Comprehensive Analysis of 34 Edible Flowers by the Determination of Nutritional Composition and Antioxidant Capacity Planted in Yunnan Province China
Abstract
:1. Introduction
2. Results
2.1. Determination Results of Nutrient Contents
2.2. Results of Antioxidant Capacity
2.2.1. Total Antioxidant Activity
2.2.2. DPPH Scavenging Ability
2.2.3. OH Scavenging Ability
2.2.4. ·O2− Scavenging Ability
2.3. Comprehensive Evaluation Based on Flower Nutrient Value and Antioxidant Capacity
2.3.1. Correlation Analysis
2.3.2. Principal Component Analysis and Cluster Analysis
2.4. Comprehensive Quality of 34 Edible Flowers Based on PCA Models
3. Materials and Methods
3.1. Flower Sample Collection
3.2. Reagents and Apparatus
3.3. Nutritional Composition Analysis
3.3.1. Laboratory Analysis
3.3.2. Determination of the Total Flavonoid Contents
3.4. Determination of Antioxidant Capacity
3.4.1. Determination of Total Antioxidant Activity
3.4.2. Determination of DPPH Scavenging Ability
3.4.3. Determination of ·OH Scavenging Ability
3.4.4. Determination of ·O2− Scavenging Ability
3.5. Statistical Analysis
4. Discussion
4.1. Nutraceutical Analysis
4.2. Antioxidant Activity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lara-Cortés, E.; Osorio-Díaz, P.; Jiménez-Aparicio, A.; Bautista-Bañios, S. Nutritional content, functional properties and conservation of edible flowers. Arch. Latinoam. De Nutr. 2013, 63, 197–208. [Google Scholar]
- Purohit, S.R.; Rana, S.S.; Idrishi, R.; Sharma, V.; Ghosh, P. A review on nutritional, bioactive, toxicological properties and preservation of edible flowers. Futur. Foods 2021, 4, 100078. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical content, health benefits, and toxicology of common edible flowers: A review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56, S130–S148. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Mekni, M.; Flamini, G.; Garrab, M.; Hmida, R.B.; Cheraief, I.; Mastouri, M.; Hammami, M. Aroma volatile components, fatty acids and antibacterial activity of four Tunisian Punica granatum L. flower cultivars. Ind. Crop. Prod. 2013, 48, 111–117. [Google Scholar] [CrossRef]
- Zeng, Y.; Deng, M.; Lv, Z.; Peng, Y. Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. SpringerPlus 2014, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Saeidnia, S.; Abdollahi, M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol. Appl. Pharmacol. 2013, 273, 442–455. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Li, H.-B.; Xu, D.-P.; Xu, X.-R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Ngoitaku, C.; Kwannate, P.; Riangwong, K. Total Phenolic Content and Antioxidant Activities of Edible Flower Tea Products from Thailand. Available online: http://www.ifrj.upm.edu.my (accessed on 20 February 2016).
- Dhiman, M.R.; Kumar, S.; Parkash, C.; Kumar, R.; Moudgil, S.; Sharma, S. Determination of phytochemical and antioxidant activities in edible flowers. Int. J. Trop. Hortic. 2017, 7, 26–32. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-C.; Zheng, G.; Jia, L.-Y.; He, X.; Zhang, C.-F.; Wang, C.-Z.; Yuan, C.-S. Comprehensive evaluation on anti-inflammatory and anti-angiogenic activities in vitro of fourteen flavonoids from Daphne Genkwa based on the combination of efficacy coefficient method and principal component analysis. J. Ethnopharmacol. 2020, 268, 113683. [Google Scholar] [CrossRef]
- Li, X.; Li, J.Z. Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Storage Process 2013, 13, 24–27. [Google Scholar]
- Ekissi, A.C.; Kouame, K.B.; Niaba, K.P.V.; Beugre, G.A.M.; Kati-Coulibaly, S. Physicochemical Characterization of Two Species of Wild Edible Mushrooms: Lentinus brunneofloccosus pegler and Auricularia auricularia judae. Food Nutr. Sci. 2021, 12, 319–331. [Google Scholar] [CrossRef]
- Dumbravă, D.G.; Moldovan, C.; Raba, D.N.; Popa, M.V.; & Drugă, M. Evaluation of Antioxidant Activity, Polyphenols and Vitamin C Content of Some Exotic Fruits. Available online: https://journal-of-agroalimentary.ro (accessed on 17 December 2015).
- Wu, J.; Ye, M.; Wang, Z. Extraction, Purification and Anti-Hyperlipidemic Activities of Total Flavonoids from Corn Silk. Pak. J. Zoöl. 2017, 49, 2173–2179. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Stefaniak, A.; Grzeszczuk, M.E. Nutritional and Biological Value of Five Edible Flower Species. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 47, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Li, H.; Li, C.; Chen, B.; Shen, Y. Chemical composition and radical scavenging activity of Amygdalus pedunculata Pall leaves’ essential oil. Food Chem. Toxicol. 2018, 119, 368–374. [Google Scholar] [CrossRef]
- Giese, E.C.; Gascon, J.; Anzelmo, G.; Barbosa, A.M.; da Cunha, M.A.A.; Dekker, R.F. Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. Int. J. Biol. Macromol. 2015, 72, 125–130. [Google Scholar] [CrossRef]
- Kaisoon, O.; Siriamornpun, S.; Weerapreeyakul, N.; Meeso, N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods 2011, 3, 88–99. [Google Scholar] [CrossRef]
- Dujmović, M.; Radman, S.; Opačić, N.; Uher, S.F.; Mikuličin, V.; Voća, S.; Žlabur, J. Edible Flower Species as a Promising Source of Specialized Metabolites. Plants 2022, 11, 2529. [Google Scholar] [CrossRef] [PubMed]
- Caplan, D.; Dixon, M.; Zheng, Y. Increasing Inflorescence Dry Weight and Cannabinoid Content in Medical Cannabis Using Controlled Drought Stress. Hortscience 2019, 54, 964–969. [Google Scholar] [CrossRef] [Green Version]
- Chensom, S.; Okumura, H.; Mishima, T. Primary Screening of Antioxidant Activity, Total Polyphenol Content, Carotenoid Content, and Nutritional Composition of 13 Edible Flowers from Japan. Prev. Nutr. Food Sci. 2019, 24, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar] [CrossRef]
- Liu, J.; Ma, G.; Wang, Y.; Zhang, Y. Moringa oleifera leaf flavonoids protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative stress in vitro. Reprod. Domest. Anim. 2020, 55, 711–719. [Google Scholar] [CrossRef]
- Albert, N.W.; Lafferty, D.J.; Moss, S.M.A.; Davies, K.M. Flavonoids–flowers, fruit, forage and the future. J. R. Soc. N. Z. 2022, 53, 304–331. [Google Scholar] [CrossRef]
- Chen, G.-L.; Chen, S.-G.; Xie, Y.-Q.; Chen, F.; Zhao, Y.-Y.; Luo, C.-X.; Gao, Y.-Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Stefaniak, A.; Pachlowska, A. Biological Value of Various Edible Flower Species. Available online: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-2ecbae33-5fda-4f44-9596-992ff4dfc153 (accessed on 29 May 2023).
- Li, L.; Ham, H.; Sung, J.; Kim, Y.; Lee, H.-S.J.J. Antioxidant Activities of Methanolic Extracts from Four Different Rose Cultivars. J. Food Nutr. Res. 2014, 2, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Rietjens, I.M.; Boersma, M.G.; de Haan, L.; Spenkelink, B.; Awad, H.M.; Cnubben, N.H.P.; van Zanden, J.J.; van der Woude, H.; Alink, G.M.; Koeman, J.H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 2002, 11, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.-H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.K.; et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef]
- E Sauberlich, H. Pharmacology of Vitamin C. Annu. Rev. Nutr. 1994, 14, 371–391. [Google Scholar] [CrossRef]
- Aversa, R.; Petrescu, R.V.V.; Apicella, A. We are Addicted to Vitamins C and E-A Review. Am. J. Eng. Appl. Sci. 2016, 9, 1003–1018. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Wan, C.; Chen, C.; Chen, J. Comprehensive Evaluation of the Postharvest Antioxidant Capacity of Majiayou Pomelo Harvested at Different Maturities Based on PCA. Antioxidants 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Bortolotti, E.; Maggini, R. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 2016, 199, 170–177. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, X.; Maninder, M.; Xu, B. Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int. J. Food Prop. 2018, 21, 1524–1540. [Google Scholar] [CrossRef] [Green Version]
- Jin, N.; Jin, L.; Wang, S.; Meng, X.; Ma, X.; He, X.; Zhang, G.; Luo, S.; Lyu, J.; Yu, J. A Comprehensive Evaluation of Effects on Water-Level Deficits on Tomato Polyphenol Composition, Nutritional Quality and Antioxidant Capacity. Antioxidants 2022, 11, 1585. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Jiang, F.; Wang, X.; Zang, Y.; Wu, Z. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica 2015, 205, 569–584. [Google Scholar] [CrossRef]
Flower Samples | Content of Nutrient Composition | |||||||
---|---|---|---|---|---|---|---|---|
Moisture (%) | Total Flavonoids (%) | Vitamin C (mg/100 g) | Total Soluble Sugars (mg/100 g) | Reducing Sugars (%) | Ash (%) | Total Proteins (%) | ||
Rosaceae | R1 | 75.78 ± 1.13 f | 6.61 ± 0.08 b | 143.80 ± 1.55 b | 108.50 ± 1.97 b | 0.34 ± 0.00 b | 5.13 ± 0.30 fg | 2.83 ± 0.14 g |
R2 | 77.92 ± 0.73 e | 7.00 ± 0.21 a | 113.80 ± 0.62 e | 95.91 ± 0.47 c | 6.26 ± 0.16 a | 5.33 ± 0.12 ef | 4.68 ± 0.19 f | |
R3 | 71.83 ± 0.74 g | 2.16 ± 0.04 c | 127.60 ± 0.44 d | 34.20 ± 0.79 g | 0.10 ± 0.00 cd | 5.95 ± 0.26 ab | 3.28 ± 0.21 g | |
R4 | 86.45 ± 1.15 ab | 0.63 ± 0.01 fg | 63.11 ± 0.69 j | 27.03 ± 0.54 h | 0.12 ± 0.00 cd | 6.19 ± 0.18 a | 17.25 ± 0.50 c | |
R5 | 84.13 ± 0.98 cd | 0.74 ± 0.01 ef | 74.01 ± 0.07 i | 5.29 ± 0.70 i | 0.15 ± 0.00 c | 5.71 ± 0.15 bcd | 10.83 ± 0.35 e | |
R6 | 87.28 ± 0.51 ab | 0.61 ± 0.01 fg | 76.04 ± 0.15 h | 3.78 ± 0.45 i | 0.04 ± 0.00 d | 5.88 ± 0.08 abc | 20.72 ± 0.42 a | |
R7 | 88.02 ± 0.75 a | 0.43 ± 0.02 h | 132.40 ± 0.55 c | 68.15 ± 0.20 d | 0.33 ± 0.01 b | 5.05 ± 0.05 fg | 15.12 ± 0.55 d | |
R8 | 79.18 ± 1.00 e | 0.86 ± 0.02 e | 82.60 ± 0.03 g | 50.00 ± 0.62 f | 0.15 ± 0.00 c | 5.58 ± 0.21 cde | 18.80 ± 0.54 b | |
R9 | 82.65 ± 0.78 d | 1.67 ± 0.01 d | 162.20 ± 0.06 a | 112.60 ± 0.46 a | 0.32 ± 0.00 b | 4.91 ± 0.13 g | 10.84 ± 0.19 e | |
R10 | 85.85 ± 0.55 bc | 0.56 ± 0.03 gh | 93.13 ± 0.34 f | 56.42 ± 0.79 e | 0.20 ± 0.00 c | 5.51 ± 0.09 de | 18.61 ± 0.10 b | |
Asteraceae | A1 | 88.13 ± 0.75 bc | 3.47 ± 0.05 d | 111.00 ± 0.82 a | 19.39 ± 1.71 f | 0.07 ± 0.00 ef | 7.56 ± 0.16 cd | 25.43 ± 0.48 a |
A2 | 75.71 ± 0.41 h | 2.62 ± 0.05 f | 17.53 ± 0.29 f | 47.45 ± 1.38 b | 0.13 ± 0.00 e | 9.86 ± 0.33 a | 10.27 ± 0.37 cd | |
A3 | 82.58 ± 1.16 g | 8.53 ± 0.08 a | 38.52 ± 0.37 c | 13.98 ± 1.21 g | 0.06 ± 0.00 f | 7.78 ± 0.11 c | 19.97 ± 0.61 b | |
A4 | 84.97 ± 0.79 ef | 3.72 ± 0.15 d | 1.62 ± 0.06 i | 32.43 ± 0.85 de | 5.46 ± 0.05 a | 6.40 ± 0.20 b | 7.58 ± 0.27 e | |
A5 | 83.78 ± 0.87 fg | 2.70 ± 0.02 f | 61.25 ± 0.72 b | 19.69 ± 0.58 f | 3.71 ± 0.00 b | 9.00 ± 0.12 e | 19.37 ± 0.29 b | |
A6 | 87.04 ± 0.43 cd | 8.36 ± 0.26 ab | 3.90 ± 0.30 h | 35.06 ± 0.42 cd | 3.03 ± 0.05 c | 7.67 ± 0.03 cd | 10.98 ± 0.58 c | |
A7 | 85.01 ± 0.58 ef | 8.36 ± 0.01 ab | 24.60 ± 0.24 e | 31.97 ± 1.34 de | 0.06 ± 0.00 f | 7.71 ± 0.21 cd | 9.43 ± 0.39 d | |
A8 | 90.26 ± 0.69 a | 4.77 ± 0.04 c | 26.69 ± 0.08 d | 37.17 ± 2.41 c | 0.11 ± 0.00 ef | 8.78 ± 0.18 b | 19.27 ± 0.20 b | |
A9 | 89.65 ± 0.52 ab | 8.06 ± 0.14 b | 17.74 ± 0.01 f | 29.86 ± 1.75 e | 0.08 ± 0.00 ef | 8.66 ± 0.06 b | 24.18 ± 0.99 a | |
A10 | 86.00 ± 0.85 de | 3.58 ± 0.15 d | 8.86 ± 0.16 g | 66.76 ± 2.45 a | 0.20 ± 0.00 d | 7.31 ± 0.25 d | 9.19 ± 0.64 d | |
Caryophyllaceae | C1 | 84.87 ± 0.03 b | 0.99 ± 0.00 c | 10.90 ± 0.28 b | 3.83 ± 0.41 g | 1.43 ± 0.00 d | 6.39 ± 0.06 b | 14.67 ± 0.55 c |
C2 | 86.51 ± 0.00 ab | 0.40 ± 0.00 f | 17.33 ± 0.80 a | 31.43 ± 0.28 b | 0.84 ± 0.00 f | 3.57 ± 0.17 e | 13.87 ± 0.54 c | |
C3 | 84.64 ± 0.01 b | 0.69 ± 0.00 d | 6.91 ± 0.34 de | 11.13 ± 0.32 e | 0.08 ± 0.00 h | 6.16 ± 0.11 b | 18.24 ± 0.58 b | |
C4 | 88.95 ± 0.00 a | 0.54 ± 0.00 e | 6.12 ± 0.14 b | 19.98 ± 0.80 c | 1.44 ± 0.00 d | 6.12 ± 0.14 b | 13.59 ± 0.71 cd | |
C5 | 86.94 ± 0.01 ab | 1.32 ± 0.00 b | 3.55 ± 0.12 e | 50.93 ± 0.84 a | 2.01 ± 0.00 b | 3.55 ± 0.12 e | 10.51 ± 0.19 e | |
C6 | 86.18 ± 0.01 b | 0.35 ± 0.00 f | 5.42 ± 0.16 c | 50.48 ± 0.14 a | 1.08 ± 0.00 e | 5.42 ± 0.16 c | 18.05 ± 0.81 b | |
C7 | 75.37 ± 0.00 d | 0.66 ± 0.00 d | 4.59 ± 0.21 d | 18.67 ± 0.69 c | 0.30 ± 0.00 g | 4.59 ± 0.21 d | 19.55 ± 1.14 ab | |
C8 | 85.93 ± 0.01 b | 0.36 ± 0.00 f | 6.25 ± 0.02 b | 19.98 ± 0.98 c | 1.58 ± 0.00 c | 6.25 ± 0.05 b | 11.85 ± 0.33 de | |
C9 | 86.52 ± 0.01 ab | 1.61 ± 0.00 a | 7.54 ± 0.18 a | 7.730 ± 0.56 f | 3.77 ± 0.00 a | 7.54 ± 0.18 a | 20.85 ± 0.80 a | |
C10 | 78.62 ± 0.01 c | 1.59 ± 0.00 a | 7.86 ± 0.26 a | 13.58 ± 0.21 d | 1.52 ± 0.00 cd | 7.86 ± 0.26 a | 8.260 ± 0.85 f | |
Gentianaceae | G1 | 80.74 ± 0.01 a | 0.62 ± 0.00 b | 5.28 ± 0.06 ab | 27.06 ± 0.66 b | 2.10 ± 0.00 b | 5.28 ± 0.06 ab | 16.61 ± 0.35 a |
G2 | 77.13 ± 0.00 b | 3.24 ± 0.00 a | 5.11 ± 0.14 b | 11.64 ± 0.35 c | 1.20 ± 0.00 c | 5.11 ± 0.14 b | 2.79 ± 0.04 d | |
G3 | 77.91 ± 0.00 b | 0.51 ± 0.00 c | 5.65 ± 0.25 ab | 40.49 ± 0.77 a | 7.82 ± 0.00 a | 5.65 ± 0.25 ab | 11.79 ± 0.54 b | |
G4 | 82.18 ± 0.02 a | 0.53 ± 0.00 bc | 5.82 ± 0.37 a | 40.68 ± 1.34 a | 0.09 ± 0.00 d | 5.82 ± 0.37 a | 9.79 ± 0.34 c |
Principal Component (PC) | Eigenvalues (λ) | Variance (%) | Cumulative (%) |
---|---|---|---|
PC1 | 3.18 | 45.45 | 45.45 |
PC2 | 1.47 | 20.98 | 66.43 |
PC3 | 1.04 | 14.84 | 81.27 |
Samples | F1 | F2 | F3 | Comprehensive Evaluation | ||||
---|---|---|---|---|---|---|---|---|
Sore | Rank | Sore | Rank | Sore | Rank | Sore | Rank | |
R1 | 29.30 | 4 | −0.03 | 14 | −0.40 | 21 | 16.33 | 4 |
R2 | 41.66 | 1 | 5.41 | 2 | 2.50 | 2 | 25.19 | 1 |
R3 | 41.36 | 2 | 0.77 | 11 | 0.04 | 16 | 23.37 | 2 |
R4 | 22.97 | 5 | −2.10 | 29 | 0.31 | 11 | 12.37 | 5 |
R5 | 17.97 | 7 | −1.16 | 20 | −0.18 | 19 | 9.73 | 7 |
R6 | 21.15 | 6 | −2.59 | 30 | 0.18 | 13 | 11.20 | 6 |
R7 | 13.67 | 10 | −2.84 | 32 | −0.84 | 29 | 6.76 | 11 |
R8 | 14.05 | 9 | −1.89 | 28 | −0.52 | 25 | 7.28 | 9 |
R9 | 31.01 | 3 | −1.77 | 26 | −0.37 | 20 | 16.84 | 3 |
R10 | 15.12 | 8 | 0.13 | 13 | −0.77 | 28 | 8.36 | 8 |
A1 | 13.46 | 11 | −0.51 | 16 | −0.97 | 31 | 7.23 | 10 |
A2 | −9.16 | 16 | −0.42 | 15 | −0.41 | 22 | −5.31 | 17 |
A3 | −4.83 | 14 | 3.17 | 6 | −1.69 | 32 | −2.18 | 14 |
A4 | −17.74 | 34 | 4.11 | 4 | 1.37 | 3 | −8.62 | 33 |
A5 | 1.81 | 12 | 2.75 | 7 | 0.40 | 9 | 1.80 | 12 |
A6 | −8.94 | 15 | 5.67 | 1 | 0.16 | 14 | −3.50 | 15 |
A7 | −12.39 | 22 | 4.87 | 3 | −2.16 | 34 | −6.06 | 19 |
A8 | −2.89 | 13 | 1.32 | 9 | −0.88 | 30 | −1.43 | 13 |
A9 | −10.63 | 19 | 3.96 | 5 | −1.82 | 33 | −5.25 | 16 |
A10 | −14.24 | 31 | −0.54 | 17 | −0.67 | 27 | −8.24 | 29 |
C1 | −10.62 | 18 | −5.13 | 34 | 1.05 | 5 | −7.09 | 23 |
C2 | −13.10 | 24 | −0.93 | 18 | −0.08 | 17 | −7.60 | 25 |
C3 | −13.95 | 28 | −2.89 | 33 | −0.15 | 18 | −8.59 | 32 |
C4 | −15.70 | 33 | −1.42 | 24 | 0.24 | 12 | −9.12 | 34 |
C5 | −11.22 | 21 | −2.70 | 31 | 0.95 | 6 | −6.81 | 22 |
C6 | −13.94 | 27 | −1.81 | 27 | 0.13 | 15 | −8.26 | 30 |
C7 | −10.48 | 17 | −1.39 | 23 | −0.50 | 24 | −6.32 | 20 |
C8 | −14.59 | 32 | −1.56 | 25 | 0.50 | 8 | −8.48 | 31 |
C9 | −13.76 | 26 | 0.85 | 10 | 1.13 | 4 | −7.28 | 24 |
C10 | −14.16 | 30 | −1.02 | 19 | 0.38 | 10 | −8.13 | 28 |
G1 | −13.50 | 25 | −1.37 | 22 | 0.64 | 7 | −7.80 | 27 |
G2 | −10.91 | 20 | 0.51 | 12 | −0.42 | 23 | −6.05 | 18 |
G3 | −14.03 | 29 | 1.92 | 8 | 3.37 | 1 | −6.75 | 21 |
G4 | −12.78 | 23 | −1.36 | 21 | −0.53 | 26 | −7.60 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-K.; Cao, G.-H.; Bi, Y.; Liu, X.-H.; Yin, H.-M.; Zuo, J.-F.; Xu, W.; Li, H.-D.; He, S.; Zhou, X.-H. Comprehensive Analysis of 34 Edible Flowers by the Determination of Nutritional Composition and Antioxidant Capacity Planted in Yunnan Province China. Molecules 2023, 28, 5260. https://doi.org/10.3390/molecules28135260
Zhang X-K, Cao G-H, Bi Y, Liu X-H, Yin H-M, Zuo J-F, Xu W, Li H-D, He S, Zhou X-H. Comprehensive Analysis of 34 Edible Flowers by the Determination of Nutritional Composition and Antioxidant Capacity Planted in Yunnan Province China. Molecules. 2023; 28(13):5260. https://doi.org/10.3390/molecules28135260
Chicago/Turabian StyleZhang, Xing-Kai, Guan-Hua Cao, Yue Bi, Xiao-Hai Liu, Hong-Mei Yin, Jia-Fang Zuo, Wen Xu, Hong-Dong Li, Sen He, and Xu-Hong Zhou. 2023. "Comprehensive Analysis of 34 Edible Flowers by the Determination of Nutritional Composition and Antioxidant Capacity Planted in Yunnan Province China" Molecules 28, no. 13: 5260. https://doi.org/10.3390/molecules28135260
APA StyleZhang, X. -K., Cao, G. -H., Bi, Y., Liu, X. -H., Yin, H. -M., Zuo, J. -F., Xu, W., Li, H. -D., He, S., & Zhou, X. -H. (2023). Comprehensive Analysis of 34 Edible Flowers by the Determination of Nutritional Composition and Antioxidant Capacity Planted in Yunnan Province China. Molecules, 28(13), 5260. https://doi.org/10.3390/molecules28135260