Two-Dimensional High-Performance Liquid Chromatography as a Powerful Tool for Bioanalysis: The Paradigm of Antibiotics
Abstract
:1. Introduction
2. General Aspects of 2D-LC
2.1. Historical Data
2.2. Modes of 2D-LC
2.3. Classification of Two-Dimensional Techniques Based on Temporal Transfer of Fractions
3. Orthogonality
4. Peak Capacity
5. Undersampling
6. 2D-LC Instrumentation
7. Automation of 2D-LC
8. The Application of 2D-LC in Antibiotics Analysis
Study Cases
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability statement
Conflicts of Interest
Sample Availability
References
- Pirok, B.W.J.; Stoll, D.R.; Schoenmakers, P.J. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal. Chem. 2019, 91, 240–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guiochon, G.; Gonnord, M.F.; Zakaria, M.; Siouffi, A.M. Chromatography with a Two-Dimensional Column. Chromatographia 1983, 17, 121–124. [Google Scholar] [CrossRef]
- Stoll, D.R.; Carr, P.W. Two-Dimensional Liquid Chromatography: A state of the art tutorial. Anal. Chem. 2017, 89, 519–531. [Google Scholar] [CrossRef]
- Iguiniz, M.; Heinisch, S. Two-Dimensional Liquid Chromatography in Pharmaceutical Analysis. Instrumental Aspects, Trends and Applications. J. Pharm. Biomed. Anal. 2017, 145, 482–503. [Google Scholar] [CrossRef]
- Davis, J.M.; Glddings, J.C. Statistical Theory of Component Overlap in Multicomponent Chromatograms. Anal. Chem. 1983, 55, 418–424. [Google Scholar] [CrossRef]
- Stoll, D.R. Introduction to Two-Dimensional Liquid Chromatography—Theory and Practice. In Handbook of Advanced Chromatography/Mass Spectrometry Techniques; Academic Press: Cambridge, MA, USA, 2017; pp. 227–286. [Google Scholar] [CrossRef]
- Hinzke, T.; Kouris, A.; Hughes, R.A.; Strous, M.; Kleiner, M. More Is Not Always Better: Evaluation of 1D and 2D-LC-MS/MS Methods for Metaproteomics. Front. Microbiol. 2019, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Pandohee, J.; Stevenson, P.G.; Zhou, X.-R.; Spencer, M.J.S.; Jones, O.A.H. Current Metabolomics BENTHAM SCIENCE Send Orders for Reprints to [email protected] Multi-Dimensional Liquid Chromatography and Metabolomics: Are Two Dimensions Better Than One? Curr. Metab. 2015, 3, 10–20. [Google Scholar] [CrossRef]
- Erni, F.; Frel, R.W. Two-Dimensional Column Liquid Chromatographic Tech-Nique for Resolution of Complex Mixtures. J. Chromatogr. A 1978, 149, 561–569. [Google Scholar] [CrossRef]
- Petersson, P.; Haselmann, K.; Buckenmaier, S. Multiple Heart-Cutting Two-Dimensional Liquid Chromatography Mass Spectrometry: Towards Real Time Determination of Related Impurities of Bio-Pharmaceuticals in Salt Based Separation Methods. J. Chromatogr. A 2016, 1468, 95–101. [Google Scholar] [CrossRef]
- Fernández, A.S.; Rodríguez-González, P.; Álvarez, L.; García, M.; Iglesias, H.G.; García Alonso, J.I. Multiple Heart-Cutting Two-Dimensional Liquid Chromatography, and Isotope Dilution Tandem Mass Spectrometry for the Absolute Quantification of Proteins in Human Serum. Anal. Chim. Acta 2021, 1184, 339022. [Google Scholar] [CrossRef]
- Stoll, D.R. Recent Advances in 2D-LC for Bioanalysis. Bioanalysis 2015, 7, 3125–3142. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pozo, L.; Arena, K.; Cacciola, F.; Dugo, P.; Mondello, L. Comprehensive Two-Dimensional Liquid Chromatography in Food Analysis. Is Any Sample Preparation Necessary? Green Anal. Chem. 2022, 3, 100025. [Google Scholar] [CrossRef]
- Roca, L.S.; Gargano, A.F.G.; Schoenmakers, P.J. Development of Comprehensive Two-Dimensional Low-Flow Liquid-Chromatography Setup Coupled to High-Resolution Mass Spectrometry for Shotgun Proteomics. Anal. Chim. Acta 2021, 1156, 338349. [Google Scholar] [CrossRef]
- Pierce, K.M.; Hoggard, J.C.; Mohler, R.E.; Synovec, R.E. Recent Advancements in Comprehensive Two-Dimensional Separations with Chemometrics. J. Chromatogr. A 2008, 1184, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Pól, J.; Hyötyläinen, T. Comprehensive Two-Dimensional Liquid Chromatography Coupled with Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Groskreutz, S.R.; Swenson, M.M.; Secor, L.B.; Stoll, D.R. Selective Comprehensive Multidimensional Separation for Resolution Enhancement in High Performance Liquid Chromatography. Part II: Applications. J. Chromatogr. A 2012, 1228, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Groskreutz, S.R.; Swenson, M.M.; Secor, L.B.; Stoll, D.R. Selective Comprehensive Multi-Dimensional Separation for Resolution Enhancement in High Performance Liquid Chromatography. Part I: Principles and Instrumentation. J. Chromatogr. A 2012, 1228, 31–40. [Google Scholar] [CrossRef]
- Jones, O. Two-Dimensional Liquid Chromatography Principles and Practical Applications; Springer Briefs in Molecular Science; Springer Nature: Berlin, Germany, 2020. [Google Scholar]
- Gilar, M.; Olivova, P.; Daly, A.E.; Gebler, J.C. Orthogonality of Separation in Two-Dimensional Liquid Chromatography. Anal. Chem. 2005, 77, 6426–6434. [Google Scholar] [CrossRef]
- Li, D.; Jakob, C.; Schmitz, O. Practical Considerations in Comprehensive Two-Dimensional Liquid Chromatography Systems (LCxLC) with Reversed-Phases in Both Dimensions. Anal. Bioanal. Chem. 2015, 407, 153–167. [Google Scholar] [CrossRef]
- Allen, R.C.; Barnes, B.B.; Haidar Ahmad, I.A.; Filgueira, M.R.; Carr, P.W. Impact of Reversed Phase Column Pairs in Comprehensive Two-Dimensional Liquid Chromatography. J. Chromatogr. A 2014, 1361, 169–177. [Google Scholar] [CrossRef]
- Stoll, D.R.; Shoykhet, K.; Petersson, P.; Buckenmaier, S. Active Solvent Modulation: A Valve-Based Approach to Improve Separation Compatibility in Two-Dimensional Liquid Chromatography. Anal. Chem. 2017, 89, 9260–9267. [Google Scholar] [CrossRef]
- den Uijl, M.J.; Roeland, T.; Bos, T.S.; Schoenmakers, P.J.; van Bommel, M.R.; Pirok, B.W.J. Assessing the Feasibility of Stationary-Phase-Assisted Modulation for Two-Dimensional Liquid-Chromatography Separations. J. Chromatogr. A 2022, 1679, 463388. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Xu, Y.; Wang, H.; Duan, C.; Guan, Y. A Vacuum Assisted Dynamic Evaporation Interface for Two-Dimensional Normal Phase/Reverse Phase Liquid Chromatography. J. Chromatogr. A 2010, 1217, 5477–5483. [Google Scholar] [CrossRef] [PubMed]
- Giddings, J.C. Maximum Nlumber of Components Resolvable by Gel Filtration and Other Ellution Chromatographic Methods. Anal. Chem. 1967, 39, 1027–1028. [Google Scholar] [CrossRef]
- Li, X.; Stoll, D.R.; Carr, P.W. Equation for Peak Capacity Estimation in Two-Dimensional Liquid Chromatography. Anal. Chem. 2009, 81, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Stoll, D.R.; Cohen, J.D.; Carr, P.W. Fast, Comprehensive Online Two-Dimensional High Performance Liquid Chromatography through the Use of High Temperature Ultra-Fast Gradient Elution Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2006, 1122, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Pirok, B.W.J.; Gargano, A.F.G.; Schoenmakers, P.J. Optimizing Separations in Online Comprehensive Two-Dimensional Liquid Chromatography. J. Sep. Sci. 2018, 41, 68–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandera, P. Can the Theory of Gradient Liquid Chromatography Be Useful in Solving Practical Problems? J. Chromatogr. A 2006, 1126, 195–218. [Google Scholar] [CrossRef]
- Soliven, A.; Soliven, A.; Edge, T. Considerations for the Use of LC x LC Active Flow Technology (AFT) Application in LC-MS Pesticide Residue Analysis View Project Selective Detection in Complex Samples View Project Considerations for the Use of LC x LC; University of Sydney: Sydney, Australia, 2014. [Google Scholar]
- Dugo, P.; Cacciola, F.; Kumm, T.; Dugo, G.; Mondello, L. Comprehensive Multidimensional Liquid Chromatography: Theory and Applications. J. Chromatogr. A 2008, 1184, 353–368. [Google Scholar] [CrossRef]
- François, I.; Sandra, K.; Sandra, P. Comprehensive Liquid Chromatography: Fundamental Aspects and Practical Considerations—A Review. Anal. Chim. Acta 2009, 641, 14–31. [Google Scholar] [CrossRef]
- Pérez-Cova, M.; Platikanov, S.; Tauler, R.; Jaumot, J. Quantification Strategies for Two-Dimensional Liquid Chromatography Datasets Using Regions of Interest and Multivariate Curve Resolution Approaches. Talanta 2022, 247, 123586. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Meng, L.; Ruppel, J.; Yang, J.; Kaur, S.; Xu, K. Automated, Generic Reagent and Ultratargeted 2D-LC-MS/MS Enabling Quantification of Biotherapeutics and Soluble Targets down to Pg/ML Range in Serum. Anal. Chem. 2020, 92, 9412–9420. [Google Scholar] [CrossRef] [PubMed]
- Karongo, R.; Ge, M.; Geibel, C.; Horak, J.; Lämmerhofer, M. Enantioselective Multiple Heart Cutting Online Two-Dimensional Liquid Chromatography-Mass Spectrometry of All Proteinogenic Amino Acids with Second Dimension Chiral Separations in One-Minute Time Scales on a Chiral Tandem Column. Anal. Chim. Acta 2021, 1180, 338858. [Google Scholar] [CrossRef]
- Pauter, K.; Szultka-Młýnska, M.; Buszewski, B. Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples. Molecules 2020, 25, 2556. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.E.; Huttner, B.; Huttner, A. Therapeutic Drug Monitoring of Beta-Lactams and Other Antibiotics in the Intensive Care Unit: Which Agents, Which Patients and Which Infections? Drugs 2018, 78, 439–451. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Wen, C.; Wang, Z. Application of a Trap-Free Two-Dimensional Liquid Chromatography Combined with Ion Trap/Time-of-Flight Mass Spectrometry for Separation and Characterization of Impurities and Isomers in Cefpiramide. Anal. Chim. Acta 2017, 992, 42–54. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Zhang, Y.; Wang, H.; Zhong, W. Separation and Characterization of Unknown Impurities in Cefonicid Sodium by Trap-Free Two-Dimensional Liquid Chromatography Combined with Ion Trap Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 1541–1550. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, D.D.; Tang, L.; Wang, J. Separation and Characterization of Allergic Polymerized Impurities in Cephalosporins by 2D-HPSEC × LC-IT-TOF MS. J. Pharm. Biomed. Anal. 2017, 145, 742–750. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhou, B. High-Throughput Determination of Vancomycin in Human Plasma by a Cost-Effective System of Two-Dimensional Liquid Chromatography. J. Chromatogr. A 2017, 1499, 48–56. [Google Scholar] [CrossRef]
- Ren, X.; Ye, J.; Chen, X.; Wang, F.; Liu, G.; Wang, J. Development of a Novel HPLC Method for the Analysis of Impurities in Meropenem and Identification of Unknown Impurities by 2D LC-IT-TOF MS. Chromatographia 2021, 84, 937–947. [Google Scholar] [CrossRef]
- Rehm, S.; Rentsch, K.M. A 2D HPLC-MS/MS Method for Several Antibiotics in Blood Plasma, Plasma Water, and Diverse Tissue Samples. Anal. Bioanal. Chem. 2020, 412, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Palayer, M.; Chaussenery-Lorentz, O.; Boubekeur, L.; Urbina, T.; Maury, E.; Maubert, M.A.; Pilon, A.; Bourgogne, E. Quantitation of 10 Antibiotics in Plasma: Sulfosalicylic Acid Combined with 2D-LC-MS/MS Is a Robust Assay for Beta-Lactam Therapeutic Drug Monitoring. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023, 1221, 123685. [Google Scholar] [CrossRef] [PubMed]
- Shan-Ying, C.; Chang-Qin, H.; Ming-Zhe, X. Chromatographic Determination of High-Molecular Weight Impurities in Amoxicillin. J. Pharm. Biomed. Anal. 2003, 31, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhu, B.; Gao, J.; Tang, K.; Zhou, P.; Wang, J. Study of the Polymerized Impurities in Cefotaxime Sodium and Cefepime by Applying Various Chromatographic Modes Coupled with Ion Trap/Time-of-Flight Mass Spectrometry. Talanta 2022, 238, 123079. [Google Scholar] [CrossRef]
- Blokland, M.H.; Zoontjes, P.W.; Van Ginkel, L.A.; Van De Schans, M.G.M.; Sterk, S.S.; Bovee, T.F.H. Multiclass Screening in Urine by Comprehensive Two-Dimensional Liquid Chromatography Time of Flight Mass Spectrometry for Residues of Sulphonamides, Beta-Agonists and Steroids. Food Addit. Contam. Part A Chem. Anal. Control. Expo Risk Assess 2018, 35, 1703–1715. [Google Scholar] [CrossRef] [Green Version]
Advantages | Disadvantages |
---|---|
The ability to combine different separation mechanisms increases selectivity by focusing on different analyte properties. | The coordination of all parameters required for the multiple combinations increases system complexity. |
The different columns are combined, leading to orthogonal systems that can achieve improved separation efficiency. | The system’s complexity increases the overall analysis time, a primary limitation for time-sensitive applications. |
The introduction of new orthogonal systems increases the peak capacity and the resolution power of the analytes of interest. | The use of multiple loops, columns, and valves necessitates upgrading the chromatographic system, whereby new modifications must be implemented. |
Scientists broaden the fields of application to even the most complicated matrices. | Scientists consume time in searching for sources and, therefore, developing methods. |
Antibiotic | Column Type | Mobile Phase | Program’s Elution | Detector | References |
---|---|---|---|---|---|
Cefpiramide and relative impurities | 1D: Kromasil C8 analytical column (250 mm × 4.6 mm, 5 µm). 2D: Shimadzu Shim-pack GISS C18 analytical column (124 mm × 2.1 mm, 1.9 µm). | 1D: (A) 30 mM phosphate/methanol (75:25, v/v) and (B) phosphate buffer (30 mM, pH 7.5)/methanol (50:50, v/v) / 2D: (A) ammonium formate solution (10 mM) and (B) methanol. | 1D: gradient conditions: Time (min) B% 0 0 12 0 32 100 33 0 The mobile phase flow rate was 0.80 mL/min. 2D: gradient conditions: Time (min) B% 0 5 5 95 5.5–9 5 The mobile phase flow rate was 0.30 mL/min. | Ion trap/time-of- flight mass spectrometer (Shimadzu Corp., Kyoto, Japan), equipped with an electrospray ionization (ESI) source in positive and negative mode. | [39] |
Polymerized impurities of cephalosporins: cefodizime, cefmenoxime, and cefonicid | 1D: Xtimate SEC-120 analytical column (7.8 mm × 30 cm, 5 m). 2D: Method A: Shimadzu Shim-pack GISS C18 analytical column (50 mm × 2.1 mm, 1.9 m). Method B/C: ZORBAX SB-C18 analytical column (4.6 × 150 mm, 3.5 m). | 1D: (A) 0.005 mol/L dibasic sodium phosphate solution and (Β) 0.005 mol/L sodium dihydrogen phosphate solution (61:39, v/v)] acetonitrile v/v)]. 2D: Method A: (A) ammonium formate solution (10 mM) and (B) acetonitrile. Method B: (A) acetic acid solution (0.1%, v/v) and (B) acetonitrile. Method C: (A) ammonium formate solution (10 mM) and (B) ammonium formate (8 mM) in [acetonitrile/water (4:1, v/v)] solution. | 1D: gradient conditions: Time (min) B% 0 5 18 20 20 5 The mobile phase’s flow rate was 0.80 mL/min and the injection volume was 30 μL. 2D: gradient elution Method A: Time (min) B% 0 5 5 95 5.5–9 5 Method B: Time (min) B% 0 5 12 15 45 60 55 5 Method C: Time (min) B% 0 12 9 16 15 20 18 40 19 12 The mobile phase flow rate was 0.40 mL/min. | Ion trap/time-of- flight mass spectrometer (Shimadzu Corp., Kyoto, Japan), equipped with an electrospray ionization (ESI) source in positive and negative mode. | [41] |
Impurities in cefonicid sodium | 1D: GRACE Alltima C18 analytical column (250 mm × 4.6 mm, 5 μm)/2D: Shimadzu Shim-pack GISS C18 analytical column (50 mm × 2.1 mm, 1.9 μm). | 1D: (A) 0.02 mol·L−1 ammonium dihydrogen phosphate solution in H2O with 40% aqueous ammonia solution) and (B) methanol. 2D: (A) 10 mmol·L−1 ammonium formate solution and (B) methanol. | 1D gradient elution: Time (min) B% 0–10 16 10–30 60 41 16 The mobile phase flow rate was 0.80 mL/min. 2D gradient elution: Time (min) B% 0 5 5 95 5.5–9 5 The mobile phase flow rate was 0.30 mL·min−1. | Ion trap/time-of- flight mass spectrometer (Shimadzu Corp., Kyoto, Japan), equipped with an electrospray ionization (ESI) source in positive and negative mode. | [40] |
Meropenem | 1D: Shim-Pack CLC ODS (6 mm × 150 mm, 5 μm, Shimadzu, Kyoto, Japan)/2D: Shim-pack GISS C18 column (50 mm × 2.1 mm, 1.9 μm, Shimadzu, Kyoto, Japan) used at 40 °C. | 1D: (A) 0.1% triethylamine/acetonitrile (96:4, v/v) and (B) 0.1% triethylamine/acetonitrile (70:30, v/v) / 2D: (A) 10 mM ammonium formate and (Β) methanol. | 1D: Gradient elution Time (min) B% 0 0 18 10 55 60 56 0 The flow rate was 1.5 mL·min−1. 2D: Gradient elution mode: Time (min) B% 0 5 5 95 5.5–9 5 The flow rate was 0.30 mL min−1. | Ion trap/time-of- flight mass spectrometer (Shimadzu Corp., Kyoto, Japan), equipped with an electrospray ionization (ESI) source in positive and negative mode. | [43] |
Amoxicillin | 1D: Shim-pack GIS C18 (4.6 mm × 250 mm, 5 μm)/2D: Shim-pack GIS C18(4.6 mm × 150 mm, 5 μm). | 1D: ammonium dihydrogen phosphate/tetrahydrofuran/methanol (730∶12.5∶300) / 2D: 1% formic acid aqueous solution (A)/acetonitrile (B). | Isocratic conditions: the flow rate was 1 mL/min. | UV detector at 254 nm. | [46] |
Benzylpenicillin, Flucloxacillin, Amoxicillin Riperacillin, the beta-lactamase inhibitors Clavulanic acid and Clindamycin, Macrolide antibiotics, and Tazobactam clindamycin | 1D: XBridge® C8 Direct Connect HP column (10 µm particle size, 2.1 × 30 mm)/2D: Acquity UPLC® BEH C18 (1.7 µm particle size, 2.1 × 100 mm i.d.; Waters) analytical column equipped with an Acquity UPLC® BEH C18 VanGuard precolumn (1.7 µm particle size, 2.1 × 5 mm i.d.; Waters). | 1D: 100% H2O with 0.1% formic acid/2D: (A) water containing 0.1% formic acid and (B) acetonitrile containing 0.1% formic acid. | 1D: Isocratic elusion at a flow rate of 1.0 mL/min. 2D: Gradient elution Time (min) B% 0.0 10 1.8 10 4.5 45 5.0 100 6.0 100 6.1 10 The flow rate was 700 µL/min. | A triple-quadrupole mass spectrometer (TSQ ENDURA) (Thermo Scientific, Reinach, Switzerland), equipped with an electrospray ionization source in positive mode. | [44] |
Vancomycin | 1D: Reversed-phase Diamonsil C18(2) column (100 mm × 4.6 mm, 5 μm, China; C1). Middle column: a strong cation-exchange column (20 mm × 4.6 mm, 5 μm, ANAX, China; MC). 2D: Inertsil ODS-3 column (150 mm × 4.6 mm, 5 μm, GL Science Inc., Japan; C2). | 1D: (A) 20 mmol/L ammonium acetate buffer and (Β) acetonitrile (88:12, v/v)/ 2D: (A) 50.0 mmol/L Ammonium acetate buffer (pH 5.0) and (B) acetonitrile (85:15, v/v), mobile phase C. | 1D: isocratic elusion with a flow rate of (A) 1.2 mL/min, (Β) 1.6 mL/min, and (C) 1.5 mL/min. | UV detector at 282 nm. | [42] |
Amoxicillin, cloxacillin, oxacillin, and linezolid | 1D: Perfusion column (POROS R1/20, 20 m, 2.1 mm × 30 mm, Applied Biosystems, Darmstadt, Germany)/2D: Pentafluorophenyl (PFP) analytical column (Phenomenex Kinetex, 2.6 m, 2 mm × 50 mm, Aschaffenburg, Germany). | 1D: (A) water + 0.1% formic acid, (B) MeOH + 0.1% formic acid, (C) water/10 mM ammonium formate, with formic acid, and (D) ACN + 0.1% formic acid. | Isocratic conditions: a flow rate of 4.0 mL/min over 0.70 min. Gradient conditions: Time (min) D% 0 10 0.75 10 3.20 98 3.80 10 3.81 10 | A TQD triple-quadrupole mass spectrometer) equipped with an electrospray ionization source (Waters, St Quentin, France) in positive mode. | [45] |
Sulfonamides, Beta-agonists, and (Steroid) hormones | Self-made: 1D: Waters HSS Cyano (1.8 µm, 1 × 150 mm), Waters BEH C18 (1.8 µm, 1 × 150 mm), Waters Phenyl (1.8 µm, 1 × 150 mm) and a Phenomenex Kinetix (2.6 µm, 1.0 × 150 mm) column. 2D: Waters Phenyl column (1.7 µm, 2.1 × 50 mm). Commercial LC × LC | 1D: (A) water/acetonitrile (90:10) containing 0.1% formic acid and (Β) water/acetonitrile (10:90) containing 0.1% formic acid. 2D: (A) water/acetonitrile (90:10) containing 0.1% formic acid and (B) water/acetonitrile (10:90) containing 0.1% formic acid. | 1D gradient conditions: Time (min) B% 0 80 27 80 28 0 2D gradient conditions: Time (min) B% 0 0 45 40 50 100 | Ion trap/time-of- flight mass spectrometer (Waldbronn, Germany), was equipped with an electrospray ionization (ESI) source in positive mode. | [48] |
The polymerized impurities in cefotaxime sodium and cefepime 2D HPSEC/RP-HPLC system 2D RP-HPLC/RP-HPLC system | 1D: a TSK-gel G2000SWxl column (7.8 mm × 30 cm, 5 μm) from TOSOH Corporation (Tokyo, Japan). 2D: Agilent ZORBAX SB-C18 analytical column (4.6 mm × 150 mm, 3.5 μm) (Santa Clara, CA, USA). 1D: Kromasil (Nouryon, Bohus, Sweden) 100-5-C18 analytical column (4.6 mm × 250 mm, 5 μm). 2D: Shimadzu Shim-pack GISS C18 analytical column (50 mm × 2.1 mm, 1.9 μm) | 1D: phosphate buffer of dibasic sodium phosphate solution/0.005 mol/L sodium dihydrogen phosphate solution, 61:39 (v/v), and acetonitrile at 95:5 (v/v). 2D: (A) 10 mM ammonium formate solution and (B) acetonitrile. 1D: For cefotaxime sodium injection, the mobile phases were 0.05 M disodium hydrogen phosphate solution (A) and methanol (B). For cefepime, the mobile phases were 0.05 M ammonium dihydrogen phosphate solution (A) and acetonitrile (B). 2D: (A) 10 mM ammonium formate solution and (B) acetonitrile. | 1D: Isocratic conditions: a flow rate of 0.50 mL/min 2D: Gradient elution Time (min) B% 0–20 5 20–21 40 21–29 5 The flow rate of the mobile phase was 0.40 mL/min. 1D for cefotaxime, gradient elution: Time (min) B% 0–10 15 10–30 15 30–40 70 40–41 70 41–50 15 The flow rate was 0.8 mL/min and the injection volume was 20 μL. 1D for cefepime: the gradient program was set as follows: Time (min) B% 0 10 10 10 30 70 40 70 41–50 10 The flow rate was 1.00 mL/min. 2D, gradient conditions: Time (min) B% 0–5 5–95 5.5–5.5 5 | 1D: PDA detector in the range of 200–400 nm. 2D: UV detection wavelength of 254 nm. 1D: PDA detector in the range of 200–400 nm. 2D: Ion trap/time-of-flight mass spectrometer (Shimadzu Corp., Kyoto, Japan), equipped with an electrospray ionization (ESI) source in positive and negative mode. | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papatheocharidou, C.; Samanidou, V. Two-Dimensional High-Performance Liquid Chromatography as a Powerful Tool for Bioanalysis: The Paradigm of Antibiotics. Molecules 2023, 28, 5056. https://doi.org/10.3390/molecules28135056
Papatheocharidou C, Samanidou V. Two-Dimensional High-Performance Liquid Chromatography as a Powerful Tool for Bioanalysis: The Paradigm of Antibiotics. Molecules. 2023; 28(13):5056. https://doi.org/10.3390/molecules28135056
Chicago/Turabian StylePapatheocharidou, Christina, and Victoria Samanidou. 2023. "Two-Dimensional High-Performance Liquid Chromatography as a Powerful Tool for Bioanalysis: The Paradigm of Antibiotics" Molecules 28, no. 13: 5056. https://doi.org/10.3390/molecules28135056
APA StylePapatheocharidou, C., & Samanidou, V. (2023). Two-Dimensional High-Performance Liquid Chromatography as a Powerful Tool for Bioanalysis: The Paradigm of Antibiotics. Molecules, 28(13), 5056. https://doi.org/10.3390/molecules28135056