Determination of Dicofol in Tea Using Surface-Enhanced Raman Spectroscopy Coupled Chemometrics
Abstract
:1. Introduction
2. Results
2.1. Optimization of AuNPs and Au@AgNPs
2.2. Characterization of AuNPs and Core–Shell Au@AgNPs
2.3. Characterization of the Au@AgNPs/PDMS Substrate
2.4. Reproducibility and Stability Analysis
2.5. Sensitivity of Au@AgNPs/PDMS
2.6. Determination of Dicofol with the Au@AgNPs/PDMS SERS Substrate
2.7. Variable Selection and Models Development
2.7.1. CARS-PLS Model
2.7.2. Si-PLS Model
2.7.3. SPA-PLS Model
2.7.4. UVE-PLS Model
2.8. Models Effect Evaluation
3. Discussion
4. Materials and Methods
4.1. Chemicals Reagents and Materials
4.2. Instrumentation
4.3. Synthesis of Flexible Substrates for Au@AgNPs/PDMS
4.4. Feasible Characterization of the Composite Raman Substrate
4.5. Sample Preparation
4.6. SERS Detection of 4-ATP and Dicofol
4.7. Data Preprocessing and Models Development
4.7.1. Spectra Preprocessing
4.7.2. Variable Selection
4.7.3. Model Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fang, J.; Sureda, A.; Silva, A.S.; Khan, F.; Xu, S.W.; Nabavi, S.M. Trends of tea in cardiovascular health and disease: A critical review. Trends Food Sci. Technol. 2019, 88, 385–396. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2019, 11, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.Y.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and other harmful substances released from disposable paper cups into hot water. J. Hazard. Mater. 2021, 404, 124118. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.M.; Zhong, Y.Z.; Duan, Y.H.; Chen, Q.H.; Li, F.N. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi-Roshan, M.; Salari, A.; Ghorbani, Z.; Ashouri, A. The effects of regular consumption of green or black tea beverage on blood pressure in those with elevated blood pressure or hypertension: A systematic review and meta-analysis. Complement. Ther. Med. 2020, 51, 102430. [Google Scholar] [CrossRef]
- Li, C.J.; Zhu, H.M.; Li, C.Y.; Qian, H.; Yao, W.R.; Guo, Y.H. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021, 354, 129552. [Google Scholar] [CrossRef]
- Wahab, S.; Muzammil, K.; Nasir, N.; Khan, M.S.; Ahmad, M.F.; Khalid, M.; Ahmad, W.; Dawria, A.; Reddy, L.K.V.; Busayli, A.M. Advancement and New Trends in Analysis of Pesticide Residues in Food: A Comprehensive Review. Plants 2022, 11, 1106. [Google Scholar] [CrossRef]
- de Souza, R.M.; Seibert, D.; Quesada, H.B.; Bassetti, F.D.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Mousa, A.; Basheer, C.; Abdullah, M.; Al-Arfaj, A. Determination of Trace Level Perchlorate in Seawater Using Dispersive Solid-Phase Extraction and Co-precipitation Extraction with Layered Double Hydroxides Followed by Ion Chromatography Analysis. Arab. J. Sci. Eng. 2020, 45, 4635–4646. [Google Scholar] [CrossRef]
- Li, S.H.; Ren, J.; Zhang, Y.P.; Li, L.F.; Zhao, Y.F.; Chen, D.W.; Wu, Y.N. A highly-efficient and cost-effective pretreatment method for selective extraction and detection of perchlorate in tea and dairy products. Food Chem. 2020, 328, 127113. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.Y.; Pang, G.F.; Fan, C.L.; Chen, H.; Yang, F.; Li, J.; Wen, B.F. High-Throughput Analytical Techniques for the Determination of the Residues of 653 Multiclass Pesticides and Chemical Pollutants in Tea, Part VII: A GC-MS, GC-MS/MS, and LC-MS/MS Study of the Degradation Profiles of Pesticide Residues in Green Tea. J. AOAC Int. 2016, 99, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, H.P.; Zhu, L.; Liu, X.; Lu, C.Y. Accurate, sensitive and rapid determination of perchlorate in tea by hydrophilic interaction chromatography-tandem mass spectrometry. Anal. Methods 2020, 12, 3592–3599. [Google Scholar] [CrossRef]
- Dong, H.; Xiao, K.J.; Xian, Y.P.; Wu, Y.L.; Zhu, L. A novel approach for simultaneous analysis of perchlorate (ClO4−) and bromate (BrO3−) in fruits and vegetables using modified QuEChERS combined with ultrahigh performance liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 270, 196–203. [Google Scholar] [CrossRef]
- Guo, Z.M.; Wang, M.M.; Barimah, A.O.; Chen, Q.S.; Li, H.H.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B. Label-free surface enhanced Raman scattering spectroscopy for discrimination and detection of dominant apple spoilage fungus. Int. J. Food Microbiol. 2021, 338, 108990. [Google Scholar] [CrossRef]
- Hu, B.X.; Pu, H.B.; Sun, D.W. Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends Food Sci. Technol. 2021, 110, 304–320. [Google Scholar] [CrossRef]
- Zhang, D.R.; Pu, H.B.; Huang, L.J.; Sun, D.W. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci. Technol. 2021, 109, 690–701. [Google Scholar] [CrossRef]
- Nam, J.M.; Oh, J.W.; Lee, H.; Suh, Y.D. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, P.; Jiang, A.M.; Shen, X.; Li, X.M.; Xu, Z.L.; Shen, Y.D.; Sun, Y.M.; Lei, H.T. Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC—Trends Anal. Chem. 2020, 131, 116017. [Google Scholar] [CrossRef]
- Yu, B.R.; Ge, M.H.; Li, P.; Xie, Q.W.; Yang, L.B. Development of surface-enhanced Raman spectroscopy application for determination of illicit drugs: Towards a practical sensor. Talanta 2019, 191, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.H.; Sheng, R.; Chen, Q.S. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Song, C.Y.; Yang, B.Y.; Zhu, Y.; Yang, Y.J.; Wang, L.H. Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Biosens. Bioelectron. 2017, 87, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Kim, S.; Choi, M.; Park, H.H.; Kim, N.H.; Park, S.Y.; Byun, K.M.; Lee, S.Y. Combination of periodic hybrid nanopillar arrays and gold nanorods for improving detection performance of surface-enhanced Raman spectroscopy. Sens. Actuators B-Chem. 2018, 258, 18–24. [Google Scholar] [CrossRef]
- Jamieson, L.E.; Asiala, S.M.; Gracie, K.; Faulds, K.; Graham, D. Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. In Annual Review of Analytical Chemistry; Cooks, R.G., Pemberton, J.E., Eds.; University of Strathclyde: Glasgow, UK, 2017; Volume 10, pp. 415–437. [Google Scholar]
- Wang, K.Q.; Sun, D.W.; Pu, H.B.; Wei, Q.Y. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem. 2020, 310, 125923. [Google Scholar] [CrossRef]
- Ma, Y.; Du, Y.Y.; Chen, Y.; Gu, C.J.; Jiang, T.; Wei, G.D.; Zhou, J. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 2020, 381, 122710. [Google Scholar] [CrossRef]
- Zhu, A.F.; Ali, S.; Xu, Y.; Ouyang, Q.; Chen, Q.S. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens. Bioelectron. 2021, 172, 112806. [Google Scholar] [CrossRef]
- Li, X.T.; Liu, H.M.; Gu, C.J.; Zhang, J.J.; Jiang, T. PDMS/TiO2/Ag hybrid substrate with intrinsic signal and clean surface for recyclable and quantitative SERS sensing. Sens. Actuators B-Chem. 2022, 351, 130886. [Google Scholar] [CrossRef]
- Huang, H.; du Toit, H.; Besenhard, M.O.; Ben-Jaber, S.; Dobson, P.; Parkin, I.; Gavriilidis, A. Continuous flow synthesis of ultrasmall gold nanoparticles in a microreactor using trisodium citrate and their SERS performance. Chem. Eng. Sci. 2018, 189, 422–430. [Google Scholar] [CrossRef]
- Lopez-Lorente, A.I. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications—A review. Anal. Chim. Acta 2021, 1168, 338474. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.C.; Wang, T.C.; Xu, E.Z.; Bai, F.; Liu, J.; Zhang, Z.L. Flexible Hydrophobic CFP@PDA@AuNPs Stripes for Highly Sensitive SERS Detection of Methylene Blue Residue. Nanomaterials 2022, 12, 2163. [Google Scholar] [CrossRef] [PubMed]
- Samal, A.K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzan, L.M.; Perez-Juste, J.; Pastoriza-Santos, I. Size Tunable Au@Ag Core Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties. Langmuir 2013, 29, 15076–15082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.F.; Zhang, Y.J.; Ding, S.Y.; Panneerselvam, R.; Tian, Z.Q. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. [Google Scholar] [CrossRef] [PubMed]
- Ankudze, B.; Philip, A.; Pakkanen, T.T.; Matikainen, A.; Vahimaa, P. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO2 inverse opals. Appl. Surf. Sci. 2016, 387, 595–602. [Google Scholar] [CrossRef]
- Mu, Z.D.; Zhao, X.W.; Xie, Z.Y.; Zhao, Y.J.; Zhong, Q.F.; Bo, L.; Gu, Z.Z. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). J. Mater. Chem. B 2013, 1, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Kucera, J.; Gross, A. Geometric and electronic structure of Pd/4-aminothiophenol/Au(111) metal-molecule-metal contacts: A periodic DFT study. Phys. Chem. Chem. Phys. 2010, 12, 4423–4430. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, L.X.; Shi, C.L.; Kang, S.Z.; Li, X.Q. A stable and plug-and-play aluminium/titanium dioxide/metal-organic framework/silver composite sheet for sensitive Raman detection and photocatalytic removal of 4-aminothiophenol. Chemosphere 2021, 282, 131000. [Google Scholar] [CrossRef]
- Philip, A.; Ankudze, B.; Pakkanen, T.T. A simple one-step fabrication of gold nanoparticles-based surface-enhanced Raman scattering substrates using rice grains. Appl. Surf. Sci. 2019, 480, 229–234. [Google Scholar] [CrossRef]
- Zhang, L.; Weng, Y.J.; Liu, X.; Gu, W.; Zhang, X.; Han, L. Fe(III) Mixed IP6@Au NPs with Enhanced SERS Activity for Detection of 4-ATP. Sci. Rep. 2020, 10, 5752. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.Z.; Wu, Y.Z.; Wang, B.J.; Wang, J.Y.; Yao, W.X. Facile synthesis of Ag@Au core-satellite nanowires for highly sensitive SERS detection for tropane alkaloids. J. Alloys Compd. 2021, 884, 161053. [Google Scholar] [CrossRef]
- Xu, L.X.; Ma, J.L.; Chen, D.; Gu, C.J.; Zhou, J.; Jiang, T. Brush-like gold nanowires-anchored g-C3N4 nanosheets with tunable geometry for ultrasensitive and regenerative SERS detection of gaseous molecules. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2022, 283, 121732. [Google Scholar] [CrossRef]
- Hsu, K.C.; Chen, D.H. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res. Lett. 2014, 9, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.G.; Shang, W.J.; Xuan, M.R.; Ma, G.R.; Ben, Z.X. Layered filter paper-silver nanoparticle-ZIF-8 composite for efficient multi-mode enrichment and sensitive SERS detection of thiram. Chemosphere 2022, 288, 132635. [Google Scholar] [CrossRef] [PubMed]
- Balan, C.; Pop, L.C.; Baia, M. IR, Raman and SERS analysis of amikacin combined with DFT-based calculations. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2019, 214, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Acquarelli, J.; van Laarhoven, T.; Gerretzen, J.; Tran, T.N.; Buydens, L.M.C.; Marchiori, E. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 2017, 954, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Liu, N.H.; Wang, X.F.; Hu, C.; Tang, X.Y. A feasibility quantitative analysis of NIR spectroscopy coupled Si-PLS to predict coco-peat available nitrogen from rapid measurements. Comput. Electron. Agric. 2020, 173, 105410. [Google Scholar] [CrossRef]
- Guo, Z.M.; Barimah, A.O.; Yin, L.M.; Chen, Q.S.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B. Intelligent evaluation of taste constituents and polyphenols-to-amino acids ratio in matcha tea powder using near infrared spectroscopy. Food Chem. 2021, 353, 129372. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Saebo, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.J.; Liu, C.; Wang, W.; Rao, P.F.; Fu, C.L.; Wang, S.Y. SPA Combined with Swarm Intelligence Optimization Algorithms for Wavelength Variable Selection to Rapidly Discriminate the Adulteration of Apple Juice. Food Anal. Methods 2017, 10, 1965–1971. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.D.; Ding, Y.H.; Chen, Q.S. Quantitative analysis of yeast fermentation process using Raman spectroscopy: Comparison of CARS and VCPA for variable selection. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2020, 228, 117781. [Google Scholar] [CrossRef]
- Guo, Z.M.; Wang, M.M.; Agyekum, A.A.; Wu, J.Z.; Chen, Q.S.; Zuo, M.; El-Seedi, H.R.; Tao, F.F.; Shi, J.Y.; Ouyang, Q.; et al. Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. J. Food Eng. 2020, 279, 109955. [Google Scholar] [CrossRef]
SERS Substrate | Detection Level (mol/L) | Reference |
---|---|---|
Al-TiO2-ZIF-8-Ag | 10−9 | [38] |
Au-rice | 10−6 | [39] |
IP6@Au NPs | 10−7 | [40] |
CFP@PDA@AuNPs | 10−9 | [32] |
Ag@Au NWs | 10−9 | [41] |
g-C3N4/Au NWs | 10−8 | [42] |
PDMS/TiO2/Ag | 10−9 | [29] |
Au-SiO2 IO film | 10−10 | [35] |
Ag/rGO | 10−10 | [43] |
FP/Ag/ZIF-8 | 10−12 | [44] |
Au@AgNPs/PDMS | 10−11 | This study |
Model | Calibration SET | Prediction Set | |||
---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |
SG-PLS | 0.9869 | 5.6093 | 0.9906 | 4.8124 | 7.2341 |
MSC-PLS | 0.8714 | 17.3319 | 0.8690 | 17.7664 | 1.9595 |
SNV-PLS | 0.8737 | 17.1274 | 0.8734 | 17.5182 | 1.9872 |
1st-PLS | 0.9866 | 5.7014 | 0.9906 | 4.8204 | 7.2221 |
2st-PLS | 0.9861 | 5.8090 | 0.9893 | 5.1056 | 6.8187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, Q.; Yin, L.; Jayan, H.; El-Seedi, H.R.; Gómez, P.L.; Alzamora, S.M.; Zou, X.; Guo, Z. Determination of Dicofol in Tea Using Surface-Enhanced Raman Spectroscopy Coupled Chemometrics. Molecules 2023, 28, 5291. https://doi.org/10.3390/molecules28145291
Ke Q, Yin L, Jayan H, El-Seedi HR, Gómez PL, Alzamora SM, Zou X, Guo Z. Determination of Dicofol in Tea Using Surface-Enhanced Raman Spectroscopy Coupled Chemometrics. Molecules. 2023; 28(14):5291. https://doi.org/10.3390/molecules28145291
Chicago/Turabian StyleKe, Qian, Limei Yin, Heera Jayan, Hesham R. El-Seedi, Paula L. Gómez, Stella M. Alzamora, Xiaobo Zou, and Zhiming Guo. 2023. "Determination of Dicofol in Tea Using Surface-Enhanced Raman Spectroscopy Coupled Chemometrics" Molecules 28, no. 14: 5291. https://doi.org/10.3390/molecules28145291
APA StyleKe, Q., Yin, L., Jayan, H., El-Seedi, H. R., Gómez, P. L., Alzamora, S. M., Zou, X., & Guo, Z. (2023). Determination of Dicofol in Tea Using Surface-Enhanced Raman Spectroscopy Coupled Chemometrics. Molecules, 28(14), 5291. https://doi.org/10.3390/molecules28145291