Enhancing the Performance of Perovskite Solar Cells by Introducing 4-(Trifluoromethyl)-1H-imidazole Passivation Agents
Abstract
:1. Introduction
2. Results and Discussion
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Device Fabrication
4.3. Measurement and Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lu, Q.; Yang, Z.; Meng, X.; Yue, Y.; Ahmad, M.A.; Zhang, W.; Zhang, S.; Zhang, Y.; Liu, Z.; Chen, W. A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2100151. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Wang, Y.; Zhang, X.; Zuo, C.; Shen, L.; Ding, L. Lead-Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. Adv. Mater. 2021, 33, e2006691. [Google Scholar] [CrossRef] [PubMed]
- Murugan, P.; Hu, T.; Hu, X.; Chen, Y. Advancements in organic small molecule hole-transporting materials for perovskite solar cells: Past and future. J. Mater. Chem. A 2022, 10, 5044–5081. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, J.; Yan, F. Review on Chemical Stability of Lead Halide Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.X.; Guo, Q.Y.; Zheng, D.D.; Zhuang, R.; Zhang, J.S.; Tang, Q.W.; Duan, J.L. Multifunctional Polymer Capping Frameworks Enable High-Efficiency and Stable All-Inorganic Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 6432–6441. [Google Scholar] [CrossRef]
- Guo, P.F.; Liu, C.; Li, X.L.; Chen, Z.G.; Zhu, H.F.; Zhu, L.G.; Zhang, X.H.; Zhao, W.H.; Jia, N.; Ye, Q.; et al. Laser Manufactured Nano-MXenes with Tailored Halogen Terminations Enable Interfacial Ionic Stabilization of High Performance Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2202395. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; et al. The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Lett. 2021, 13, 152. [Google Scholar] [CrossRef]
- Wu, T.H.; Cui, D.Y.; Liu, X.; Meng, X.Y.; Wang, Y.B.; Noda, T.; Segawa, H.; Yang, X.D.; Zhang, Y.Q.; Han, L.Y. Efficient and Stable Tin Perovskite Solar Cells Enabled by Graded Heterostructure of Light-Absorbing Layer. Solar Rrl 2020, 4, 2000240. [Google Scholar] [CrossRef]
- Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: A review. J. Mater. Chem. A 2021, 9, 4589–4625. [Google Scholar] [CrossRef]
- Xin, D.; Tie, S.; Yuan, R.; Zheng, X.; Zhu, J.; Zhang, W.H. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. ACS Appl. Mater. Interfaces 2019, 11, 44233–44240. [Google Scholar] [CrossRef]
- Wu, T.; Li, X.; Qi, Y.; Zhang, Y.; Han, L. Defect Passivation for Perovskite Solar Cells: From Molecule Design to Device Performance. ChemSusChem 2021, 14, 4354–4376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yin, X.; Dong, Z.; Ali, A.; Song, Z.; Shrestha, N.; Bista, S.S.; Bao, Q.; Ellingson, R.J.; Yan, Y.; et al. Dithieno[3,2-b:2′,3′-d]pyrrole Cored p-Type Semiconductors Enabling 20% Efficiency Dopant-Free Perovskite Solar Cells. Angew. Chem. 2019, 58, 13717–13721. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Han, D.-W.; Yang, Q.-F.; Yuan, Q.; Li, H.-Y.; Yang, Y.; Zhou, D.-Y.; Feng, L. Amphoteric imidazole doping induced large-grained perovskite with reduced defect density for high performance inverted solar cells. Sol. Energy Mater. Sol. Cells 2020, 212, 110553. [Google Scholar] [CrossRef]
- Jia, J.B.; Shi, B.B.; Dong, J.; Jiang, Z.; Guo, S.B.; Wu, J.H.; Cao, B.Q. 4-Iodo-1H-imidazole dramatically improves the open-circuit voltages of perovskite solar cells to 1.2 V. New J. Chem. 2023, 47, 9913–9922. [Google Scholar] [CrossRef]
- Salado, M.; Jodlowski, A.D.; Roldan-Carmona, C.; de Miguel, G.; Kazim, S.; Nazeeruddin, M.K.; Ahmad, S. Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability. Nano Energy 2018, 50, 220–228. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Kim, S.G.; Park, N.G. Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Adv. Mater. 2019, 31, e1902902. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhou, X.; Yang, R.; Yang, Z.; Yu, W.; Wang, X.; Li, C.; Liu, S.; Chang, R.P.H. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 2016, 9, 3071–3078. [Google Scholar] [CrossRef]
- Gao, Z.W.; Wang, Y.; Liu, H.; Sun, J.Y.; Kim, J.; Li, Y.; Xu, B.M.; Choy, W.C.H. Tailoring the Interface in FAPbI(3) Planar Perovskite Solar Cells by Imidazole-Graphene-Quantum-Dots. Adv. Funct. Mater. 2021, 31, 2101438. [Google Scholar] [CrossRef]
- Fei, C.; Guo, L.; Li, B.; Zhang, R.; Fu, H.; Tian, J.; Cao, G. Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy 2016, 27, 17–26. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Ma, Z.; Ma, J.; Wang, C. High-Performance Perovskite Solar Cells with Large Grain-Size obtained by the synergy of urea and dimethyl sulfoxide. Appl. Surf. Sci. 2018, 467–468, 708–714. [Google Scholar] [CrossRef]
- Mehdizadeh-Rad, H.; Singh, J. Influence of Urbach Energy, Temperature, and Longitudinal Position in the Active Layer on Carrier Diffusion Length in Perovskite Solar Cells. Chemphyschem 2019, 20, 2712–2717. [Google Scholar] [CrossRef]
- Liu, F.; Ding, C.; Zhang, Y.S.; Ripolles, T.; Kamisaka, T.; Toyoda, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; et al. Colloidal Synthesis of Air-Stable Alloyed CsSn1-xPbxI3 Perovskite Nanocrystals for Use in Solar Cells. J. Am. Chem. Soc. 2017, 139, 16708–16719. [Google Scholar] [CrossRef]
- Wang, H.; Zou, W.; Ouyang, Y.; Luo, H.; Liu, X.; Li, H.; Lei, Y.; Ni, Y.; Fu, Y.; Zheng, D. Inducing crystal-oriented growth while inhibiting grain boundary migration with multifunctional ionic liquid for high-efficiency perovskite solar cells. J. Alloys Compd. 2022, 929, 167051. [Google Scholar] [CrossRef]
- Zheng, F.; Wen, X.; Bu, T.; Chen, S.; Yang, J.; Chen, W.; Huang, F.; Cheng, Y.; Jia, B. Slow Response of Carrier Dynamics in Perovskite Interface upon Illumination. ACS Appl. Mater. Interfaces 2018, 10, 31452–31461. [Google Scholar] [CrossRef]
- Choudhury, B.; Borah, B.; Choudhury, A. Extending Photocatalytic Activity of TiO2 Nanoparticles to Visible Region of Illumination by Doping of Cerium. Photochem. Photobiol. 2012, 88, 257–264. [Google Scholar] [CrossRef]
- Chen, J.; Seulgi, K.; Park, N.-G. FA0.88Cs0.12PbI3−x(PF6)x Interlayer Formed by Ion Exchange Reaction between Perovskite and Hole Transporting Layer for Improving Photovoltaic Performance and Stability. Adv. Mater. 2018, 30, 1801948. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 m in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Bube, R. Trap Density Determination by Space-Charge-Limited Currents. J. Appl. Phys. 1962, 33, 1733–1737. [Google Scholar] [CrossRef]
- Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R.A.; Dunfield, S.P.; Xiao, C.; Scheidt, R.A.; Kuciauskas, D.; Wang, X.; Hautzinger, M.P.; et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611, 278–283. [Google Scholar] [CrossRef]
- Kranthiraja, K.; Parashar, M.; Mehta, R.K.; Aryal, S.; Temsal, M.; Kaul, A.B. Stability and degradation in triple cation and methyl ammonium lead iodide perovskite solar cells mediated via Au and Ag electrodes. Sci. Rep. 2022, 12, 18574. [Google Scholar] [CrossRef] [PubMed]
- Emelianov, N.A.; Ozerova, V.V.; Zhidkov, I.S.; Korchagin, D.V.; Shilov, G.V.; Litvinov, A.L.; Kurmaev, E.Z.; Frolova, L.A.; Aldoshin, S.M.; Troshin, P.A. Nanoscale Visualization of Photodegradation Dynamics of MAPbI3 Perovskite Films. J. Phys. Chem. Lett. 2022, 13, 2744–2749. [Google Scholar] [CrossRef] [PubMed]
- Zhidkov, I.; Yu, M.-H.; Kukharenko, A.; Han, P.-C.; Cholakh, S.; Yu, W.-Y.; Wu, K.C.W.; Chueh, C.-C.; Kurmaev, E. The Stability of Hybrid Perovskites with UiO-66 Metal–Organic Framework Additives with Heat, Light, and Humidity. Nanomaterials 2022, 12, 4349. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Xu, X.; Liu, Z.; Sun, Z.; Chen, Z.; Chen, X.; Chen, L.; Fang, X.; Zhang, J.; Yang, Y.M.; et al. Bifunctional Hole-Transport Materials with Modification and Passivation Effect for High-Performance Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 22752–22761. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, X.; Li, H.; Peng, X.; Gong, X.; Ouyang, Y.; Luo, H.; Fu, Y.; Peng, Y. Multifunctional Passivation Strategy of Cationic and Anionic Defects for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 5928–5936. [Google Scholar] [CrossRef]
- Li, Y.; Ye, J.-J.; Medjahed, A.; Aldakov, D.; Pouget, S.; Djurado, E.; Xu, L.; Reiss, P. High Fill Factor and Reduced Hysteresis Perovskite Solar Cells Using Small-Molecule-Engineered Nickel Oxide as the Hole Transport Layer. ACS Appl. Energy Mater. 2023, 6, 1555–1564. [Google Scholar]
- Wang, J.; Galagan, Y.; von Hauff, E. Quantifying electrochemical losses in perovskite solar cells. J. Mater. Chem. C 2023, 11, 2911–2920. [Google Scholar] [CrossRef]
Perovskite Film | Maximum (nm) | Minimum (nm) | Mean (nm) | Peak Intensity | FWHM (°) |
---|---|---|---|---|---|
0 THI | 270.25 | 82.23 | 177.44 | 4605 | 0.0893 |
0.08 THI | 377.68 | 109.47 | 180.09 | 6940 | 0.0881 |
0.16 THI | 424.15 | 120.62 | 223.78 | 7831 | 0.0831 |
0.32 THI | 293.58 | 131.93 | 199.54 | 4669 | 0.0884 |
PSCs | VOC (V) | JSC (mA cm−2) | FF (%) | PCE (%) |
---|---|---|---|---|
0 THI | 1.05 | 21.39 ± 0.61 | 73.44 ± 2.12 | 16.49 ± 0.59 |
0.08 THI | 1.07 | 21.26 ± 0.57 | 78.11 ± 1.97 | 17.87 ± 0.57 |
0.16 THI | 1.07 | 22.04 ± 0.65 | 80.19 ± 1.83 | 18.97 ± 0.64 |
0.32 THI | 1.08 | 21.99 ± 0.77 | 74.92 ± 2.04 | 17.91 ± 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, W.; Niu, Q.; Zhang, L.; Chai, B.; Yang, J.; Zeng, W.; Xia, R.; Min, Y. Enhancing the Performance of Perovskite Solar Cells by Introducing 4-(Trifluoromethyl)-1H-imidazole Passivation Agents. Molecules 2023, 28, 4976. https://doi.org/10.3390/molecules28134976
Hua W, Niu Q, Zhang L, Chai B, Yang J, Zeng W, Xia R, Min Y. Enhancing the Performance of Perovskite Solar Cells by Introducing 4-(Trifluoromethyl)-1H-imidazole Passivation Agents. Molecules. 2023; 28(13):4976. https://doi.org/10.3390/molecules28134976
Chicago/Turabian StyleHua, Wei, Qiaoli Niu, Ling Zhang, Baoxiang Chai, Jun Yang, Wenjin Zeng, Ruidong Xia, and Yonggang Min. 2023. "Enhancing the Performance of Perovskite Solar Cells by Introducing 4-(Trifluoromethyl)-1H-imidazole Passivation Agents" Molecules 28, no. 13: 4976. https://doi.org/10.3390/molecules28134976