The+complete+database+of+essential+oil&author=ESO+2000&publication_year=1999 (accessed on 27 March 2016).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; p. 456. [Google Scholar]
- Nossier, F.H.M. Phytochemical and Biological Study of Pelargonium peltatum (L.) L’Herit. Family Geraniaceae Cultivated in Egypt. Master’s Thesis, Cairo University, Giza, Egypt, 3 March 2019. Available online: http://www.secheresse.info/spip.php?article84917 (accessed on 27 March 2016).
- Moghddam, M.; Mehdizadeh, L. Chemistry of essential oils and factors affecting their constituents. In Soft Chemistry and Food Fermentation; Academic Press: Cambridge, MA, USA, 2017; pp. 379–419. [Google Scholar] [CrossRef]
- Moradalizadeh, M.; Samadi, N.; Rajaei, P. Comparison of hydrodistillation, microwave hydrodistillation and solvent free microwave methods in analysis of the essential oils from aerial parts of Hapliphyllum robustum Bge. by GC/MS method. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1058–1067. Available online: http://www.ijabbr.com (accessed on 27 March 2016).
- Paula-Freire, L.I.G.; Andersen, M.L.; Molska, G.R.; Köhn, D.O.; Carlini, E.L.A. Evaluation of the antinociceptive activity of Ocimum gratissimum L. (Lamiaceae) essential oil and its isolated active principles in mice. Phytother. Res. 2013, 27, 1220–1224. [Google Scholar] [CrossRef]
- Hejna, M.; Kovanda, L.; Rossi, L.; Liu, Y. Mint oils: In vitro ability to perform anti-inflammatory, antioxidant, and antimicrobial activities and to enhance intestinal barrier integrity. Antioxidants 2021, 10, 1004. [Google Scholar] [CrossRef]
- Tashiro, S.; Yamaguchi, R.; Ishikawa, S.; Sakurai, T.; Kajiya, K.; Kanmura, Y.; Kuwaki, T.; Kashiwadani, H. Odour-induced analgesia mediated by hypothalamic orexin neurons in mice. Sci. Rep. 2016, 6, 37129. [Google Scholar] [CrossRef] [Green Version]
- Pinho, J.P.; Silva, A.S.; Pinheiro, B.G.; Sombra, I.; Bayma, J.C.; Lahlou, S.; Sousa, P.J.; Magalhães, P.J. Antinociceptive and antispasmodic effects of the essential oil of Ocimum micranthum: Potential anti-inflammatory properties. Planta Med. 2012, 78, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Klauke, A.L.; Racz, I.; Pradier, B.; Markert, A.; Zimmer, A.M.; Gertsch, J.; Zimmer, A. The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur. Neuropsychopharmacol. 2014, 24, 608–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liapi, C.; Anifandis, G.; Chinou, I.; Kourounakis, A.P.; Theodosopoulos, S.; Galanopoulou, P. Antinociceptive properties of 1,8-cineole and β-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents. Planta Med. 2007, 73, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.K.; Ballico, J.L.; Lapa, F.R.; Gonçalves, H.P.; de Souza, L.M.; Lacomini, M.; Werner, M.F.; Baggio, C.H.; Pereira, I.T.; da Silva, L.M.; et al. Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C.DC in rodents. J. Ethnopharmacol. 2012, 142, 274–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.M.M.; Ullah, F.; Shah, S.M.H.; Zahoor, M.; Sadiq, A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium stocksianum bioss collected from the Northwest of Pakistan. BMC Complement. Altern. Med. 2012, 12, 244. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Okuda-Ashitaka, E.; Minami, T. Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociception and nocistatin. Neurosci. Res. 2001, 41, 299–332. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, J.Y.; Kim, C.J. Anti-inflammatory activity of arctigenin from Forsythia fructus. J. Ethnopharmacol. 2008, 116, 305–310. [Google Scholar] [CrossRef]
- Wallace, J.M. Nutritional and botanical modulation of the inflammatory cascade: Eicosanoids, cyclooxygenase and lipoxygenase-as an adjunct in cancer therapy. Integr. Cancer Ther. 2002, 1, 7–37. [Google Scholar] [CrossRef]
- Andrade, L.; de Sousa, D. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [Green Version]
- Menichini, F.; Conforti, F.; Rigano, D.; Formisano, C.; Piozzi, F.; Senatore, F. Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem. 2009, 11, 670–686. [Google Scholar] [CrossRef]
- Chao, K.L.; Hua, K.F.; Hsu, H.Y.; Cheng, S.S.; Liu, J.Y.; Chang, S.T. Study on the anti-inflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J. Agric. Food Chem. 2005, 53, 7274–7278. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Dunstan, J.A.; Hale, J.; Lehmann, H.; Robinson, C.J.; Pressscott, S.L.; Riley, T.V. Antimicrobial and anti-inflammatory activity of five Taxandria fragrans oils in vitro. Microbiol. Immunol. 2008, 52, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Rungqu, P.; Oyedeji, O.; Nkeh-Chungag, B.; Songca, S.; Oluwafemi, O.; Oyedeji, A. Anti-inflammatory activity of the essential oils of Cymbopogon validus (Stapf) Stapf ex Burtt Davy from Eastern Cape, South Africa. Asian Pac. J. Trop. Med. 2016, 9, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Paena, A.T.; Marzocco, S.; Popolo, A.; Pinto, A. (−)-Linalool inhibits in vitro NO formation. Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci. 2006, 78, 719–723. [Google Scholar] [CrossRef]
- Tavares, A.C.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Lopes, M.C.; Canhoto, J.; Salgueiro, L.R. Essential oils from Distichoselinum teniufolium: Chemical composition, cytotoxicity, antifungal and anti-inflammatory properties. J. Ethnopharmacol. 2010, 130, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Ma, L.; Dong, L.; Zhang, X.; Chen, J.; Fu, X. Anti-inflammatory, antinociceptive activity of an essential oil recipe consisting of the supercritical fluid CO2 extract of white pepper, long pepper, cinnamon, saffron and myrrh in vivo. J. Oleo Sci. 2014, 63, 1251–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoye, F.B.C.; Obonga, W.O.; Onyegbule, F.A.; Ndu, O.O.; Ihekwereme, C.P. Chemical composition and anti-inflammatory activity of essential oils from the leaves of Ocimum basilicum L. and Ocimum gratissimum L. (Lamiaceae). Int. J. Pharm. Sci. Res. 2014, 5, 2174–2180. [Google Scholar] [CrossRef]
- Yoon, W.J.; Moon, J.Y.; Song, G.; Lee, Y.K.; Han, M.S.; Lee, J.S.; Ihm, B.S.; Lee, W.J.; Lee, N.J.; Hyun, C.G. Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW264.7 macrophages. Food Chem. Toxicol. 2010, 48, 1222–1229. [Google Scholar] [CrossRef]
- Dutra, R.C.; Fava, M.B.; Alves, C.S.C.; Ferreira, A.P.; Barbosa, N.R. Antiulcer genic and anti-inflammatory activities of the essential oil from Pterodon emarginatus seeds. J. Pharm. Pharmacol. 2009, 61, 243–250. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; van Zyl, R.L.; van Vuuren, S.F.; Viljoen, A.M.; Figueiredo, A.C.; Barroso, J.G.; Barroso, J.G.; Pedfro, L.G.; Tilney, P.M. Chemical composition, leaf trichome types and biological activities of the essential oils of four related Salvia species indigenous to Southern Africa. J. Essent Oil Res. 2006, 18, 72–79. [Google Scholar] [CrossRef]
- Lourens, A.C.U.; Reddy, D.; Başer, K.H.C.; Viljoen, A.M.; van Vuuren, S.F. In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species. J. Ethnopharmacol 2004, 95, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Milojević, S.Ž.; Stojanović, T.D.; Palić, R.; Lazić, M.L.; Veljković, V.B. Kinetics of distillation of essential oil from comminuted ripe juniper (Juniperus communis L.) berries. Biochem. Eng. J. 2008, 39, 547–553. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 1st ed.; CRC press: Boca Raton, FL, USA, 2009; pp. 1–38. [Google Scholar] [CrossRef]
- Lorke, D.A. A new Approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Luttinger, D. Determination of antinociceptive efficacy of drugs in mice using different water temperatures in a tail immersion test. J. Pharmacol. Methods 1985, 13, 351–357. [Google Scholar] [CrossRef]
- Okokon, J.E. Anti-inflammatory, analgesic and antipyretic activities of ethanolic root extract of Croton zambesicus. Pak. J. Pharm. Sci. 2010, 23, 383–390. [Google Scholar] [CrossRef] [Green Version]
No | Compounds | KIa | KIb | Fresh Leaf (%) | Dry Leaf (%) | Fresh Twig (%) | Dry Twig (%) | I.M |
---|---|---|---|---|---|---|---|---|
1 | p-Xylene | 883 | 888 | - | 1.6 | 0.8 | - | MSc, KId |
2 | α-Pinene | 939 | 939 | - | 1.2 | 3.0 | - | MSc, KId |
3 | Camphene | 953 | 954 | 33.4 | 3.9 | 3.6 | 10.4 | MSc, KId |
4 | β-Pinene | 980 | 978 | 4.9 | 1.4 | 4.4 | 6.0 | MSc, KId |
5 | Myrcene | 991 | 988 | 5.2 | - | 10.7 | - | MSc, KId |
6 | 2-Pentylfuran | 992 | 1040 | - | 2.2 | - | - | MSc, KId |
7 | 2-Carene | 1001 | 1001 | - | 1.6 | 1.9 | - | MSc, KId |
8 | α-Terpinene | 1018 | 1017 | - | 1.3 | 1.2 | - | MSc, KId |
9 | β-Phellandrene | 1031 | 1030 | - | - | 4.6 | - | MSc, KId |
10 | trans-β-ocimene | 1053 | 1052 | - | 2.2 | 0.9 | - | MSc, KId |
11 | α-Terpinolene | 1088 | 1079 | - | 1.4 | 0.6 | - | MSc, KId |
12 | Linalool | 1098 | 1095 | 11.7 | 1.6 | 1.9 | 6.2 | MSc, KId |
13 | Nonanal | 1098 | 1103 | - | 2.1 | 2.1 | - | MSc, KId |
14 | α-Thujone | 1102 | 1123 | - | 1.5 | - | 15.6 | MSc, KId |
15 | iso-Menthone | 1164 | 1162 | - | 0.8 | - | - | MSc, KId |
16 | α-Terpineol | 1189 | 1188 | 19.1 | 4.8 | 5.4 | 13.1 | MSc, KId |
17 | Myrtenal | 1193 | 1195 | - | 2.7 | - | - | MSc, KId |
18 | Piperitone | 1251 | 1249 | 12.2 | 0.9 | - | - | MSc, KId |
19 | α-Cubebene | 1351 | 1348 | - | 1.0 | 2.1 | - | MSc, KId |
20 | α-Longipinene | 1351 | 1353 | - | 0.7 | 1.6 | - | MSc, KId |
21 | Geranyl acetone | 1353 | 1352 | - | 3.5 | - | - | MSc, KId |
22 | Eugenol | 1356 | 1351 | - | 1.7 | - | - | MSc, KId |
23 | α-Copaene | 1376 | 1377 | - | - | 2.4 | - | MSc, KId |
24 | β-Bourbonene | 1384 | 1388 | - | 6.2 | - | 4.2 | MSc, KId |
25 | β-Cubenene | 1390 | 1387 | - | - | 5.6 | - | MSc, KId |
26 | α-Cadinene | 1409 | 1412 | - | - | 1.7 | - | MSc, KId |
27 | α-Gurjunene | 1409 | 1410 | - | - | 0.5 | - | MSc, KId |
28 | β-Caryophyllene | 1418 | 1419 | 4.3 | 1.2 | 9.5 | - | MSc, KId |
29 | α-Ionone | 1426 | 1426 | - | 2.8 | 2.0 | - | MSc, KId |
30 | γ-Elemene | 1430 | 1437 | - | - | 2.8 | - | MSc, KId |
31 | (Z)-β-farnesene | 1443 | 1457 | - | 0.7 | - | - | MSc, KId |
32 | α-Caryophyllene | 1454 | 1478 | - | 0.8 | 5.5 | - | MSc, KId |
33 | γ-Gurjunene | 1473 | 1475 | - | 1.8 | 1.4 | - | MSc, KId |
34 | Germacrene D | 1480 | 1483 | - | - | 3.7 | 10.4 | MSc, KId |
35 | α-Armophene | 1485 | 1484 | - | - | 1.2 | 5.2 | MSc, KId |
36 | α-Selinene | 1494 | 1498 | - | 0.5 | 0.6 | - | MSc, KId |
37 | β-Cadinene | 1519 | 1518 | - | - | 3.4 | 6.7 | MSc, KId |
38 | δ-Cadinene | 1524 | 1522 | - | 0.9 | 0.8 | - | MSc, KId |
39 | α-Calacorene | 1548 | 1545 | - | 0.8 | - | - | MSc, KId |
40 | Lauric acid | 1568 | 1570 | - | 1.5 | - | - | MSc, KId |
41 | Spathulenol | 1576 | 1578 | - | 2.6 | 0.7 | - | MSc, KId |
42 | Caryophyllene oxide | 1581 | 1582 | - | 2.6 | 1.9 | 6.1 | MSc, KId |
43 | Cedrol | 1596 | 1616 | - | - | 1.2 | - | MSc, KId |
44 | 1,2-Epoxide-humulene | 1606 | 1608 | - | - | 0.9 | 3.8 | MSc, KId |
45 | cis-α-Santalol | 1678 | 1678 | - | 0.5 | - | - | MSc, KId |
46 | Myristic acid | 1720 | 1746 | - | 2.0 | - | - | MSc, KId |
47 | Phytone | 1845 | 1840 | - | 5.0 | 0.4 | - | MSc, KId |
48 | Longifolenaldehyde | 1876 | 1876 | - | 2.7 | - | - | MSc, KId |
49 | E,E-Farnesyl acetone | 1921 | 1920 | - | 1.8 | - | - | MSc, KId |
50 | Palmitic acid | 1984 | 1984 | - | - | 1.2 | - | MSc, KId |
51 | n-Eicosane | 2000 | 2000 | - | 0.6 | - | - | MSc, KId |
52 | Heneicosane | 2100 | 2100 | - | 1.0 | - | - | MSc, KId |
53 | Linoleic acid | 2130 | 2146 | - | 1.0 | - | - | MSc, KId |
Plant Part Used | Dose (mg/kg, p.o.) | Death Patterns after 24 h |
---|---|---|
Phase 1 (n = 3) | ||
Fresh leaf, dry leaf, fresh twig, dry twig | 10 | 0/3 |
Fresh leaf, dry leaf, fresh twig, dry twig | 100 | 0/3 |
Fresh leaf, dry leaf, fresh twig, dry twig | 1000 | 0/3 |
Phase 2 (n = 1) | ||
Fresh leaf, dry leaf, fresh twig, dry twig | 1000 | 0/1 |
Fresh leaf, dry leaf, fresh twig, dry twig | 1600 | 0/1 |
Fresh leaf, dry leaf, fresh twig, dry twig | 2900 | 0/1 |
Fresh leaf, dry leaf, fresh twig, dry twig | 5000 | 0/1 |
LD50 | mg/kg, p.o |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rungqu, P.; Oyedeji, O.; Gondwe, M.; Oyedeji, A. Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa. Molecules 2023, 28, 5294. https://doi.org/10.3390/molecules28145294
Rungqu P, Oyedeji O, Gondwe M, Oyedeji A. Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa. Molecules. 2023; 28(14):5294. https://doi.org/10.3390/molecules28145294
Chicago/Turabian StyleRungqu, Pamela, Opeoluwa Oyedeji, Mavuto Gondwe, and Adebola Oyedeji. 2023. "Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa" Molecules 28, no. 14: 5294. https://doi.org/10.3390/molecules28145294
APA StyleRungqu, P., Oyedeji, O., Gondwe, M., & Oyedeji, A. (2023). Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa. Molecules, 28(14), 5294. https://doi.org/10.3390/molecules28145294