Bilayer Hydrogel Composed of Elastin-Mimetic Polypeptides as a Bio-Actuator with Bidirectional and Reversible Bending Behaviors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coacervation Activity of EMP Monomer and Acryl-EMP Monomer
2.2. Preparation of Hydrogels with Acryl-EMP
2.3. Property of Temperature-Responsive EMP Hydrogel
2.4. Salt Concentration
2.5. Bilayer EMP Hydrogel
3. Materials and Methods
3.1. Plasmid Construction, and Peptide/Protein Purification and Synthesis
3.2. Protein Expression and Purification
3.3. Synthesis of Acryl-EMP
3.4. Temperature-Dependent Turbidity Measurements
3.5. Preparation of EMP Hydrogel
3.6. Temperature- and Salt-Dependent Behavior/Response of EMP Hydrogel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Andrade, F.; Roca-Melendres, M.M.; Duran-Lara, E.F.; Rafael, D.; Schwartz, S., Jr. Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers 2021, 13, 1164. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Hui, P.C.L. Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers 2021, 13, 2086. [Google Scholar] [CrossRef]
- Sarwan, T.; Kumar, P.; Choonara, Y.E.; Pillay, V. Hybrid Thermo-Responsive Polymer Systems and Their Biomedical Applications. Front. Mater. 2020, 7, 73. [Google Scholar] [CrossRef]
- Hirokawa, Y.; Tanaka, T. Volume Phase-Transition in a Nonionic Gel. J. Chem. Phys. 1984, 81, 6379–6380. [Google Scholar] [CrossRef]
- Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-Type Grafted Hydrogels with Rapid De-Swelling Response to Temperature-Changes. Nature 1995, 374, 240–242. [Google Scholar] [CrossRef]
- Kost, J.; Langer, R. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 2001, 46, 125–148. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to delivery and imaging drug. Drug Discov. Today 2003, 8, 1112–1120. [Google Scholar] [CrossRef]
- Huber, D.L.; Manginell, R.P.; Samara, M.A.; Kim, B.I.; Bunker, B.C. Programmed adsorption and release of proteins in a microfluidic device. Science 2003, 301, 352–354. [Google Scholar] [CrossRef]
- Akiyama, Y.; Kikuchi, A.; Yamato, M.; Okano, T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 2004, 20, 5506–5511. [Google Scholar] [CrossRef]
- Xu, F.J.; Zhong, S.P.; Yung, L.Y.L.; Kang, E.T.; Neoh, K.G. Surface-active and stimuli-responsive polymer-Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion. Biomacromolecules 2004, 5, 2392–2403. [Google Scholar] [CrossRef]
- Ghorbanizamani, F.; Moulahoum, H.; Celik, E.G.; Timur, S. Ionic liquids enhancement of hydrogels and impact on biosensing applications. J. Mol. Liq. 2022, 357, 119075. [Google Scholar] [CrossRef]
- Waterhouse, D.; Iadeluca, L.; Sura, S.; Wilner, K.; Emir, B.; Krulewicz, S.; Espirito, J.; Bartolome, L. Real-World Outcomes Among Crizotinib-Treated Patients with ROS1-Positive Advanced Non-Small-Cell Lung Cancer: A Community Oncology-Based Observational Study. Target Oncol. 2022, 17, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Tokarev, I.; Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter 2009, 5, 511–524. [Google Scholar] [CrossRef]
- DeFrates, K.G.; Moore, R.; Borgesi, J.; Lin, G.W.; Mulderig, T.; Beachley, V.; Hu, X. Protein-Based Fiber Materials in Medicine: A Review. Nanomaterials 2018, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Banskota, S.; Roberts, S.; Kirmani, N.; Chilkoti, A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. Adv. Ther. 2020, 3, 1900164. [Google Scholar] [CrossRef]
- Urry, D.W. Molecular Machines—How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical-Changes. Angew. Chem. Int. Edit 1993, 32, 819–841. [Google Scholar] [CrossRef]
- Rodriguez-Cabello, J.C.; Alonso, M.; Perez, T.; Herguedas, M.M. Differential scanning calorimetry study of the hydrophobic hydration of the elastin-based polypentapeptide, poly(VPGVG), from deficiency to excess of water. Biopolymers 2000, 54, 282–288. [Google Scholar] [CrossRef]
- Urry, D.W.; Parker, T.M.; Reid, M.C.; Gowda, D.C. Biocompatibility of the Bioelastic Materials, Poly(Gvgvp) and Its Gamma-Irradiation Cross-Linked Matrix—Summary of Generic Biological Test-Results. J. Bioact. Compat. Pol. 1991, 6, 263–282. [Google Scholar] [CrossRef]
- Hearst, S.M.; Walker, L.R.; Shao, Q.; Lopez, M.; Raucher, D.; Vig, P.J.S. The Design and Delivery of a Thermally Responsive Peptide to Inhibit S100b-Mediated Neurodegeneration. Neuroscience 2011, 197, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Lamme, E.N.; van Leeuwen, R.T.J.; Jonker, A.; van Marle, J.; Middelkoop, E. Living skin substitutes: Survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J. Investig. Dermatol. 1998, 111, 989–995. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Wang, T.; Chai, C.X. Swelling of pH-sensitive chitosan-poly(vinyl alcohol) hydrogels. J. Appl. Polym. Sci. 2006, 102, 4665–4671. [Google Scholar] [CrossRef]
- Longo, G.S.; de la Cruz, M.O.; Szleifer, I. Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration. J. Chem. Phys. 2014, 141, 124909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.; Choi, J.; Na, J.H.; Kim, S.Y. Thermally triggered soft actuators based on a bilayer hydrogel synthesized by gamma ray irradiation. Polymer 2021, 212, 123163. [Google Scholar] [CrossRef]
- Gao, G.R.; Wang, Z.W.; Xu, D.; Wang, L.F.; Xu, T.; Zhang, H.; Chen, J.; Fu, J. Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. ACS Appl. Mater. Interfaces 2018, 10, 41724–41731. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.J.; Liang, X.C.; Zhu, K.K.; Guo, J.H.; Zhang, L.N. Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter 2017, 13, 345–354. [Google Scholar] [CrossRef]
- Wang, X.J.; Huang, H.Q.; Liu, H.; Rehfeldt, F.; Wang, X.H.; Zhang, K. Multi-Responsive Bilayer Hydrogel Actuators with Programmable and Precisely Tunable Motions. Macromol. Chem. Phys. 2019, 220, 1800562. [Google Scholar] [CrossRef]
- Meyer, D.E.; Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacromolecules 2002, 3, 357–367. [Google Scholar] [CrossRef]
- Saha, R.; Debnath, R.; Das, S.; Haldar, S. Engineering Reconnaissance Following the Magnitude 5.7 Tripura Earthquake on January 3, 2017. J. Perform. Constr. Fac. 2020, 34, 04020052. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamada, R.; Miyazaki, H.; Janairo, J.I.B.; Chuman, Y.; Sakaguchi, K. Bilayer Hydrogel Composed of Elastin-Mimetic Polypeptides as a Bio-Actuator with Bidirectional and Reversible Bending Behaviors. Molecules 2023, 28, 5274. https://doi.org/10.3390/molecules28135274
Kamada R, Miyazaki H, Janairo JIB, Chuman Y, Sakaguchi K. Bilayer Hydrogel Composed of Elastin-Mimetic Polypeptides as a Bio-Actuator with Bidirectional and Reversible Bending Behaviors. Molecules. 2023; 28(13):5274. https://doi.org/10.3390/molecules28135274
Chicago/Turabian StyleKamada, Rui, Hiromitsu Miyazaki, Jose Isagani B. Janairo, Yoshiro Chuman, and Kazuyasu Sakaguchi. 2023. "Bilayer Hydrogel Composed of Elastin-Mimetic Polypeptides as a Bio-Actuator with Bidirectional and Reversible Bending Behaviors" Molecules 28, no. 13: 5274. https://doi.org/10.3390/molecules28135274
APA StyleKamada, R., Miyazaki, H., Janairo, J. I. B., Chuman, Y., & Sakaguchi, K. (2023). Bilayer Hydrogel Composed of Elastin-Mimetic Polypeptides as a Bio-Actuator with Bidirectional and Reversible Bending Behaviors. Molecules, 28(13), 5274. https://doi.org/10.3390/molecules28135274