Synthesis and Evaluation of 99mTc-Labeled PSMA-Targeted Tracers Based on the Lys-Urea-Aad Pharmacophore for Detecting Prostate Cancer with Single Photon Emission Computed Tomography
Abstract
:1. Introduction
2. Results
2.1. Synthesis of PSMA-Targeted Ligands and Their Tc-99m Labeled Analogs
2.2. PSMA Binding Affinity and Hydrophilicity
2.3. Ex Vivo Biodistribution and SPECT/CT Imaging Studies
2.4. In Vivo Stability
3. Discussion
4. Materials and Methods
4.1. Synthesis of HYNIC-Conjugated PSMA-Targeted Ligands
4.2. Cell Culture
4.3. In Vitro Competition Binding Assay
4.4. Tc-99m Labeling
4.5. LogD7.4 Measurement
4.6. Ex Vivo Biodistribution and SPECT/CT Imaging Studies
4.7. In Vivo Stabilization
4.8. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front. Public Health 2022, 10, 811044. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, D.G.; Pacelli, A.; Blute, M.; Roche, P.; Murphy, G.P. Prostate Specific Membrane Antigen Expression in Prostatic Intraepithelial Neoplasia and Adenocarcinoma. Cancer 1998, 82, 2256–2261. [Google Scholar] [CrossRef]
- Hupe, M.C.; Philippi, C.; Roth, D.; Kümpers, C.; Ribbat-Idel, J.; Becker, F.; Joerg, V.; Duensing, S.; Lubczyk, V.H.; Kirfel, J.; et al. Expression of Prostate-Specific Membrane Antigen (PSMA) on Biopsies Is an Independent Risk Stratifier of Prostate Cancer Patients at Time of Initial Diagnosis. Front. Oncol. 2018, 8, 623. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.J.; Smith-Jones, P.M.; Wongvipat, J.; Navarro, V.; Kim, S.; Bander, N.H.; Larson, S.M.; Sawyers, C.L. Noninvasive Measurement of Androgen Receptor Signaling with a Positron-Emitting Radiopharmaceutical That Targets Prostate-Specific Membrane Antigen. Proc. Natl. Acad. Sci. USA 2011, 108, 9578–9582. [Google Scholar] [CrossRef] [Green Version]
- Heston, W.D. Characterization and Glutamyl Preferring Carboxypeptidase Function of Prostate Specific Membrane Antigen: A Novel Folate Hydrolase. Urology 1997, 49, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.I.; Bennett, M.J.; Thomas, L.M.; Bjorkman, P.J. Crystal Structure of Prostate-Specific Membrane Antigen, a Tumor Marker and Peptidase. Proc. Natl. Acad. Sci. USA 2005, 102, 5981–5986. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, T.; Wozniak, K.M.; Slusher, B.S. Progress in the Discovery and Development of Glutamate Carboxypeptidase II Inhibitors. Drug Discov. Today 2007, 12, 767–776. [Google Scholar] [CrossRef]
- Kozikowski, A.P.; Zhang, J.; Nan, F.; Petukhov, P.A.; Grajkowska, E.; Wroblewski, J.T.; Yamamoto, T.; Bzdega, T.; Wroblewska, B.; Neale, J.H. Synthesis of Urea-Based Inhibitors as Active Site Probes of Glutamate Carboxypeptidase II: Efficacy as Analgesic Agents. J. Med. Chem. 2004, 47, 1729–1738. [Google Scholar] [CrossRef]
- Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F.O. Clinical Translation of a PSMA Inhibitor for 99mTc-Based SPECT. Nucl. Med. Biol. 2017, 48, 36–44. [Google Scholar] [CrossRef]
- Santos-Cuevas, C.; Davanzo, J.; Ferro-Flores, G.; García-Pérez, F.O.; Ocampo-García, B.; Ignacio-Alvarez, E.; Gómez-Argumosa, E.; Pedraza-López, M. 99mTc-Labeled PSMA Inhibitor: Biokinetics and Radiation Dosimetry in Healthy Subjects and Imaging of Prostate Cancer Tumors in Patients. Nucl. Med. Biol. 2017, 52, 1–6. [Google Scholar] [CrossRef]
- Kuo, H.-T.; Lin, K.-S.; Zhang, Z.; Zhang, C.; Merkens, H.; Tan, R.; Roxin, A.; Uribe, C.F.; Bénard, F. What a Difference a Methylene Makes: Replacing Glu with Asp or Aad in the Lys-Urea-Glu Pharmacophore of PSMA-Targeting Radioligands to Reduce Kidney and Salivary Gland Uptake. Theranostics 2022, 12, 6179–6188. [Google Scholar] [CrossRef]
- Decristoforo, C.; Mather, S.J. 99m-Technetium-Labelled Peptide-HYNIC Conjugates: Effects of Lipophilicity and Stability on Biodistribution. Nucl. Med. Biol. 1999, 26, 389–396. [Google Scholar] [CrossRef] [PubMed]
- King, R.C.; Surfraz, M.B.-U.; Biagini, S.C.G.; Blower, P.J.; Mather, S.J. How Do HYNIC-Conjugated Peptides Bind Technetium? Insights from LC-MS and Stability Studies. Dalton Trans. 2007, 43, 4998–5007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guggenberg, E.V.; Mikolajczak, R.; Janota, B.; Riccabona, G.; Decristoforo, C. Radiopharmaceutical Development of a Freeze-Dried Kit Formulation for the Preparation of [99mTc-EDDA-HYNIC-D-Phe1,Tyr3]-Octreotide, a Somatostatin Analog for Tumor Diagnosis. J. Pharm. Sci. 2004, 93, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-T.; Lepage, M.L.; Lin, K.-S.; Pan, J.; Zhang, Z.; Liu, Z.; Pryyma, A.; Zhang, C.; Merkens, H.; Roxin, A.; et al. One-Step 18F-Labeling and Preclinical Evaluation of Prostate-Specific Membrane Antigen Trifluoroborate Probes for Cancer Imaging. J. Nucl. Med. 2019, 60, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.-T.; Lin, K.-S.; Zhang, Z.; Uribe, C.F.; Merkens, H.; Zhang, C.; Bénard, F. 177Lu-Labeled Albumin-Binder–Conjugated PSMA-Targeting Agents with Extremely High Tumor Uptake and Enhanced Tumor-to-Kidney Absorbed Dose Ratio. J. Nucl. Med. 2021, 62, 521–527. [Google Scholar] [CrossRef]
- Dietlein, F.; Kobe, C.; Neubauer, S.; Schmidt, M.; Stockter, S.; Fischer, T.; Schomäcker, K.; Heidenreich, A.; Zlatopolskiy, B.D.; Neumaier, B.; et al. PSA-Stratified Performance of 18F- and 68Ga-PSMA PET in Patients with Biochemical Recurrence of Prostate Cancer. J. Nucl. Med. 2017, 58, 947–952. [Google Scholar] [CrossRef] [Green Version]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, E.; Lau, J.; Kuo, H.-T.; Zhang, Z.; Merkens, H.; Hundal-Jabal, N.; Colpo, N.; Lin, K.-S.; Bénard, F. Monosodium Glutamate Reduces 68Ga-PSMA-11 Uptake in Salivary Glands and Kidneys in a Preclinical Prostate Cancer Model. J. Nucl. Med. 2018, 59, 1865–1868. [Google Scholar] [CrossRef] [Green Version]
- Mhawech-Fauceglia, P.; Zhang, S.; Terracciano, L.; Sauter, G.; Chadhuri, A.; Herrmann, F.R.; Penetrante, R. Prostate-Specific Membrane Antigen (PSMA) Protein Expression in Normal and Neoplastic Tissues and Its Sensitivity and Specificity in Prostate Adenocarcinoma: An Immunohistochemical Study Using Mutiple Tumour Tissue Microarray Technique. Histopathology 2007, 50, 472–483. [Google Scholar] [CrossRef]
- Rupp, N.J.; Umbricht, C.A.; Pizzuto, D.A.; Lenggenhager, D.; Töpfer, A.; Müller, J.; Muehlematter, U.J.; Ferraro, D.A.; Messerli, M.; Morand, G.B.; et al. First Clinicopathologic Evidence of a Non–PSMA-Related Uptake Mechanism for 68Ga-PSMA-11 in Salivary Glands. J. Nucl. Med. 2019, 60, 1270–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Z.; Heston, W.D.; Wang, X.; Basilion, J.P. GCP III Is Not the “off-Target” for Urea-Based PSMA Ligands. Eur. J. Nucl. Med. Mol. Imaging 2023. [Google Scholar] [CrossRef] [PubMed]
- Lucaroni, L.; Georgiev, T.; Prodi, E.; Puglioli, S.; Pellegrino, C.; Favalli, N.; Prati, L.; Manz, M.G.; Cazzamalli, S.; Neri, D.; et al. Cross-Reactivity to Glutamate Carboxypeptidase III Causes Undesired Salivary Gland and Kidney Uptake of PSMA-Targeted Small-Molecule Radionuclide Therapeutics. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 957–961. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, F.O.; Davanzo, J.; López-Buenrostro, S.; Santos-Cuevas, C.; Ferro-Flores, G.; Jímenez-Ríos, M.A.; Scavuzzo, A.; Santana-Ríos, Z.; Medina-Ornelas, S. Head to Head Comparison Performance of 99mTc-EDDA/HYNIC-iPSMA SPECT/CT and 68Ga-PSMA-11 PET/CT a Prospective Study in Biochemical Recurrence Prostate Cancer Patients. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 332–340. [Google Scholar]
- Kuo, H.-T.; Pan, J.; Zhang, Z.; Lau, J.; Merkens, H.; Zhang, C.; Colpo, N.; Lin, K.-S.; Bénard, F. Effects of Linker Modification on Tumor-to-Kidney Contrast of 68Ga-Labeled PSMA-Targeted Imaging Probes. Mol. Pharm. 2018, 15, 3502–3511. [Google Scholar] [CrossRef]
- Kuo, H.-T.; Merkens, H.; Zhang, Z.; Uribe, C.F.; Lau, J.; Zhang, C.; Colpo, N.; Lin, K.-S.; Bénard, F. Enhancing Treatment Efficacy of 177Lu-PSMA-617 with the Conjugation of an Albumin-Binding Motif: Preclinical Dosimetry and Endoradiotherapy Studies. Mol. Pharm. 2018, 15, 5183–5191. [Google Scholar] [CrossRef]
Organ Uptake (%ID/g) | [99mTc]Tc-EDDA/HYNIC-iPSMA | [99mTc]Tc-EDDA-HTK03180 | [99mTc]Tc-EDDA-KL01099 | [99mTc]Tc-EDDA-KL01127 | |||
---|---|---|---|---|---|---|---|
1 h (n = 4) | 1 h (n = 5) | 1 h Blocked (n = 4) | 1 h (n = 4) | 1 h (n = 5) | 3 h (n = 5) | 1 h Blocked (n = 4) | |
Blood | 0.64 ± 0.11 | 1.33 ± 0.25 | 1.98 ± 0.28 | 0.81 ± 0.14 | 0.54 ± 0.25 | 0.12 ± 0.03 | 0.59 ± 0.11 |
Small Intestine | 0.42 ± 0.07 | 0.53 ± 0.09 | 0.55 ± 0.05 | 1.57 ±0.28 | 0.26 ± 0.07 | 0.10 ± 0.03 | 0.30 ± 0.03 |
Large Intestine | - | 0.25 ± 0.01 | 0.23 ± 0.05 | 0.82 ± 0.22 | 0.18 ± 0.09 | 0.31 ± 0.10 | 0.13 ± 0.02 |
Spleen | 23.4 ± 6.40 | 3.14 ± 1.43 † | 0.45 ± 0.10 † | 20.6 ± 7.77 | 0.23 ± 0.02 | 0.07 ± 0.01 | 0.13 ± 0.03 |
Liver | 0.45 ± 0.07 | 0.55 ± 0.10 | 0.62 ± 0.06 | 2.19 ± 0.34 | 0.23 ± 0.09 | 0.14 ± 0.03 | 0.24 ± 0.04 |
Pancreas | 1.29 ± 0.94 | 0.48 ± 0.13 | 0.31 ± 0.02 | 2.20 ± 0.28 | 0.13 ± 0.07 | 0.04 ± 0.01 | 0.11 ± 0.03 |
Stomach | 0.13 ± 0.01 | 0.25 ± 0.10 | 0.20 ± 0.03 | 0.55 ± 0.16 | 0.22 ± 0.07 | 0.16 ± 0.03 | 0.25 ± 0.02 |
Kidneys | 45.3 ± 20.5 | 91.8 ± 29.1 † | 4.75 ± 0.43 † | 65.9 ± 5.10 | 15.0 ± 14.7 † | 1.95 ± 1.41 | 1.17 ± 0.16 † |
Lungs | 3.64 ± 1.10 | 1.85 ± 0.23 | 1.19 ± 0.12 | 4.42 ± 0.47 | 0.42 ± 0.18 | 0.11 ± 0.03 | 0.38 ± 0.08 |
Heart | 0.64 ± 0.10 | 0.56 ± 0.11 | 0.56 ± 0.08 | 2.65 ± 0.42 | 0.13 ± 0.05 | 0.04 ± 0.01 | 0.17 ± 0.02 |
LNCaP Tumor | 10.3 ± 2.76 | 18.8 ± 6.71 † | 2.11 ± 0.16 † | 5.36 ± 1.18 | 9.48 ± 3.42 † | 7.58 ± 2.48 | 0.45 ± 0.09 † |
Muscle | 0.45 ± 0.13 | 0.28 ± 0.07 | 0.31 ± 0.12 | 0.98 ± 0.16 | 0.08 ± 0.05 | 0.03 ± 0.02 | 0.10 ± 0.03 |
Bone | 0.47 ± 0.13 | 0.53 ± 0.08 | 0.39 ± 0.14 | 0.79 ± 0.30 | 0.13 ± 0.07 | 0.05 ± 0.02 | 0.14 ± 0.03 |
Brain | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.02 ± 0.00 |
Salivary Glands | 7.77 ± 3.01 | 2.35 ± 0.15 † | 0.71 ± 0.34 † | 19.1 ± 4.05 | 0.25 ± 0.19 | 0.06 ± 0.01 | 0.17 ± 0.13 |
Tumor/Bone | 22.3 ± 6.16 | 35.8 ± 12.4 | 5.96 ± 2.34 | 7.43 ± 2.48 | 80.7 ± 42.7 | 164 ± 48.3 | 3.29 ± 0.73 |
Tumor/Muscle | 21.8 ± 0.87 | 71.1 ± 28.9 | 7.32 ± 2.07 | 5.70 ± 2.05 | 97.0 ± 42.9 | 286 ± 103 | 4.82 ± 1.52 |
Tumor/Blood | 15.4 ± 2.13 | 14.5 ± 5.55 | 1.08 ± 0.21 | 6.88 ± 2.16 | 18.5 ± 3.54 | 61.2 ± 15.0 | 0.75 ± 0.04 |
Tumor/Kidney | 0.33 ± 0.14 | 0.21 ± 0.07 | 0.45 ± 0.02 | 0.08 ± 0.02 | 0.87 ± 0.39 | 4.56 ± 1.45 | 0.39 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Zhang, C.; Zhang, Z.; Kuo, H.-T.; Colpo, N.; Bénard, F.; Lin, K.-S. Synthesis and Evaluation of 99mTc-Labeled PSMA-Targeted Tracers Based on the Lys-Urea-Aad Pharmacophore for Detecting Prostate Cancer with Single Photon Emission Computed Tomography. Molecules 2023, 28, 5120. https://doi.org/10.3390/molecules28135120
Lu K, Zhang C, Zhang Z, Kuo H-T, Colpo N, Bénard F, Lin K-S. Synthesis and Evaluation of 99mTc-Labeled PSMA-Targeted Tracers Based on the Lys-Urea-Aad Pharmacophore for Detecting Prostate Cancer with Single Photon Emission Computed Tomography. Molecules. 2023; 28(13):5120. https://doi.org/10.3390/molecules28135120
Chicago/Turabian StyleLu, Kelly, Chengcheng Zhang, Zhengxing Zhang, Hsiou-Ting Kuo, Nadine Colpo, François Bénard, and Kuo-Shyan Lin. 2023. "Synthesis and Evaluation of 99mTc-Labeled PSMA-Targeted Tracers Based on the Lys-Urea-Aad Pharmacophore for Detecting Prostate Cancer with Single Photon Emission Computed Tomography" Molecules 28, no. 13: 5120. https://doi.org/10.3390/molecules28135120
APA StyleLu, K., Zhang, C., Zhang, Z., Kuo, H. -T., Colpo, N., Bénard, F., & Lin, K. -S. (2023). Synthesis and Evaluation of 99mTc-Labeled PSMA-Targeted Tracers Based on the Lys-Urea-Aad Pharmacophore for Detecting Prostate Cancer with Single Photon Emission Computed Tomography. Molecules, 28(13), 5120. https://doi.org/10.3390/molecules28135120