Multifunctional Hollow Porous Fe3O4@N-C Nanocomposites as Anodes of Lithium-Ion Battery, Adsorbents and Surface-Enhanced Raman Scattering Substrates
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Synthesis of Fe3O4 Nanospheres
3.3. Synthesis of Hollow Porous Fe3O4@N-C Nanosphere Composites
3.4. Characterization
3.5. Electrochemical Measurements
3.6. Adsorption Measurements
3.7. SERS Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ye, H.; Zheng, G.; Yang, X.; Zhang, D.; Zhang, Y.; Yan, S.; You, L.; Hou, S.; Huang, Z. Application of different carbon-based transition metal oxide composite materials in lithium-ion batteries. J. Electroanal. Chem. 2021, 898, 115652. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Zhou, L.; Song, G.; Lu, F.; You, L.; Li, J. Rapid and ultrasensitive surface enhanced Raman scattering detection of hexavalent chromium using magnetic Fe3O4/ZrO2/Ag composite microsphere substrates. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125414. [Google Scholar] [CrossRef]
- Dehmani, Y.; Dridi, D.; Lamhasni, T.; Abouarnadasse, S.; Chtourou, R.; Lima, E.C. Review of phenol adsorption on transition metal oxides and other adsorbents. J. Water Process Eng. 2022, 49, 102965. [Google Scholar] [CrossRef]
- Molaiyan, P.; Dos Reis, G.S.; Karuppiah, D.; Subramaniyam, C.M.; García-Alvarado, F.; Lassi, U. Recent Progress in Biomass-Derived Carbon Materials for Li-Ion and Na-Ion Batteries—A Review. Batteries 2023, 9, 116. [Google Scholar] [CrossRef]
- Abdollahifar, M.; Molaiyan, P.; Lassi, U.; Wu, N.L.; Kwade, A. Multifunctional Behaviour of Graphite in Lithium–sulfur Batteries. Renew. Sustain. Energy Rev. 2022, 169, 112948. [Google Scholar] [CrossRef]
- Yong, L.; Duan, C.; Jiang, Z.; Zhou, X.; Wang, Y. CuO/rGO nanocomposite as an anode material for high-performance lithium-ion batteries. Mater. Res. Express 2021, 8, 055505. [Google Scholar]
- Dong, H.; Deng, M.; Sun, D.; Zhao, Y.; Liu, H.; Xie, M.; Dong, W.; Huang, F. Amorphous Lithium-Phosphate-Encapsulated Fe2O3 as a High-Rate and Long-Life Anode for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 3463–3470. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, F.; Li, S.; Shen, Y.; Xie, A. Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries. Nano Res. 2017, 10, 3457–3467. [Google Scholar] [CrossRef]
- Yi, Z.; Lin, N.; Xu, T.; Qian, Y. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem. Eng. J. 2018, 347, 214–222. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, Y.; Qin, J.; Su, Z. A core-shell porous MnO2/Carbon nanosphere composite as the anode of lithium-ion batteries. J. Power Sources 2021, 491, 229577. [Google Scholar]
- Jang, J.; Song, S.; Kim, H.; Moon, J.; Ahn, H.; Jo, K.; Bang, J.; Kim, H.; Koo, J. Janus Graphene Oxide Sheets with Fe3O4 Nanoparticles and Polydopamine as Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 14786–14795. [Google Scholar] [CrossRef]
- Kopuklu, B.; Kopuklu, A.; Yurum, A.; Kopuklu, A. High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode. Carbon 2021, 174, 158–172. [Google Scholar] [CrossRef]
- Hao, S.; Li, Q.; Qu, J.; An, F.; Zhang, Y.; Yu, Z. Neuron-Inspired Fe3O4/Conductive Carbon Filament Network for High-Speed and Stable Lithium Storage. ACS Appl. Mater. Interfaces 2018, 10, 17923–17932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Q.; Gao, X.; Chen, X.; Wang, Y.; Li, W.; Wu, J. Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites. J. Alloys Compd. 2018, 748, 706–716. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Q.; Gao, X.; Chen, X.; Shi, J.; Wu, J. Ellipsoidal Fe3O4@C nanoparticles decorated fluffy structured graphene nanocomposites and their enhanced microwave absorption properties. J. Mater. Sci. Mater. Electron. 2018, 29, 6785–6796. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Xu, J.; Zheng, J.; Hayat, T.; Alharbi, N.S. Formation of Fe3O4@C/Ni microtubes for efficient catalysis and protein adsorption. Dalton Trans. 2018, 47, 2791–2798. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, J.; Zhong, Y.; Sunarso, J.; Tadé, M.O.; Li, L.; Shao, Z. High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2016, 212, 179–186. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Park, H.; Kim, M.; Choi, H.; Inamdar, S.N.; Yu, J. Nitrogen-Doped Carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir 2014, 30, 318–324. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, S.; Zhang, X.; Zeng, T.; Zhang, W.; Li, H.; Liu, X.; Zhao, P. One pot synthesis of nitrogen-doped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum. Sens. Actuators B Chem. 2018, 270, 530–537. [Google Scholar] [CrossRef]
- He, J.; Zhao, S.; Lian, Y.; Zhou, M.; Wang, L.; Ding, B.; Cui, S. Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries. Electrochim. Acta 2017, 229, 306–315. [Google Scholar] [CrossRef]
- Tran, T.; Phan, T.; Nguyen, D.; Nguyen, T.; Nguyen, D.; Vo, D.; Bach, L.; Nguyen, D. Recyclable Fe3O4@C nanocomposite as potential adsorbent for a wide range of organic dyes and simulated hospital effluents. Environ. Technol. Innov. 2021, 20, 101122. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Wang, Y.; Guo, R.; Shang, S.; Jiang, S. Flexible and reusable cap-like thin Fe2O3 film for SERS applications. Nano Res. 2019, 12, 381–388. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Yang, S.; Shen, Y.; Xie, A. Synthesis and superior SERS performance of porous octahedron Cu2O with oxygen vacancy derived from MOFs. J. Mater. Sci. 2021, 56, 9702–9711. [Google Scholar] [CrossRef]
- Liu, L.; Pan, F.; Liu, C.; Huang, L.; Li, W.; Lu, X. TiO2 nanofoam–nanotube array for surface-enhanced Raman scattering. ACS Appl. Nano Mater. 2018, 1, 6563–6566. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, J.; Wang, C. Carbon encapsulated Fe3O4 nanospheres with high electrochemical performance as anode materials for Li-ion battery. Int. J. Appl. Ceram. Technol. 2017, 14, 938–947. [Google Scholar] [CrossRef]
- Han, F.; Ma, L.; Sun, Q.; Lei, C.; Lu, A. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, Z. Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 19082–19091. [Google Scholar] [CrossRef]
- Lei, C.; Han, F.; Sun, Q.; Li, W.; Lu, A. Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries. Chemistry 2014, 20, 139–145. [Google Scholar] [CrossRef]
- Dang, R.; Jia, X.; Liu, X.; Ma, H.; Gao, H.; Wang, G. Controlled synthesis of hierarchical Cu nanosheets@CuO nanorods as high-performance anode material for lithium-ion batteries. Nano Energy 2017, 33, 427–435. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.; Chen, P.; Zhang, D.; Chen, C. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 2008, 183, 717–723. [Google Scholar] [CrossRef]
- Wu, H.; Du, N.; Wang, J.; Zhang, H.; Yang, D. Three-dimensionally porous Fe3O4 as high-performance anode materials for lithium–ion batteries. J. Power Sources 2014, 246, 198–203. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, D.; Li, F.; Zhang, L.; Li, N.; Wu, Z.; Wen, L.; Lu, G.; Cheng, H. Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chem. Mater. 2010, 22, 5306–5313. [Google Scholar] [CrossRef]
- Cherian, C.; Sundaramurthy, J.; Kalaivani, M.; Ragupathy, P.; Kumar, P.; Thavasi, V.; Reddy, M.; Sow, C.; Mhaisalkar, S.; Ramakrishna, S.; et al. Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J. Mater. Chem. 2012, 22, 12198–12204. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Wu, C.; Ding, Y.; Guan, L. A Yolk-Shell Fe3O4@C Composite as an Anode Material for High-Rate Lithium Batteries. ChemPlusChem 2012, 77, 748–751. [Google Scholar] [CrossRef]
- Su, L.; Zhong, Y.; Zhou, Z. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: A case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. J. Mater. Chem. A 2013, 1, 15158–15166. [Google Scholar] [CrossRef]
- Deng, W.; Ci, S.; Li, H.; Wen, Z. One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries. Chem. Eng. J. 2017, 330, 995–1001. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Y.; Wang, Q.; Zhou, Y. Hierarchical Fe3O4@NC composites: Ultra-long cycle life anode materials for lithium ion batteries. J. Mater. Sci. 2017, 53, 2127–2136. [Google Scholar] [CrossRef]
- Nsabimana, A.; Kitte, S.; Wu, F.; Qi, L.; Liu, Z.; Zafar, M.; Luque, R.; Xu, G. Multifunctional magnetic Fe3O4/nitrogen-doped porous carbon nanocomposites for removal of dyes and sensing applications. Appl. Surf. Sci. 2018, 467, 89–95. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, K.; Wang, L.; Qin, Z.; Zhao, X.; Du, K.; Han, L.; Tian, F.; Chang, Y. A physical approach for the estimation of the SERS enhancement factor through the enrichment and separation of target molecules using magnetic adsorbents. RSC Adv. 2020, 10, 20028–20037. [Google Scholar] [CrossRef]
- Li, L.; Zhao, A.; Wang, D.; Guo, H.; Sun, H.; He, Q. Fabrication of cube-like Fe3O4@SiO2@Ag nanocomposites with high SERS activity and their application in pesticide detection. J. Nanoparticle Res. 2016, 18, 178. [Google Scholar] [CrossRef]
- Yao, C.; Gao, X.; Liu, X.; Shen, Y.; Xie, A. In-situ preparation of Ferrero (R) chocolate-like Cu2O@Ag microsphere as SERS substrate for detection of thiram. J. Mater. Res. Technol. 2021, 11, 857–865. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Deng, R.; Yang, L.; Yu, S.; Xu, S.; Xu, W. Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One. ACS Appl. Mater. Interfaces 2016, 8, 14160–14168. [Google Scholar] [CrossRef] [PubMed]
Samples | Current Density mA g−1 | Cycle Numbers | Capacity mA h g−1 | Ref. |
---|---|---|---|---|
yolk–shell Fe3O4@C | 150 | 20 | 1010 | [34] |
Fe3O4/C nanofibers | 500 | 150 | 780 | [20] |
core–shell Fe3O4@C and Fe@C | 50 | 40 | 1080 | [35] |
3D porous Fe3O4 | 1000 | 100 | 1382 | [31] |
porous Fe3O4/C microspheres | 100 | 100 | 1180 | [36] |
hierarchical Fe3O4@NC | 500 | 100 | 992 | [37] |
hollow porous Fe3O4@N/C | 200 | 100 | 1772 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, C.; Zhao, M.; Fang, T.; Zhu, Y.; Wang, P.; Xie, A.; Shen, Y. Multifunctional Hollow Porous Fe3O4@N-C Nanocomposites as Anodes of Lithium-Ion Battery, Adsorbents and Surface-Enhanced Raman Scattering Substrates. Molecules 2023, 28, 5183. https://doi.org/10.3390/molecules28135183
Qi C, Zhao M, Fang T, Zhu Y, Wang P, Xie A, Shen Y. Multifunctional Hollow Porous Fe3O4@N-C Nanocomposites as Anodes of Lithium-Ion Battery, Adsorbents and Surface-Enhanced Raman Scattering Substrates. Molecules. 2023; 28(13):5183. https://doi.org/10.3390/molecules28135183
Chicago/Turabian StyleQi, Chunxia, Mengxiao Zhao, Tian Fang, Yaping Zhu, Peisan Wang, Anjian Xie, and Yuhua Shen. 2023. "Multifunctional Hollow Porous Fe3O4@N-C Nanocomposites as Anodes of Lithium-Ion Battery, Adsorbents and Surface-Enhanced Raman Scattering Substrates" Molecules 28, no. 13: 5183. https://doi.org/10.3390/molecules28135183
APA StyleQi, C., Zhao, M., Fang, T., Zhu, Y., Wang, P., Xie, A., & Shen, Y. (2023). Multifunctional Hollow Porous Fe3O4@N-C Nanocomposites as Anodes of Lithium-Ion Battery, Adsorbents and Surface-Enhanced Raman Scattering Substrates. Molecules, 28(13), 5183. https://doi.org/10.3390/molecules28135183