Deep Eutectic Solvents: Properties and Applications in CO2 Separation
Abstract
:1. Introduction
2. Properties of Deep Eutectic Solvents
2.1. Freezing Point
2.2. Vapor Pressure
2.3. Density
2.4. Viscosity
2.5. Surface Tension
2.6. Electrical Conductivity
2.7. Solvatochromic Parameters
2.8. Other Relevant Properties
3. Solubility of CO2 in Deep Eutectic Solvents
3.1. Experimental Methods for Measuring the Solubility of Carbon Dioxide in DESs
3.1.1. Impact of the Hydrogen Bond Acceptor on CO2 Capacity
Lp. | HBA | HBD | Molar Ratio | T/K | P/bar | gCO2/gDES | Ref. |
---|---|---|---|---|---|---|---|
1 | [bmim][MeSO3] | Urea | 1:1 | 303.15 | 2.8–7.0 | 0.0071–0.0186 | [89] 1 |
2 | [HDBU][Im] | Ethylene glycol | 7:3 | 313.15 | 1.0 | 0.141 | [90] 4 |
3 | [HDBU][Im] | Ethylene glycol | 6:4 | 313.15 | 1.0 | 0.118 | [90] 4 |
4 | [HDBU][Im] | Ethylene glycol | 5:5 | 313.15 | 1.0 | 0.109 | [90] 4 |
5 | [HDBU][Im] | Ethylene glycol | 4:6 | 313.15 | 1.0 | 0.082 | [90] 4 |
6 | [HDBU][Im] | Ethylene glycol | 3:7 | 313.15 | 1.0 | 0.063 | [90] 4 |
7 | [HDBU][Ind] | Ethylene glycol | 7:3 | 313.15 | 1.0 | 0.117 | [90] 4 |
8 | [HDBU][Triz] | Ethylene glycol | 7:3 | 313.15 | 1.0 | 0.108 | [90] 4 |
9 | [N2222][Im] | Ethylene glycol | 1:2 | 298.15 | 1 atm | 0.114 | [91] 4 |
10 | [N2222][Triz] | Ethylene glycol | 1:2 | 298.15 | 1 atm | 0.111 | [91] 4 |
11 | [P2222][Im] | Ethylene glycol | 1:2 | 298.15 | 1 atm | 0.106 | [91] 4 |
12 | [P2222][Triz] | Ethylene glycol | 1:2 | 298.15 | 1 atm | 0.106 | [91] 4 |
13 | 1-Methylimidazolium hydrochloride | 3-Amino-1-propanol | 1:1 | r.t. | 1 atm | 0.020 | [92] 4 |
14 | 1-Methylimidazolium hydrochloride | 3-Amino-1-propanol | 1:2 | r.t. | 1 atm | 0.095 | [92] 4 |
15 | 1-Methylimidazolium hydrochloride | 3-Amino-1-propanol | 1:3 | r.t. | 1 atm | 0.139 | [92] 4 |
16 | 1-Methylimidazolium hydrochloride | 3-Amino-1-propanol | 1:4 | r.t. | 1 atm | 0.194 | [92] 4 |
17 | 1-Methylimidazolium hydrochloride | Diethylenetriamine | 1:4 | r.t. | 1 atm | 0.228 | [92] 4 |
18 | 1-Methylimidazolium hydrochloride | Ethylenediamine | 1:1 | r.t. | 1 atm | 0.090 | [92] 4 |
19 | 1-Methylimidazolium hydrochloride | Ethylenediamine | 1:2 | r.t. | 1 atm | 0.250 | [92] 4 |
20 | 1-Methylimidazolium hydrochloride | Ethylenediamine | 1:3 | r.t. | 1 atm | 0.267 | [92] 4 |
21 | 1-Methylimidazolium hydrochloride | Ethylenediamine | 1:4 | r.t. | 1 atm | 0.308 | [92] 4 |
22 | 1-Methylimidazolium hydrochloride | Pentaethylenehexamine | 1:4 | r.t. | 1 atm | 0.084 | [92] 4 |
23 | 1-Methylimidazolium hydrochloride | Tetraethylenepentamine | 1:4 | r.t. | 1 atm | 0.099 | [92] 4 |
24 | Acetylcholine chloride | 1,2,4-Triazole | 1:1 | 303.15 | 6.4–58.8 | 0.0012–0.0096 | [93] 1 |
25 | Acetylcholine chloride | Guaiacol | 1:3 | 303.15 | 5.4–53.1 | 0.0007–0.0069 | [87] 1 |
26 | Acetylcholine chloride | Guaiacol | 1:4 | 303.15 | 5.5–55.9 | 0.0007–0.0076 | [87] 1 |
27 | Acetylcholine chloride | Guaiacol | 1:5 | 303.15 | 5.2–52.8 | 0.0008–0.0076 | [87] 1 |
28 | Acetylcholine chloride | Imidazole | 2:3 | 303.15 | 3.0–57.3 | 0.0003–0.0100 | [93] 1 |
29 | Acetylcholine chloride | Imidazole | 1:2 | 303.15 | 2.7–57.8 | 0.0008–0.0115 | [93] 1 |
30 | Acetylcholine chloride | Imidazole | 1:3 | 303.15 | 5.3–56.8 | 0.0012–0.0129 | [93] 1 |
31 | Acetylcholine chloride | Levulinic acid | 1:3 | 303.15 | 0.6–5.4 | 0.0019–0.0132 | [69] 1 |
32 | Alanine | Lactic acid | 1:1 | 298.15 | 0.06–49.9 | 0.0013–0.1891 | [88] 2 |
33 | Alanine | Malic acid | 1:1 | 298.15 | 0.06–49.9 | 0.0035–0.1823 | [88] 2 |
34 | Allyltriphenylphosphonium bromide | Diethylene glycol | 1:4 | 303.15 | 1.6–19.4 | 0.0100–0.3207 | [94] 3 |
35 | Allyltriphenylphosphonium bromide | Diethylene glycol | 1:10 | 303.15 | 1.6–19.5 | 0.0098–0.2547 | [94] 3 |
36 | Allyltriphenylphosphonium bromide | Diethylene glycol | 1:16 | 303.15 | 1.7–19.6 | 0.0085–0.1404 | [94] 3 |
37 | Allyltriphenylphosphonium bromide | Phenol | 1:4 | 313.15 | 2.2–13.3 | 0.0090–0.0786 | [95] 3 |
38 | Allyltriphenylphosphonium bromide | Phenol | 1:6 | 313.15 | 1.8–13.2 | 0.0082–0.0787 | [95] 3 |
39 | Allyltriphenylphosphonium bromide | Triethylene glycol | 1:4 | 303.15 | 1.4–19.5 | 0.0084–0.2826 | [94] 3 |
40 | Allyltriphenylphosphonium bromide | Triethylene glycol | 1:10 | 303.15 | 1.5–19.5 | 0.0078–0.2101 | [94] 3 |
41 | Allyltriphenylphosphonium bromide | Triethylene glycol | 1:16 | 303.15 | 1.4–19.6 | 0.0063–0.1887 | [94] 3 |
42 | Benzyltriethylammonium chloride | 2-Ethylaminoethanol | 1:4 | 303.15 | 10.2 | 0.090 | [96] 1 |
43 | Benzyltriethylammonium chloride | 2-Methylaminoethanol | 1:4 | 303.15 | 10.1 | 0.100 | [96] 1 |
44 | Benzyltriethylammonium chloride | Acetic acid | 1:2 | 298.15 | 3.2–20.5 | 0.0056–0.0429 | [38] 1 |
45 | Benzyltrimethylammonium chloride | Acetic acid | 1:2 | 298.15 | 2.2–20.4 | 0.0034–0.0640 | [38] 1 |
46 | Benzyltrimethylammonium chloride | Glycerol | 1:2 | 298.15 | 3.9–20.3 | 0.0016–0.0114 | [38] 1 |
47 | Benzyltrimethylammonium chloride | Glycerol–H2O | 1:2:0.05 | 298.15 | 2.1–20.2 | 0.0019–0.0125 | [38] 1 |
48 | Benzyltrimethylammonium chloride | Glycerol–H2O | 1:2:0.11 | 298.15 | 2.6–20.3 | 0.0007–0.0143 | [38] 1 |
49 | Benzyltriphenylphosphonium chloride | Glycerol | 1:12 | 298.15 | 10.0 | 0.0206 | [97] 1 |
50 | Betaine | Lactic acid | 1:1 | 298.15 | 0.06–49.9 | 0.0022–0.1875 | [88] 2 |
51 | Betaine | Malic acid | 1:1 | 318.15 | 0.05–49.9 | 0.0009–0.1536 | [88] 2 |
52 | BHDEa | Acetic acid | 1:2 | 298.15 | 2.1–20.3 | 0.0028–0.0371 | [38] 1 |
53 | BHDEa | Glycerol–H2O | 1:3:0.11 | 298.15 | 2.3–20.2 | 0.0016–0.0091 | [38] 1 |
54 | BHDEa | Lactic acid | 1:2 | 298.15 | 2.8–20.9 | 0.0007–0.0219 | [38] 1 |
55 | Choline chloride | 1,2-Propanediol | 1:3 | 298.15 | 1.1–5.1 | 0.0001–0.0007 | [68] 1 |
56 | Choline chloride | 1,2-Propanediol | 1:4 | 298.15 | 1.0–5.0 | 0.0001–0.0007 | [68] 1 |
57 | Choline chloride | 1,4-Butanediol | 1:3 | 298.15 | 1.1–5.1 | 0.0001–0.0007 | [68] 1 |
58 | Choline chloride | 1,4-Butanediol | 1:4 | 298.15 | 1.1–5.1 | 0.0001–0.0007 | [68] 1 |
59 | Choline chloride | 2,3-Butanediol | 1:3 | 298.15 | 1.1–5.1 | 0.0001–0.0067 | [68] 1 |
60 | Choline chloride | 2,3-Butanediol | 1:4 | 298.15 | 1.1–5.1 | 0.0002–0.0008 | [68] 1 |
61 | Choline chloride | Cardanol | 1:3 | 293.15 | 1.0 | 0.0037 | [98] 4 |
62 | Choline chloride | Cardanol | 1:4 | 293.15 | 1.0 | 0.0038 | [98] 4 |
63 | Choline chloride | Cardanol | 1:5 | 293.15 | 1.0 | 0.0039 | [98] 4 |
64 | Choline chloride | Diethanol amine | 1:6 | 303.15 | 5.2–9.7 | 0.0133–0.0396 | [86] 1 |
65 | Choline chloride | Diethanolamine | 1:6 | 298.15 | 10.0 | 0.0408 | [97] 1 |
66 | Choline chloride | Diethanolamine | 1:12 | r.t. | 1 atm | 0.196 | [99] 4 |
67 | Choline chloride | Diethylene glycol | 1:3 | 303.15 | 5.6–11.1 | 0.0071–0.0140 | [86] 1 |
68 | Choline chloride | Diethylene glycol | 1:4 | 303.15 | 5.2–11.2 | 0.0067–0.0146 | [86] 1 |
69 | Choline chloride | Diethylene glycol | 1:3 | 298.15 | 11.3–51.3 | 0.0014–0.0074 | [66] 1 |
70 | Choline chloride | Diethylene glycol | 1:4 | 298.15 | 11.0–50.9 | 0.0015–0.0082 | [66] 1 |
71 | Choline chloride | Ethanolamine | 1:6 | 298.15 | 10.0 | 0.0749 | [97] 1 |
72 | Choline chloride | Ethanolamine | 1:7 | 298.15 | 1.8–20.2 | 0.0359–0.2441 | [100] 1 |
73 | Choline chloride | Ethanolamine | 1:7 | 298.15 | 1.8–20.4 | 0.0345–0.1577 | [38] 1 |
74 | Choline chloride | Ethanolamine | 1:6 | r.t. | 1 atm | 0.292 | [99] 4 |
75 | Choline chloride | Ethanolamine/aminoethylpiperazine | 1:7:1 | 298.15 | 1.4–20.1 | 0.0256–0.2093 | [100] 1 |
76 | Choline chloride | Ethanolamine/diethanolamine | 1:7:1 | 298.15 | 1.1–20.1 | 0.0188–0.1708 | [100] 1 |
77 | Choline chloride | Ethanolamine/methyldiethanolamine | 1:7:1 | 298.15 | 1.8–20.1 | 0.0317–0.2020 | [100] 1 |
78 | Choline chloride | Ethanolamine/methyldiethanolamine | 1:7:5 | 298.15 | 1.4–20.1 | 0.0205–0.1629 | [100] 1 |
79 | Choline chloride | Ethanolamine/piperazine | 1:7:1 | 298.15 | 1.6–22.4 | 0.0409–0.3291 | [100] 1 |
80 | Choline chloride | Ethylene glycol | 1:4 | 298.15 | 10.0 | 0.0133 | [97] 1 |
81 | Choline chloride | Ethylene glycol | 1:8 | 298.15 | 10.0 | 0.0168 | [97] 1 |
82 | Choline chloride | Ethylene glycol | 1:2 | 303.15 | 6.4–12.5 | 0.0135–0.0274 | [86] 1 |
83 | Choline chloride | Furfuryl alcohol | 1:3 | 303.15 | 8.1–58.3 | 0.0012–0.0082 | [27] 1 |
84 | Choline chloride | Furfuryl alcohol | 1:4 | 303.15 | 8.2–58.2 | 0.0013–0.0097 | [27] 1 |
85 | Choline chloride | Furfuryl alcohol | 1:5 | 303.15 | 7.0–57.7 | 0.0013–0.0100 | [27] 1 |
86 | Choline chloride | Glycerol | 1:3 | 298.15 | 10.0 | 0.0201 | [97] 1 |
87 | Choline chloride | Glycerol | 1:8 | 298.15 | 10.0 | 0.0143 | [97] 1 |
88 | Choline chloride | Glycerol/acetic acid | 1:1:1 | 298.15 | 2.6–20.1 | 0.0023–0.0191 | [38] 1 |
89 | Choline chloride | Glycerol/DBN | 1:2:6 | r.t. | 1 atm | 0.103 | [101] 4 |
90 | Choline chloride | Glycerol/DBN | 1:2:3 | r.t. | 1 atm | 0.096 | [101] 4 |
91 | Choline chloride | Glycerol/DBN | 1:2:7 | r.t. | 1 atm | 0.105 | [101] 4 |
92 | Choline chloride | Glycerol/DBN | 1:2:8 | r.t. | 1 atm | 0.103 | [101] 4 |
93 | Choline chloride | Glycerol/DBN | 1:3:10 | r.t. | 1 atm | 0.104 | [101] 4 |
94 | Choline chloride | Glycerol/DBU | 1:2:6 | r.t. | 1 atm | 0.036 | [101] 4 |
95 | Choline chloride | Glycerol/MTBD | 1:2:6 | r.t. | 1 atm | 0.100 | [101] 4 |
96 | Choline chloride | Guaiacol | 1:3 | 303.15 | 5.5–55.3 | 0.0007–0.0062 | [87] 1 |
97 | Choline chloride | Guaiacol | 1:4 | 303.15 | 10.0–54.9 | 0.0012–0.0068 | [87] 1 |
98 | Choline chloride | Guaiacol | 1:5 | 303.15 | 4.7–53.9 | 0.0006–0.0071 | [87] 1 |
99 | Choline chloride | Guaiacol | 1:3 | 293.15 | 1.0 | 0.0014 | [98] 4 |
100 | Choline chloride | Guaiacol | 1:4 | 293.15 | 1.0 | 0.0015 | [98] 4 |
101 | Choline chloride | Guaiacol | 1:5 | 293.15 | 1.0 | 0.0015 | [98] 4 |
102 | Choline chloride | Levulinic acid | 1:3 | 303.15 | 7.9–57.0 | 0.0015–0.0112 | [27] 1 |
103 | Choline chloride | Levulinic acid | 1:4 | 303.15 | 7.2–57.5 | 0.0014–0.0119 | [27] 1 |
104 | Choline chloride | Levulinic acid | 1:5 | 303.15 | 7.1–56.7 | 0.0015–0.0126 | [27] 1 |
105 | Choline chloride | Methyldiethanol amine | 1:6 | 303.15 | 4.4–11.0 | 0.0428–0.0665 | [86] 1 |
106 | Choline chloride | Methyldiethanol amine | 1:7 | 303.15 | 5.9–10.3 | 0.0488–0.0896 | [86] 1 |
107 | Choline chloride | Phenol | 1:2 | 298.15 | 9.9–49.9 | 0.0015–0.0086 | [66] 1 |
108 | Choline chloride | Phenol | 1:3 | 298.15 | 10.4–50.8 | 0.0018–0.0090 | [66] 1 |
109 | Choline chloride | Phenol | 1:4 | 298.15 | 10.8–50.9 | 0.0018–0.0093 | [66] 1 |
110 | Choline chloride | Triethanolamine | 1:3 | r.t. | 1 atm | 0.080 | [99] 4 |
111 | Choline chloride | Triethylene glycol | 1:4 | 298.15 | 10.0 | 0.0130 | [97] 1 |
112 | Choline chloride | Triethylene glycol | 1:3 | 298.15 | 10.9–50.4 | 0.0016–0.0084 | [66] 1 |
113 | Choline chloride | Triethylene glycol | 1:4 | 298.15 | 11.9–51.4 | 0.0018–0.0085 | [66] 1 |
114 | Choline chloride | Urea | 1:4 | 298.15 | 10.0 | 0.0142 | [97] 1 |
115 | Choline chloride | Urea | 1:2.5 | 298.15 | 10.0 | 0.0114 | [97] 1 |
116 | Choline chloride | Urea | 1:1.5 | 313.15 | 0.1–2.0 | 0.0003–0.0048 | [70] 1 |
117 | Choline chloride | Urea | 1:2 | 313.15 | 0.1–2.0 | 0.0005–0.0080 | [70] 1 |
118 | Choline chloride | Urea | 1:2.5 | 313.15 | 0.1–2.0 | 0.0003–0.0049 | [70] 1 |
119 | DBN | DMLU | 1:2 | 318.15 | 1.0 | 0.0427 | [102] 4 |
120 | DBN | DMU | 1:2 | 318.15 | 1.0 | 0.1734 | [102] 4 |
121 | DBN | EU | 1:2 | 318.15 | 1.0 | 0.2302 | [102] 4 |
122 | DBN | EU | 1:3 | 318.15 | 1.0 | 0.1931 | [102] 4 |
123 | Diethylamine hydrochloride | Guaiacol | 1:3 | 303.15 | 5.4–51.4 | 0.0009–0.0081 | [87] 1 |
124 | Diethylamine hydrochloride | Guaiacol | 1:4 | 303.15 | 6.2–52.5 | 0.0010–0.0086 | [87] 1 |
125 | Diethylamine hydrochloride | Guaiacol | 1:5 | 303.15 | 5.7–52.0 | 0.0010–0.0088 | [87] 1 |
126 | Diethylenetriamine hydrochloride | 3-Amino-1-propanol | 1:4 | r.t. | 1 atm | 0.183 | [99] 4 |
127 | Diethylenetriamine hydrochloride | Ethylenediamine | 1:4 | r.t. | 1 atm | 0.322 | [99] 4 |
128 | Diethylenetriamine hydrochloride | Tetraethylenepentamine | 1:4 | r.t. | 1 atm | 0.099 | [99] 4 |
129 | Ethanolamine hydrochloride | 3-Amino-1-propanol | 1:1 | r.t. | 1 atm | 0.158 | [92] 4 |
130 | Ethanolamine hydrochloride | 3-Amino-1-propanol | 1:2 | r.t. | 1 atm | 0.210 | [92] 4 |
131 | Ethanolamine hydrochloride | 3-Amino-1-propanol | 1:3 | r.t. | 1 atm | 0.243 | [92] 4 |
132 | Ethanolamine hydrochloride | 3-Amino-1-propanol | 1:4 | r.t. | 1 atm | 0.263 | [92] 4 |
133 | Ethanolamine hydrochloride | Diethylenetriamine | 1:1 | 313.15 | 8.0 | 0.1132 | [103] 3 |
134 | Ethanolamine hydrochloride | Diethylenetriamine | 1:3 | 313.15 | 8.0 | 0.1756 | [103] 3 |
135 | Ethanolamine hydrochloride | Diethylenetriamine | 1:6 | 313.15 | 8.0 | 0.2412 | [103] 3 |
136 | Ethanolamine hydrochloride | Diethylenetriamine | 1:9 | 313.15 | 8.0 | 0.2835 | [103] 3 |
137 | Ethanolamine hydrochloride | Diethylenetriamine | 1:4 | r.t. | 1 atm | 0.255 | [92] 4 |
138 | Ethanolamine hydrochloride | Ethylenediamine | 1:1 | 313.15 | 8.0 | 0.1123 | [103] 3 |
139 | Ethanolamine hydrochloride | Ethylenediamine | 1:3 | 313.15 | 8.0 | 0.1833 | [103] 3 |
140 | Ethanolamine hydrochloride | Ethylenediamine | 1:6 | 313.15 | 8.0 | 0.3299 | [103] 3 |
141 | Ethanolamine hydrochloride | Ethylenediamine | 1:9 | 313.15 | 8.0 | 0.3458 | [103] 3 |
142 | Ethanolamine hydrochloride | Ethylenediamine | 1:1 | r.t. | 1 atm | 0.235 | [92] 4 |
143 | Ethanolamine hydrochloride | Ethylenediamine | 1:2 | r.t. | 1 atm | 0.309 | [92] 4 |
144 | Ethanolamine hydrochloride | Ethylenediamine | 1:3 | r.t. | 1 atm | 0.365 | [92] 4 |
145 | Ethanolamine hydrochloride | Ethylenediamine | 1:4 | r.t. | 1 atm | 0.390 | [92] 4 |
146 | Ethanolamine hydrochloride | Monoethanolamine | 1:1 | 313.15 | 8.0 | 0.0910 | [103] 3 |
147 | Ethanolamine hydrochloride | Monoethanolamine | 1:3 | 313.15 | 8.0 | 0.1085 | [103] 3 |
148 | Ethanolamine hydrochloride | Monoethanolamine | 1:6 | 313.15 | 8.0 | 0.1487 | [103] 3 |
149 | Ethanolamine hydrochloride | Monoethanolamine | 1:9 | 313.15 | 8.0 | 0.1863 | [103] 3 |
150 | Ethanolamine hydrochloride | Pentaethylenehexamine | 1:4 | r.t. | 1 atm | 0.127 | [92] 4 |
151 | Ethanolamine hydrochloride | Tetraethylenepentamine | 1:1 | 313.15 | 8.0 | 0.0835 | [103] 3 |
152 | Ethanolamine hydrochloride | Tetraethylenepentamine | 1:3 | 313.15 | 8.0 | 0.1011 | [103] 3 |
153 | Ethanolamine hydrochloride | Tetraethylenepentamine | 1:6 | 313.15 | 8.0 | 0.1484 | [103] 3 |
154 | Ethanolamine hydrochloride | Tetraethylenepentamine | 1:9 | 313.15 | 8.0 | 0.1715 | [103] 3 |
155 | Ethanolamine hydrochloride | Tetraethylenepentamine | 1:4 | r.t. | 1 atm | 0.166 | [92] 4 |
156 | Ethanolamine hydrochloride | Triethylenetetramine | 1:1 | 313.15 | 8.0 | 0.0982 | [103] 3 |
157 | Ethanolamine hydrochloride | Triethylenetetramine | 1:3 | 313.15 | 8.0 | 0.1655 | [103] 3 |
158 | Ethanolamine hydrochloride | Triethylenetetramine | 1:6 | 313.15 | 8.0 | 0.1765 | [103] 3 |
159 | Ethanolamine hydrochloride | Triethylenetetramine | 1:9 | 313.15 | 8.0 | 0.2045 | [103] 3 |
160 | Guanidinium hydrochloride | Ethanolamine | 1:2 | 298.15 | 2.3–20.2 | 0.0135–0.0732 | [38] 1 |
161 | L-arginine | Glycerol | 1:5 | 353.15 | 1 atm | 0.1677 | [104] 4 |
162 | L-arginine | Glycerol | 1:6 | 353.15 | 1 atm | 0.1937 | [104] 4 |
163 | L-arginine | Glycerol | 1:7 | 353.15 | 1 atm | 0.1939 | [104] 4 |
164 | Methyltrioctylammonium bromide | Decanoic acid | 1:2 | 298.15 | 0.9–19.9 | 0.0033–0.0783 | [85] 2 |
165 | Methyltrioctylammonium chloride | Decanoic acid | 1:2 | 298.15 | 0.9–19.9 | 0.0024–0.0595 | [85] 2 |
166 | Methyltriphenylphosphonium bromide | 1,2-Propanediol | 1:4 | 298.15 | 2.2–20.3 | 0.0010–0.0242 | [38] 1 |
167 | Methyltriphenylphosphonium bromide | Acetic acid | 1:4 | 298.15 | 1.7–20.1 | 0.0032–0.1330 | [38] 1 |
168 | Methyltriphenylphosphonium bromide | Ethanolamine | 1:6 | 298.15 | 10.0 | 0.0716 | [97] 1 |
169 | Methyltriphenylphosphonium bromide | Ethanolamine | 1:7 | 298.15 | 10.0 | 0.0643 | [97] 1 |
170 | Methyltriphenylphosphonium bromide | Ethanolamine | 1:8 | 298.15 | 10.0 | 0.0632 | [97] 1 |
171 | Methyltriphenylphosphonium bromide | Ethylene glycol | 1:2 | 298.15 | 1.9–20.2 | 0.0020–0.0155 | [38] 1 |
172 | Methyltriphenylphosphonium bromide | Glycerol | 1:4 | 298.15 | 1.6–20.3 | 0.0004–0.0127 | [38] 1 |
173 | Methyltriphenylphosphonium bromide | Levulinic acid | 1:3 | 298.15 | 3.0–2.1 | 0.0011–0.0303 | [38] 1 |
174 | Methyltriphenylphosphonium bromide | Levulinic acid/acetic acid | 1:3:0.03 | 298.15 | 2.9–20.6 | 0.0077–0.0579 | [38] 1 |
175 | Monoethanolamine hydrochloride | Ethylenediamine | 1:1 | r.t. | 1 atm | 0.205 | [105] 4 |
176 | Monoethanolamine hydrochloride | Ethylenediamine | 1:2 | r.t. | 1 atm | 0.244 | [105] 4 |
177 | Monoethanolamine hydrochloride | Ethylenediamine | 1:3 | r.t. | 1 atm | 0.315 | [105] 4 |
178 | Monoethanolamine hydrochloride | Ethylenediamine | 1:4 | r.t. | 1 atm | 0.308 | [105] 4 |
179 | n-Butyltriphenylphosphonium bromide | Ethylene glycol | 1:12 | 298.15 | 10.0 | 0.0201 | [97] 1 |
180 | Tetrabutylammonium bromide | 2-Ethylaminoethanol | 1:4 | 303.15 | 10.0 | 0.071 | [96] 1 |
181 | Tetrabutylammonium bromide | 2-Methylaminoethanol | 1:4 | 303.15 | 10.5 | 0.106 | [96] 1 |
182 | Tetrabutylammonium bromide | 3-Amino-1-propanol | 1:2 | r.t. | 1 atm | 0.111 | [92] 4 |
183 | Tetrabutylammonium bromide | 3-Amino-1-propanol | 1:3 | r.t. | 1 atm | 0.156 | [92] 4 |
184 | Tetrabutylammonium bromide | 3-Amino-1-propanol | 1:4 | r.t. | 1 atm | 0.181 | [92] 4 |
185 | Tetrabutylammonium bromide | Acetic acid | 1:2 | 298.15 | 3.9–20.1 | 0.0060–0.0497 | [38] 1 |
186 | Tetrabutylammonium bromide | Aminomethylpropanol | 1:3 | r.t. | 1 atm | 0.105 | [92] 4 |
187 | Tetrabutylammonium bromide | Aminomethylpropanol | 1:4 | r.t. | 1 atm | 0.122 | [92] 4 |
188 | Tetrabutylammonium bromide | Diethanol amine | 1:6 | 303.15 | 6.1–10.1 | 0.0157–0.0367 | [86] 1 |
189 | Tetrabutylammonium bromide | Diethanolamine | 1:6 | 298.15 | 10.0 | 0.0373 | [97] 1 |
190 | Tetrabutylammonium bromide | Diethanolamine | 1:2 | r.t. | 1 atm | 0.096 | [99] 4 |
191 | Tetrabutylammonium bromide | Diethylene glycol | 1:2 | 303.15 | 7.2–13.9 | 0.0086–0.0272 | [86] 1 |
192 | Tetrabutylammonium bromide | Diethylene glycol | 1:3 | 303.15 | 6.9–12.0 | 0.0113–0.0271 | [86] 1 |
193 | Tetrabutylammonium bromide | Diethylene glycol | 1:4 | 303.15 | 5.9–10.5 | 0.0146–0.0290 | [86] 1 |
194 | Tetrabutylammonium bromide | Ethanolamine | 1:6 | 298.15 | 10.0 | 0.0591 | [97] 1 |
195 | Tetrabutylammonium bromide | Ethanolamine | 1:6 | 298.15 | 3.5–20.2 | 0.0193–0.1223 | [38] 1 |
196 | Tetrabutylammonium bromide | Ethanolamine | 1:7 | 298.15 | 3.8–20.4 | 0.0235–0.1324 | [38] 1 |
197 | Tetrabutylammonium bromide | Ethanolamine | 1:5 | r.t. | 1 atm | 0.197 | [99] 4 |
198 | Tetrabutylammonium bromide | Ethylene glycol | 1:2 | 303.15 | 4.1–12.8 | 0.0045–0.0168 | [86] 1 |
199 | Tetrabutylammonium bromide | Ethylene glycol | 1:3 | 303.15 | 5.0–12.5 | 0.0059–0.0189 | [86] 1 |
200 | Tetrabutylammonium bromide | Ethylene glycol | 1:4 | 303.15 | 5.4–13.7 | 0.0074–0.0201 | [86] 1 |
201 | Tetrabutylammonium bromide | Levulinic acid | 1:3 | 303.15 | 0.7–5.7 | 0.0015–0.0119 | [69] 1 |
202 | Tetrabutylammonium bromide | Methyldiethanol amine | 1:3 | 303.15 | 4.2–10.0 | 0.0244–0.0663 | [86] 1 |
203 | Tetrabutylammonium bromide | Methyldiethanol amine | 1:4 | 303.15 | 5.0–10.2 | 0.0340–0.0800 | [86] 1 |
204 | Tetrabutylammonium bromide | Triethanolamine | 1:3 | 298.15 | 10.0 | 0.2070 | [97] 1 |
205 | Tetrabutylammonium bromide | Triethanolamine | 1:2 | r.t. | 1 atm | 0.025 | [99] 4 |
206 | Tetrabutylammonium chloride | Acetic acid | 1:2 | 298.15 | 3.5–20.0 | 0.0081–0.0621 | [38] 1 |
207 | Tetrabutylammonium chloride | Decanoic acid | 1:2 | 298.15 | 0.9–19.9 | 0.0027–0.0668 | [85] 2 |
208 | Tetrabutylammonium chloride | Lactic acid | 1:2 | 308.15 | 0.9–19.9 | 0.0016–0.0420 | [82] 2 |
209 | Tetrabutylammonium chloride | Levulinic acid | 1:3 | 303.15 | 0.6–5.6 | 0.0015–0.0133 | [69] 1 |
210 | Tetrabutylphosphonium bromide | Diethylene glycol | 1:4 | 313.15 | 1.9–14.0 | 0.0070–0.0776 | [95] 3 |
211 | Tetrabutylphosphonium bromide | Phenol | 1:4 | 313.15 | 2.3–15.8 | 0.0092–0.0792 | [95] 3 |
212 | Tetraethylammonium bromide | Levulinic acid | 1:3 | 303.15 | 0.7–5.6 | 0.0013–0.0106 | [69] 1 |
213 | Tetraethylammonium chloride | Acetic acid | 1:2 | 298.15 | 2.8–20.2 | 0.0063–0.0518 | [38] 1 |
214 | Tetraethylammonium chloride | Acetic acid | 1:3 | 298.15 | 4.0–20.2 | 0.0193–0.1223 | [38] 1 |
215 | Tetraethylammonium chloride | Lactic acid | 1:2 | 308.15 | 1.0–19.9 | 0.0012–0.0298 | [82] 2 |
216 | Tetraethylammonium chloride | Levulinic acid | 1:3 | 303.15 | 0.7–5.6 | 0.0015–0.0121 | [69] 1 |
217 | Tetraethylammonium chloride | Octanoic acid | 1:3 | 298.15 | 3.5–20.2 | 0.0069–0.0612 | [38] 1 |
218 | Tetramethylammonium chloride | Acetic acid | 1:4 | 298.15 | 2.9–21.0 | 0.0053–0.0687 | [38] 1 |
219 | Tetramethylammonium chloride | Lactic acid | 1:2 | 308.15 | 1.0–19.9 | 0.0011–0.0282 | [82] 2 |
220 | Tetraoctylammonium bromide | Decanoic acid | 1:2 | 298.15 | 0.9–19.9 | 0.0023–0.0586 | [85] 2 |
221 | Tetraoctylammonium chloride | Decanoic acid | 1:2 | 298.15 | 0.9–19.9 | 0.0023–0.0574 | [85] 2 |
222 | Tetraoctylammonium chloride | Decanoic acid | 1:1.5 | 298.15 | 0.9–19.9 | 0.0027–0.0667 | [85] 2 |
223 | Tetrapropylammonium chloride | Acetic acid | 1:6 | 298.15 | 3.5–20.3 | 0.0110–0.0757 | [38] 1 |
224 | Tetrapropylammonium chloride | Ethanolamine | 1:4 | 298.15 | 4.8–20.1 | 0.0149–0.0628 | [38] 1 |
225 | Tetrapropylammonium chloride | Ethanolamine | 1:7 | 298.15 | 3.6–20.2 | 0.0754–0.1551 | [38] 1 |
226 | Thioacetamide hydrochloride | Ethylenediamine | 1:3 | r.t. | 1 atm | 0.101 | [105] 4 |
227 | Triethanolamine hydrochloride | Ethylenediamine | 1:3 | r.t. | 1 atm | 0.175 | [105] 4 |
228 | Triethylmethylammonium chloride | Acetic acid | 1:2 | 298.15 | 2.0–18.4 | 0.0036–0.0518 | [38] 1 |
229 | Triethylmethylammonium chloride | Ethylene glycol | 1:2 | 298.15 | 1.4–1.3 | 0.0027–0.0276 | [38] 1 |
230 | Triethylmethylammonium chloride | Glycerol | 1:2 | 298.15 | 1.5–16.5 | 0.0007–0.0191 | [38] 1 |
231 | Triethylmethylammonium chloride | Glycerol–H2O | 1:2:0.05 | 298.15 | 2.3–19.8 | 0.0004–0.0289 | [38] 1 |
232 | Triethylmethylammonium chloride | Glycerol–H2O | 1:2:0.11 | 298.15 | 1.4–17.4 | 0.0011–0.0292 | [38] 1 |
233 | Triethylmethylammonium chloride | Lactic acid | 1:2 | 298.15 | 1.4–18.6 | 0.0021–0.0234 | [38] 1 |
234 | Triethylmethylammonium chloride | Levulinic acid | 1:2 | 298.15 | 1.4–16.2 | 0.0025–0.0270 | [38] 1 |
235 | Trimethylglycine | Glycolic | 1:2 | 298.15 | 10.0 | 0.00764 | [106] 4 |
236 | Trimethylglycine | Oxalic acid dihydrate | 1:2 | 298.15 | 10.0 | 0.00048 | [106] 4 |
237 | Trimethylglycine | Phenylacetic acid | 1:2 | 298.15 | 10.0 | 0.00992 | [106] 4 |
238 | Urea hydrochloride | Ethylenediamine | 1:3 | r.t. | 1 atm | 0.117 | [105] 4 |
3.1.2. Effect of Hydrogen Bond Donor
3.1.3. Effect of HBA/HBD Molar Ratio
3.1.4. Synergistic Effect
- Electronic transition energy (ET(30)) which stands for the hydrogen bond donor–acceptor forces, π–π interactions, and dipole–dipole interactions present in a solvent;
- Dipolarity/polarizability (π*) which is a measure of the electrolytic strength of the medium;
- Hydrogen bond donor acidity (α) which denotes the donating ability of the hydrogen bond donor;
- Hydrogen bond acceptor basicity (β) which denotes the strength of the solvent’s hydrogen bond acceptor.
4. Practical Issues of Carbon Dioxide Separation
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solution Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef] [Green Version]
- Vieira Sanches, M.; Freitas, M.R.; Oliva, M.; Mero, A.; De Marchi, L.; Cuccaro, A.; Fumagalli, G.; Mezzetta, A.; Colombo Dugoni, G.; Ferro, M.; et al. Are natural deep eutectic solvents always a sustainable option? A bioassay-based study. Environ. Sci. Pollut. Res. 2023, 30, 17268–17279. [Google Scholar] [CrossRef]
- Shahbaz, K.; Mjalli, F.S.; Vakili-Nezhaad, G.; AlNashef, I.M.; Asadov, A.; Farid, M.M. Thermogravimetric Measurement of Deep Eutectic Solvents Vapor Pressure. J. Mol. Liq. 2016, 222, 61–66. [Google Scholar] [CrossRef]
- Hou, Y.C.; Yao, C.F.; Wu, W.Z. Deep Eutectic Solvents: Green Solvents for Separation Applications. Wuli Huaxue Xuebao/ Acta Phys.—Chim. Sin. 2018, 34, 873–885. [Google Scholar] [CrossRef]
- Maniam, K.K.; Paul, S. Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review. Materials 2021, 14, 4519. [Google Scholar] [CrossRef]
- Cotroneo-Figueroa, V.P.; Gajardo-Parra, N.F.; López-Porfiri, P.; Leiva, Á.; Gonzalez-Miquel, M.; Garrido, J.M.; Canales, R.I. Hydrogen Bond Donor and Alcohol Chain Length Effect on the Physicochemical Properties of Choline Chloride Based Deep Eutectic Solvents Mixed with Alcohols. J. Mol. Liq. 2022, 345, 116986. [Google Scholar] [CrossRef]
- López-Porfiri, P.; Brennecke, J.F.; Gonzalez-Miquel, M. Excess Molar Enthalpies of Deep Eutectic Solvents (DESs) Composed of Quaternary Ammonium Salts and Glycerol or Ethylene Glycol. J. Chem. Eng. Data 2016, 61, 4245–4251. [Google Scholar] [CrossRef]
- Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; Alnashef, I.M. Eutectic Solvents for the Removal of Residual Palm Oil-Based Biodiesel Catalyst. Sep. Purif. Technol. 2011, 81, 216–222. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 9, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Using Deep Eutectic Solvents Based on Methyl Triphenyl Phosphunium Bromide for the Removal of Glycerol from Palm-Oil-Based Biodiesel. Energy Fuels 2011, 25, 2671–2678. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Ahmed, E.I.; Prasad, K.; Qader, I.B.; Ryder, K.S. Liquid Pharmaceuticals Formulation by Eutectic Formation. Fluid Phase Equilib. 2017, 448, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Marcus, Y. The Entropy of Deep Eutectic Solvent Formation. Entropy 2018, 20, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes, P.V.A.; Crespo, E.A.; Martins, M.A.R.; Silva, L.P.; Neves, C.M.S.S.; Maximo, G.J.; Hubinger, M.D.; Batista, E.A.C.; Pinho, S.P.; Coutinho, J.A.P.; et al. Measurement and PC-SAFT Modeling of Solid-Liquid Equilibrium of Deep Eutectic Solvents of Quaternary Ammonium Chlorides and Carboxylic Acids. Fluid Phase Equilib. 2017, 448, 69–80. [Google Scholar] [CrossRef] [Green Version]
- García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy Fuels 2015, 29, 2616–2644. [Google Scholar] [CrossRef]
- Song, Z.; Hu, X.; Wu, H.; Mei, M.; Linke, S.; Zhou, T.; Qi, Z.; Sundmacher, K. Systematic Screening of Deep Eutectic Solvents as Sustainable Separation Media Exemplified by the CO2 Capture Process. ACS Sustain. Chem. Eng. 2020, 8, 8741–8751. [Google Scholar] [CrossRef]
- Ravula, S.; Larm, N.E.; Mottaleb, M.A.; Heitz, M.P.; Baker, G.A. Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. ChemEngineering 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Boisset, A.; Jacquemin, J.; Anouti, M. Physical Properties of a New Deep Eutectic Solvent Based on Lithium Bis[(Trifluoromethyl)Sulfonyl]Imide and N-Methylacetamide as Superionic Suitable Electrolyte for Lithium Ion Batteries and Electric Double Layer Capacitors. Electrochim. Acta 2013, 102, 120–126. [Google Scholar] [CrossRef]
- Dietz, C.H.J.T.; Creemers, J.T.; Meuleman, M.A.; Held, C.; Sadowski, G.; Van Sint Annaland, M.; Gallucci, F.; Kroon, M.C. Determination of the Total Vapor Pressure of Hydrophobic Deep Eutectic Solvents: Experiments and Perturbed-Chain Statistical Associating Fluid Theory Modeling. ACS Sustain. Chem. Eng. 2019, 7, 4047–4057. [Google Scholar] [CrossRef]
- Marcus, Y. Deep Eutectic Solvents; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Novel Nonanol-Based Deep Eutectic Solvents: Thermophysical Properties and Their Applications in Liquid-Liquid Extraction and Amino Acid Detection. J. Mol. Liq. 2021, 336, 116359. [Google Scholar] [CrossRef]
- Nowosielski, B.; Jamrógiewicz, M.; Łuczak, J.; Śmiechowski, M.; Warmińska, D. Experimental and Predicted Physicochemical Properties of Monopropanolamine-Based Deep Eutectic Solvents. J. Mol. Liq. 2020, 309, 113110. [Google Scholar] [CrossRef]
- Shahbaz, K.; Baroutian, S.; Mjalli, F.S.; Hashim, M.A.; Alnashef, I.M. Densities of Ammonium and Phosphonium Based Deep Eutectic Solvents: Prediction Using Artificial Intelligence and Group Contribution Techniques. Thermochim. Acta 2012, 527, 59–66. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Murshid, G.; Al-Zakwani, S.; Hayyan, A. Monoethanolamine-Based Deep Eutectic Solvents, Their Synthesis and Characterization. Fluid Phase Equilib. 2017, 448, 30–40. [Google Scholar] [CrossRef]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Lal, B.; Shariff, A.M. Measurement and Correlation of Physicochemical Properties of Phosphonium-Based Deep Eutectic Solvents at Several Temperatures (293.15 K–343.15 K) for CO2 Capture. J. Chem. Thermodyn. 2017, 113, 41–51. [Google Scholar] [CrossRef]
- Lu, M.; Han, G.; Jiang, Y.; Zhang, X.; Deng, D.; Ai, N. Solubilities of Carbon Dioxide in the Eutectic Mixture of Levulinic Acid (or Furfuryl Alcohol) and Choline Chloride. J. Chem. Thermodyn. 2015, 88, 72–77. [Google Scholar] [CrossRef]
- Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol Eutectics as Sustainable Solvent Systems. Green Chem. 2011, 13, 82–90. [Google Scholar] [CrossRef]
- Basaiahgari, A.; Panda, S.; Gardas, R.L. Effect of Ethylene, Diethylene, and Triethylene Glycols and Glycerol on the Physicochemical Properties and Phase Behavior of Benzyltrimethyl and Benzyltributylammonium Chloride Based Deep Eutectic Solvents at 283.15-343.15 K. J. Chem. Eng. Data 2018, 63, 2613–2627. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Vakili-Nezhaad, G.; Shahbaz, K.; Alnashef, I.M. Application of the Eötvos and Guggenheim Empirical Rules for Predicting the Density and Surface Tension of Ionic Liquids Analogues. Thermochim. Acta 2014, 575, 40–44. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Y.; Wu, W.; Liu, D.; Ji, Y.; Ren, S. Roles of a Hydrogen Bond Donor and a Hydrogen Bond Acceptor in the Extraction of Toluene from: N -Heptane Using Deep Eutectic Solvents. Green Chem. 2016, 18, 3089–3097. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Trivedi, S.; Rai, R.; Pandey, S. Densities and Dynamic Viscosities of (Choline Chloride + glycerol) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range (283.15-363.15)K. Fluid Phase Equilib. 2014, 367, 135–142. [Google Scholar] [CrossRef]
- Mjalli, F.S. Mass Connectivity Index-Based Density Prediction of Deep Eutectic Solvents. Fluid Phase Equilib. 2016, 409, 312–317. [Google Scholar] [CrossRef]
- Haghbakhsh, R.; Raeissi, S.; Duarte, A.R.C. Group Contribution and Atomic Contribution Models for the Prediction of Various Physical Properties of Deep Eutectic Solvents. Sci. Rep. 2021, 11, 6684. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Harris, R.C.; Ryder, K.S. Application of Hole Theory to Define Ionic Liquids by Their Transport Properties. J. Phys. Chem. B 2007, 111, 4910–4913. [Google Scholar] [CrossRef] [PubMed]
- Sarmad, S.; Xie, Y.; Mikkola, J.P.; Ji, X. Screening of Deep Eutectic Solvents (DESs) as Green CO2 Sorbents: From Solubility to Viscosity. New, J. Chem. 2016, 41, 290–301. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Naser, J. Viscosity Model for Choline Chloride-Based Deep Eutectic Solvents. Asia-Pac. J. Chem. Eng. 2015, 10, 273–281. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Al-Hajri, R.; Al-Muhtaseb, A.; Ahmed, O.; Nagaraju, M. Novel Amino Acid-Based Ionic Liquid Analogues: Neutral Hydroxylic and Sulfur-Containing Amino Acids. Asia-Pac. J. Chem. Eng. 2016, 11, 683–694. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, M.M.; Branco, L.C.; Marrucho, I.M. Carbohydrates-Based Deep Eutectic Solvents: Thermophysical Properties and Rice Straw Dissolution. J. Mol. Liq. 2017, 247, 441–447. [Google Scholar] [CrossRef]
- Maugeri, Z.; Domínguez De María, P. Novel Choline-Chloride-Based Deep-Eutectic-Solvents with Renewable Hydrogen Bond Donors: Levulinic Acid and Sugar-Based Polyols. RSC Adv. 2012, 2, 421–425. [Google Scholar] [CrossRef]
- D’Agostino, C.; Harris, R.C.; Abbott, A.P.; Gladden, L.F.; Mantle, M.D. Molecular Motion and Ion Diffusion in Choline Chloride Based Deep Eutectic Solvents Studied by 1H Pulsed Field Gradient NMR Spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 21383–21391. [Google Scholar] [CrossRef] [PubMed]
- Haghbakhsh, R.; Parvaneh, K.; Raeissi, S.; Shariati, A. A General Viscosity Model for Deep Eutectic Solvents: The Free Volume Theory Coupled with Association Equations of State. Fluid Phase Equilib. 2018, 470, 193–202. [Google Scholar] [CrossRef]
- Benguerba, Y.; Alnashef, I.M.; Erto, A.; Balsamo, M.; Ernst, B. A Quantitative Prediction of the Viscosity of Amine Based DESs Using Sσ-Profile Molecular Descriptors. J. Mol. Struct. 2019, 1184, 357–363. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; Alnashef, I.M.; Al-Wahaibi, Y.M.; Al-Wahaibi, T.; Hashim, M.A. Glucose-Based Deep Eutectic Solvents: Physical Properties. J. Mol. Liq. 2013, 178, 137–141. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Novel Deep Eutectic Solvents Based on Pyrogallol: Synthesis and Characterizations. J. Chem. Eng. Data 2021, 66, 2088–2095. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, W.; Fu, L.; Yang, Y.; Wang, Y.; Hu, X.; Wang, F.; Mu, T. Surface Tension of 50 Deep Eutectic Solvents: Effect of Hydrogen-Bonding Donors, Hydrogen-Bonding Acceptors, Other Solvents, and Temperature. Ind. Eng. Chem. Res. 2019, 58, 12741–12750. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Al-Azzawi, M. Aliphatic Amino Acids as Possible Hydrogen Bond Donors for Preparing Eutectic Solvents. J. Mol. Liq. 2021, 330, 115637. [Google Scholar] [CrossRef]
- Bagh, F.S.G.; Shahbaz, K.; Mjalli, F.S.; AlNashef, I.M.; Hashim, M.A. Electrical Conductivity of Ammonium and Phosphonium Based Deep Eutectic Solvents: Measurements and Artificial Intelligence-Based Prediction. Fluid Phase Equilib. 2013, 356, 30–37. [Google Scholar] [CrossRef]
- Pandey, A.; Pandey, S. Solvatochromic Probe Behavior within Choline Chloride-Based Deep Eutectic Solvents: Effect of Temperature and Water. J. Phys. Chem. B 2014, 118, 14652–14661. [Google Scholar] [CrossRef]
- Teles, A.R.R.; Capela, E.V.; Carmo, R.S.; Coutinho, J.A.P.; Silvestre, A.J.D.; Freire, M.G. Solvatochromic Parameters of Deep Eutectic Solvents Formed by Ammonium-Based Salts and Carboxylic Acids. Fluid Phase Equilib. 2017, 448, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Florindo, C.; McIntosh, A.J.S.; Welton, T.; Branco, L.C.; Marrucho, I.M. A Closer Look into Deep Eutectic Solvents: Exploring Intermolecular Interactions Using Solvatochromic Probes. Phys. Chem. Chem. Phys. 2017, 20, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Lal, B.; Uemura, Y. Thermal Stability and FT-IR Analysis of Phosphonium-Based Deep Eutectic Solvents with Different Hydrogen Bond Donors. J. Mol. Liq. 2017, 242, 395–403. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A.; Holmes, S. Protease Activation in Glycerol-Based Deep Eutectic Solvents. J. Mol. Catal. B Enzym. 2011, 72, 163–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Naser, J.; Mjalli, F.S.; Gano, Z.S. Molar Heat Capacity of Selected Type III Deep Eutectic Solvents. J. Chem. Eng. Data 2016, 61, 1608–1615. [Google Scholar] [CrossRef]
- Siongco, K.R.; Leron, R.B.; Caparanga, A.R.; Li, M.H. Molar Heat Capacities and Electrical Conductivities of Two Ammonium-Based Deep Eutectic Solvents and Their Aqueous Solutions. Thermochim. Acta 2013, 566, 50–56. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Ren, S.; Wu, W.; Bao, Y. Specific Heat Capacities of Two Functional Ionic Liquids and Two Functional Deep Eutectic Solvents for the Absorption of SO2. J. Chem. Eng. Data 2017, 62, 2708–2712. [Google Scholar] [CrossRef]
- Taherzadeh, M.; Haghbakhsh, R.; Duarte, A.R.C.; Raeissi, S. Estimation of the Heat Capacities of Deep Eutectic Solvents. J. Mol. Liq. 2020, 307, 112940. [Google Scholar] [CrossRef]
- Bunquin, R.M.A.; Caparanga, A.R. Predicting the Heat Capacities of Ammonium- And Phosphonium-Based Deep Eutectic Solvents Using Artificial Neural Network. J. Phys. Conf. Ser. 2021, 1893, 012001. [Google Scholar] [CrossRef]
- Su, H.Z.; Yin, J.M.; Liu, Q.S.; Li, C.P. Properties of Four Deep Eutectic Solvents: Density, Electrical Conductivity, Dynamic Viscosity and Refractive Index. Wuli Huaxue Xuebao Acta Phys.—Chim. Sin. 2015, 31, 1468–1473. [Google Scholar] [CrossRef]
- Seki, S.; Tsuzuki, S.; Hayamizu, K.; Umebayashi, Y.; Serizawa, N.; Takei, K.; Miyashiro, H. Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids. J. Chem. Eng. Data 2012, 57, 2211–2216. [Google Scholar] [CrossRef]
- Murshid, G.; Mjalli, F.S.; Naser, J.; Al-Zakwani, S.; Hayyan, A. Novel Diethanolamine Based Deep Eutectic Mixtures for Carbon Dioxide (CO2) Capture: Synthesis and Characterisation. Phys. Chem. Liq. 2019, 57, 473–490. [Google Scholar] [CrossRef]
- Sánchez, P.B.; González, B.; Salgado, J.; José Parajó, J.; Domínguez, Á. Physical Properties of Seven Deep Eutectic Solvents Based on L-Proline or Betaine. J. Chem. Thermodyn. 2019, 131, 517–523. [Google Scholar] [CrossRef]
- Li, G.; Deng, D.; Chen, Y.; Shan, H.; Ai, N. Solubilities and Thermodynamic Properties of CO2 in Choline-Chloride Based Deep Eutectic Solvents. J. Chem. Thermodyn. 2014, 75, 58–62. [Google Scholar] [CrossRef]
- Husson-Borg, P.; Majer, V.; Costa Gomes, M.F. Solubilities of Oxygen and Carbon Dioxide in Butyl Methyl Imidazolium Tetrafluoroborate as a Function of Temperature and at Pressures Close to Atmospheric Pressure. J. Chem. Eng. Data 2003, 48, 480–485. [Google Scholar] [CrossRef]
- Chen, Y.; Ai, N.; Li, G.; Shan, H.; Cui, Y.; Deng, D. Solubilities of Carbon Dioxide in Eutectic Mixtures of Choline Chloride and Dihydric Alcohols. J. Chem. Eng. Data 2014, 59, 1247–1253. [Google Scholar] [CrossRef]
- Deng, D.; Jiang, Y.; Liu, X.; Zhang, Z.; Ai, N. Investigation of Solubilities of Carbon Dioxide in Five Levulinic Acid-Based Deep Eutectic Solvents and Their Thermodynamic Properties. J. Chem. Thermodyn. 2016, 103, 212–217. [Google Scholar] [CrossRef]
- Liu, F.; Chen, W.; Mi, J.; Zhang, J.Y.; Kan, X.; Zhong, F.Y.; Huang, K.; Zheng, A.M.; Jiang, L. Thermodynamic and Molecular Insights into the Absorption of H2S, CO2, and CH4 in Choline Chloride plus Urea Mixtures. AIChE J. 2019, 65, e16574. [Google Scholar] [CrossRef]
- Wu, H.; Shen, M.; Chen, X.; Yu, G.; Abdeltawab, A.A.; Yakout, S.M. New Absorbents for Hydrogen Sulfide: Deep Eutectic Solvents of Tetrabutylammonium Bromide/Carboxylic Acids and Choline Chloride/Carboxylic Acids. Sep. Purif. Technol. 2019, 224, 281–289. [Google Scholar] [CrossRef]
- Jiang, W.J.; Zhong, F.Y.; Liu, Y.; Huang, K. Effective and Reversible Capture of NH3 by Ethylamine Hydrochloride Plus Glycerol Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2019, 7, 10552–10560. [Google Scholar] [CrossRef]
- Jiang, W.J.; Zhang, J.B.; Zou, Y.T.; Peng, H.L.; Huang, K. Manufacturing Acidities of Hydrogen-Bond Donors in Deep Eutectic Solvents for Effective and Reversible NH3Capture. ACS Sustain. Chem. Eng. 2020, 8, 13408–13417. [Google Scholar] [CrossRef]
- Kim, J.E.; Lim, J.S.; Kang, J.W. Measurement and Correlation of Solubility of Carbon Dioxide in 1-Alkyl-3-Methylimidazolium Hexafluorophosphate Ionic Liquids. Fluid Phase Equilib. 2011, 306, 251–255. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Gu, Z.; Brennecke, J.F. High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems. J. Phys. Chem. B 2001, 105, 2437–2444. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Hu, Z.; Lin, X.; Ahmad, N.; Xu, J.; Xu, X. Efficient CO2 Capture by a Novel Deep Eutectic Solvent through Facile, One-Pot Synthesis with Low Energy Consumption and Feasible Regeneration. Sci. Total Environ. 2020, 705, 135798. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhang, H.; Zhang, L.; Zhang, N.; Huang, Z.; Chen, Y.; Sun, Y.; Tantai, X. Novel Deep Eutectic Solvents for Highly Efficient and Reversible Absorption of SO2 by Preorganization Strategy. ACS Sustain. Chem. Eng. 2019, 7, 8347–8357. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Y.; Zhu, X.; Cui, G.; Li, H.; Dai, S. Highly Efficient CO2 Capture by Tunable Alkanolamine-Based Ionic Liquids with Multidentate Cation Coordination. Chem. Commun. 2012, 48, 6526. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Liu, J.; Lyu, S.; Wang, H.; Li, Z.; Wang, J. Efficient and Reversible SO2 Absorption by Environmentally Friendly Task-Specific Deep Eutectic Solvents of PPZBr + Gly. ACS Sustain. Chem. Eng. 2019, 7, 14236–14246. [Google Scholar] [CrossRef]
- Sheng, K.; Kang, Y.; Li, J.; Xu, H.; Li, D. High-Efficiency Absorption of SO2 by a New Type of Deep Eutectic Solvents. Energy Fuels 2020, 34, 3440–3448. [Google Scholar]
- Zubeir, L.F.; Romanos, G.E.; Weggemans, W.M.A.; Iliev, B.; Schubert, T.J.S.; Kroon, M.C. Solubility and Diffusivity of CO2 in the Ionic Liquid 1-Butyl-3-Methylimidazolium Tricyanomethanide within a Large Pressure Range (0.01 MPa to 10 MPa). J. Chem. Eng. Data 2015, 60, 1544–1562. [Google Scholar] [CrossRef]
- Zubeir, L.F.; Lacroix, M.H.M.; Kroon, M.C. Low Transition Temperature Mixtures as Innovative and Sustainable CO2 Capture Solvents. J. Phys. Chem. B 2014, 118, 14429–14441. [Google Scholar] [CrossRef]
- Lei, Z.; Dai, C.; Chen, B. Gas Solubility in Ionic Liquids. Chem. Rev. 2014, 114, 1289–1326. [Google Scholar] [CrossRef] [PubMed]
- Aki, S.N.V.K.; Mellein, B.R.; Saurer, E.M.; Brennecke, J.F. High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2004, 108, 20355–20365. [Google Scholar] [CrossRef]
- Zubeir, L.F.; Van Osch, D.J.G.P.; Rocha, M.A.A.; Banat, F.; Kroon, M.C. Carbon Dioxide Solubilities in Decanoic Acid-Based Hydrophobic Deep Eutectic Solvents. J. Chem. Eng. Data 2018, 63, 913–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haider, M.B.; Jha, D.; Marriyappan Sivagnanam, B.; Kumar, R. Thermodynamic and Kinetic Studies of CO2 Capture by Glycol and Amine-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2018, 63, 2671–2680. [Google Scholar] [CrossRef]
- Liu, X.; Gao, B.; Jiang, Y.; Ai, N.; Deng, D. Solubilities and Thermodynamic Properties of Carbon Dioxide in Guaiacol-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2017, 62, 1448–1455. [Google Scholar] [CrossRef]
- Altamash, T.; Nasser, M.S.; Elhamarnah, Y.; Magzoub, M.; Ullah, R.; Qiblawey, H.; Aparicio, S.; Atilhan, M. Gas Solubility and Rheological Behavior Study of Betaine and Alanine Based Natural Deep Eutectic Solvents (NADES). J. Mol. Liq. 2018, 256, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Akhmetshina, A.I.; Petukhov, A.N.; Mechergui, A.; Vorotyntsev, A.V.; Nyuchev, A.V.; Moskvichev, A.A.; Vorotyntsev, I.V. Evaluation of Methanesulfonate-Based Deep Eutectic Solvent for Ammonia Sorption. J. Chem. Eng. Data 2018, 63, 1896–1904. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, L.; Bai, Y.; Li, F.; Dong, H.; Wang, H.; Zhang, X.; Zeng, S. Superbase Ionic Liquid-Based Deep Eutectic Solvents for Improving CO2 Absorption. ACS Sustain. Chem. Eng. 2020, 8, 2523–2530. [Google Scholar] [CrossRef]
- Cui, G.; Lv, M.; Yang, D. Efficient CO2 Absorption by Azolide-Based Deep Eutectic Solvents. Chem. Commun. 2019, 55, 1426–1429. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mikkola, J.P. Intermolecular Interactions upon Carbon Dioxide Capture in Deep-Eutectic Solvents. Phys. Chem. Chem. Phys. 2018, 20, 24591–24601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, X.; Deng, D. Solubilities and Thermodynamic Properties of CO2 in Four Azole-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2018, 63, 2091–2096. [Google Scholar] [CrossRef]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Shariff, A.M.; Hailegiorgis, S.M.; Khan, S.N. CO2 Capture with the Help of Phosphonium-Based Deep Eutectic Solvents. J. Mol. Liq. 2017, 243, 564–571. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, H.; Song, Z.; Chen, L.; Deng, L.; Qi, Z. Carbon Dioxide Solubility in Phosphonium-Based Deep Eutectic Solvents: An Experimental and Molecular Dynamics Study. Ind. Eng. Chem. Res. 2019, 58, 17514–17523. [Google Scholar] [CrossRef]
- Haider, M.B.; Kumar, R. Solubility of CO2 and CH4 in Sterically Hindered Amine-Based Deep Eutectic Solvents. Sep. Purif. Technol. 2020, 248, 117055. [Google Scholar] [CrossRef]
- Ali, E.; Hadj-Kali, M.K.; Mulyono, S.; Alnashef, I.; Fakeeha, A.; Mjalli, F.; Hayyan, A. Solubility of CO2 in Deep Eutectic Solvents: Experiments and Modelling Using the Peng-Robinson Equation of State. Chem. Eng. Res. Des. 2014, 92, 1898–1906. [Google Scholar] [CrossRef]
- Liu, X.; Gao, B.; Deng, D. SO2 Absorption/Desorption Performance of Renewable Phenol-Based Deep Eutectic Solvents. Sep. Sci. Technol. 2018, 53, 2150–2158. [Google Scholar] [CrossRef]
- Shukla, S.K.; Nikjoo, D.; Mikkola, J.P. Is Basicity the Sole Criterion for Attaining High Carbon Dioxide Capture in Deep-Eutectic Solvents? Phys. Chem. Chem. Phys. 2020, 22, 966–970. [Google Scholar] [CrossRef] [Green Version]
- Sarmad, S.; Nikjoo, D.; Mikkola, J.P. Amine Functionalized Deep Eutectic Solvent for CO2 Capture: Measurements and Modeling. J. Mol. Liq. 2020, 309, 113159. [Google Scholar] [CrossRef]
- Sze, L.L.; Pandey, S.; Ravula, S.; Pandey, S.; Zhao, H.; Baker, G.A.; Baker, S.N. Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustain. Chem. Eng. 2014, 2, 2117–2123. [Google Scholar] [CrossRef]
- Jiang, B.; Ma, J.; Yang, N.; Huang, Z.; Zhang, N.; Tantai, X.; Sun, Y.; Zhang, L. Superbase/Acylamido-Based Deep Eutectic Solvents for Multiple-Site Efficient CO2 Absorption. Energy and Fuels 2019, 33, 7569–7577. [Google Scholar] [CrossRef]
- Pishro, K.A.; Murshid, G.; Mjalli, F.S.; Naser, J. Investigation of CO2 Solubility in Monoethanolamine Hydrochloride Based Deep Eutectic Solvents and Physical Properties Measurements. Chin. J. Chem. Eng. 2020, 28, 2848–2856. [Google Scholar] [CrossRef]
- Ren, H.; Lian, S.; Wang, X.; Zhang, Y.; Duan, E. Exploiting the Hydrophilic Role of Natural Deep Eutectic Solvents for Greening CO2 Capture. J. Clean. Prod. 2018, 193, 802–810. [Google Scholar] [CrossRef]
- Trivedi, T.J.; Lee, J.H.; Lee, H.J.; Jeong, Y.K.; Choi, J.W. Deep Eutectic Solvents as Attractive Media for CO2 Capture. Green Chem. 2016, 18, 2834–2842. [Google Scholar] [CrossRef]
- Siani, G.; Tiecco, M.; Di Profio, P.; Guernelli, S.; Fontana, A.; Ciulla, M.; Canale, V. Physical Absorption of CO2 in Betaine/Carboxylic Acid-Based Natural Deep Eutectic Solvents. J. Mol. Liq. 2020, 315, 113708. [Google Scholar] [CrossRef]
- Ramdin, M.; de Loos, T.W.; Vlugt, T.J.H. State-of-the-Art of CO2 Capture with Ionic Liquids. Ind. Eng. Chem. Res. 2012, 51, 8149–8177. [Google Scholar] [CrossRef]
- Kanakubo, M.; Makino, T.; Taniguchi, T.; Nokami, T.; Itoh, T. CO2 Solubility in Ether Functionalized Ionic Liquids on Mole Fraction and Molarity Scales. ACS Sustain. Chem. Eng. 2016, 4, 525–535. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Li, C.; Cui, Y.; Li, S.; Yang, G.; Shen, Y. Absorption of Carbon Dioxide Using Ethanolamine-Based Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2019, 7, 10403–10414. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mikkola, J.P. Unusual Temperature-Promoted Carbon Dioxide Capture in Deep-Eutectic Solvents: The Synergistic Interactions. Chem. Commun. 2019, 55, 3939–3942. [Google Scholar] [CrossRef]
- Cichowska-Kopczyńska, I.; Warmińska, D.; Nowosielski, B. Solubility of Carbon Dioxide in Deep Eutectic Solvents Based on 3-Amino-1-Propanol and Tetraalkylammonium Salts at Low Pressure. Materials 2021, 14, 594. [Google Scholar] [CrossRef]
- Su, W.C.; Wong, D.S.H.; Li, M.H. Effect of Water on Solubility of Carbon Dioxide in (Aminomethanamide + 2-Hydroxy-N,N,N-Trimethylethanaminium Chloride). J. Chem. Eng. Data 2009, 54, 1951–1955. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, H.; Zhang, S.; Lu, X.; Ji, X. Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea. J. Chem. Eng. Data 2014, 59, 3344–3352. [Google Scholar] [CrossRef]
- Ma, C.; Sarmad, S.; Mikkola, J.P.; Ji, X. Development of Low-Cost Deep Eutectic Solvents for CO2 Capture. Energy Procedia 2017, 142, 3320–3325. [Google Scholar] [CrossRef]
- Shah, D.; Mjalli, F.S. Effect of Water on the Thermo-Physical Properties of Reline: An Experimental and Molecular Simulation Based Approach. Phys. Chem. Chem. Phys. 2014, 16, 23900–23907. [Google Scholar] [CrossRef] [PubMed]
- Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F.S. Formation of Type III Deep Eutectic Solvents and Effect of Water on Their Intermolecular Interactions. Fluid Phase Equilib. 2017, 441, 43–48. [Google Scholar] [CrossRef]
- Fetisov, E.O.; Harwood, D.B.; Kuo, I.F.W.; Warrag, S.E.E.; Kroon, M.C.; Peters, C.J.; Siepmann, J.I. First-Principles Molecular Dynamics Study of a Deep Eutectic Solvent: Choline Chloride/Urea and Its Mixture with Water. J. Phys. Chem. B 2018, 122, 1245–1254. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Zhu, Y.; Ji, X.; Zhu, W.; Lu, L.; Lu, X. Effect of Water Concentration on the Microstructures of Choline Chloride/Urea (1:2)/Water Mixture. Fluid Phase Equilib. 2018, 470, 134–139. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Wu, X.; Li, G. Theoretical Study on the Structures and Properties of Mixtures of Urea and Choline Chloride. J. Mol. Model. 2013, 19, 2433–2441. [Google Scholar] [CrossRef]
- Perkins, S.L.; Painter, P.; Colina, C.M. Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2014, 59, 3652–3662. [Google Scholar] [CrossRef]
- Naik, P.K.; Paul, S.; Banerjee, T. Physiochemical Properties and Molecular Dynamics Simulations of Phosphonium and Ammonium Based Deep Eutectic Solvents. J. Solution Chem. 2019, 48, 1046–1065. [Google Scholar] [CrossRef]
- Migliorati, V.; Sessa, F.; D’Angelo, P. Deep Eutectic Solvents: A Structural Point of View on the Role of the Cation. Chem. Phys. Lett. X 2019, 737, 100001. [Google Scholar] [CrossRef]
- Ferreira, E.S.C.; Voroshylova, I.V.; Figueiredo, N.M.; Pereira, C.M.; Cordeiro, M.N.D.S. Computational and Experimental Study of Propeline: A Choline Chloride Based Deep Eutectic Solvent. J. Mol. Liq. 2020, 298, 111978. [Google Scholar] [CrossRef]
- Ferreira, E.S.C.; Voroshylova, I.V.; Pereira, C.M.; Cordeiro, M.N.D.S. Improved Force Field Model for the Deep Eutectic Solvent Ethaline: Reliable Physicochemical Properties. J. Phys. Chem. B 2016, 120, 10124–10137. [Google Scholar] [CrossRef] [PubMed]
- Rozas, S.; Alomari, N.; Atilhan, M.; Aparicio, S. Theoretical Insights into the Cineole-Based Deep Eutectic Solvents. J. Chem. Phys. 2021, 154, 184504. [Google Scholar] [CrossRef] [PubMed]
- Kussainova, D.; Shah, D. Structure of Monoethanolamine Based Type III DESs: Insights from Molecular Dynamics Simulations. Fluid Phase Equilib. 2019, 482, 112–117. [Google Scholar] [CrossRef]
- Barani Pour, S.; Jahanbin Sardroodi, J.; Rastkar Ebrahimzadeh, A. The Study of Structure and Interactions of Glucose-Based Natural Deep Eutectic Solvents by Molecular Dynamics Simulation. J. Mol. Liq. 2021, 334, 115956. [Google Scholar] [CrossRef]
- Alizadeh, V.; Geller, D.; Malberg, F.; Sánchez, P.B.; Padua, A.; Kirchner, B. Strong Microheterogeneity in Novel Deep Eutectic Solvents. ChemPhysChem 2019, 20, 1786–1792. [Google Scholar] [CrossRef]
- Doherty, B.; Acevedo, O. OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents. J. Phys. Chem. B 2018, 122, 9982–9993. [Google Scholar] [CrossRef]
- Altamash, T.; Atilhan, M.; Aliyan, A.; Ullah, R.; García, G.; Aparicio, S. Insights into Choline Chloride-Phenylacetic Acid Deep Eutectic Solvent for CO2 Absorption. RSC Adv. 2016, 6, 109201–109210. [Google Scholar] [CrossRef]
- Ullah, R.; Atilhan, M.; Anaya, B.; Khraisheh, M.; García, G.; Elkhattat, A.; Tariq, M.; Aparicio, S. A Detailed Study of Cholinium Chloride and Levulinic Acid Deep Eutectic Solvent System for CO2 capture via Experimental and Molecular Simulation Approaches. Phys. Chem. Chem. Phys. 2015, 17, 20941–20960. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Keshri, S.; Bharti, A.; Kumar, S.; Mogurampelly, S. Solubility of Gases in Choline Chloride-Based Deep Eutectic Solvents from Molecular Dynamics Simulation. Ind. Eng. Chem. Res. 2022, 61, 4659–4671. [Google Scholar] [CrossRef]
- Jahanbakhsh-Bonab, P.; Jahanbin Sardroodi, J.; Sadegh Avestan, M. The Pressure Effects on the Amine-Based DES Performance in NG Sweetening: Insights from Molecular Dynamics Simulation. Fuel 2022, 323, 124249. [Google Scholar] [CrossRef]
- Muthu, A.; Maheswari, U.; Palanivelu, K. Absorption of Carbon Dioxide in Alkanolamines in Deep Eutectic Solvent Medium for CO2 Gas Separation. J. Chem. Pharm. Sci. 2014, 974, 2115. [Google Scholar]
- Lian, S.; Li, R.; Zhang, Z.; Liu, Q.; Song, C.; Lu, S. Improved CO2 Separation Performance and Interfacial Affinity of Composite Membranes by Incorporating Amino Acid-Based Deep Eutectic Solvents. Sep. Purif. Technol. 2021, 272, 118953. [Google Scholar] [CrossRef]
- Saeed, U.; Khan, A.L.; Gilani, M.A.; Bilad, M.R.; Khan, A.U. Supported Deep Eutectic Liquid Membranes with Highly Selective Interaction Sites for Efficient CO2 Separation. J. Mol. Liq. 2021, 342, 117509. [Google Scholar] [CrossRef]
- Saeed, U.; Khan, A.U.; Khan, A.L.; Gilani, M.A.; Bilad, M.R. Separation of Carbon Dioxide by Potassium Carbonate Based Supported Deep Eutectic Liquid Membranes: Influence of Hydrogen Bond Donor. J. Membr. Sci. Res. 2022, 8. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, N.N.; Jiang, H.; Zheng, W.T.; Chen, Y.; Huang, K.; Liu, F. 1-Ethyl-3-Methylimidazolium Chloride plus Imidazole Deep Eutectic Solvents as Physical Solvents for Remarkable Separation of H2S from CO2. Sep. Purif. Technol. 2021, 276, 119313. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, S.; Hou, Y.; Wu, W. Capture of Acidic Gases from Flue Gas by Deep Eutectic Solvents. Processes 2021, 9, 1268. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, S.; De-en, J.; Dai, S. SO2 Absorption in EmimCl–TEG Deep Eutectic Solvents. Phys. Chem. Chem. Phys. 2018, 20, 15168–15173. [Google Scholar]
Type | General Formulas | Examples |
---|---|---|
I | Cat+X−:metal halides | 1:2 ChCl: FeCl3 |
II | Cat+X−:metal halides hydrate | 1:2 ChCl:CrCl3·6H2O |
III | Cat+X−:HBD | 1:2 ChCl:H2NCONH2 |
IV | Metal chloride:HBD | 1:3 ZnCl2:CH3CONH2 |
V | Nonsalt HBA:HBD | 1:1 Citric acid:sucrose |
VI | API as HBA or HBD (THEDES) | 1:1 ChCl:phenylacetic acid |
VII | Amino acid as HBA or HBD (AADES) | 1:1 Betaine:L-histidine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichowska-Kopczyńska, I.; Nowosielski, B.; Warmińska, D. Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules 2023, 28, 5293. https://doi.org/10.3390/molecules28145293
Cichowska-Kopczyńska I, Nowosielski B, Warmińska D. Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules. 2023; 28(14):5293. https://doi.org/10.3390/molecules28145293
Chicago/Turabian StyleCichowska-Kopczyńska, Iwona, Bartosz Nowosielski, and Dorota Warmińska. 2023. "Deep Eutectic Solvents: Properties and Applications in CO2 Separation" Molecules 28, no. 14: 5293. https://doi.org/10.3390/molecules28145293
APA StyleCichowska-Kopczyńska, I., Nowosielski, B., & Warmińska, D. (2023). Deep Eutectic Solvents: Properties and Applications in CO2 Separation. Molecules, 28(14), 5293. https://doi.org/10.3390/molecules28145293