Comparative Analysis of Polyphenols in Lycium barbarum Fruits Using UPLC-IM-QTOF-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Polyphenolic and Flavonoid Contents of L. barbarum Fruits from Different Geographical Origins
2.2. The Polyphenolic and Flavonoid Contents in Four Varieties of L. barbarum
2.3. The Polyphenolic Contents of L. barbarum Harvested during Different Seasons
2.4. Comparison of Antioxidant Activity
2.4.1. Antioxidant Activity of L. barbarum Fruits Harvested from Different Geographical Origins
2.4.2. Antioxidant Activity of Fruit Extracts from Different Varieties of L. barbarum
2.5. Analysis of Polyphenolic Compounds in L. barbarum Fruit Extracts
2.5.1. Qualitative Analysis of Polyphenols in L. barbarum Fruit Extract
2.5.2. Quantitative Analysis of Polyphenols in L. barbarum Fruit Extract
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments
3.3. Sample Collection
3.4. Extract Collection
3.5. Measurement of Total Polyphenols
3.6. Measurement of Total Flavonoids
3.7. Antioxidant Activity Analysis
3.7.1. Determination of DPPH Radical Scavenging Ability
3.7.2. Determination of ABTS Radical Scavenging Ability
3.7.3. Determination of Ferric Ion Reducing Antioxidant Power
3.8. UPLC-IM-QTOF-MS Analysis
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhao, D.; Kai, J.; Zhao, T.B.; Qiao, C. Study on optimization of extraction process of Lycium barbarum L. polyphenols by response surface methodology. IOP Conf. Ser. Earth Environ. Sci. 2020, 531, 12069. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia (Volume 1); China Medical Science Press: Beijing, China, 2020; pp. 128–260. [Google Scholar]
- Yu, M.S.; Leung, S.K.Y.; Lai, S.W.; Che, C.M.; Zee, S.Y.; So, K.F.; Yuen, W.H.; Chang, R.C.C. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against b-amyloid peptide neurotoxicity. Exp. Gerontol. 2005, 40, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.F. Preparation and antioxidant activity of Lycium barbarum oligosaccharides. Carbohydr. Polym. 2014, 99, 646–648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Wei, Y.M.; Wei, S.; Liu, H.Y.; Guo, B.L. Authentication of Zhongning wolfberry with geographical indication by mineral profile. Int. J. Food Sci. Technol. 2017, 52, 457–463. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, S.; Zhou, W.; Meng, J.; Deng, K.; Zhou, H.; Hu, N.; Suo, Y. Rapid qualitative and quantitative analyses of eighteen phenolic compounds from Lycium ruthenicum Murray by UPLC-Q-Orbitrap MS and their antioxidant activity. Food Chem. 2018, 269, 150–156. [Google Scholar] [CrossRef]
- Wen, S.; Xu, Y.; Niu, C.; Liu, Q.; Zhang, L.; Xiang, Y.; Wang, W.; Sun, Z. Chemical constituents of the fruits of Lycium barbarum and their neuroprotective activity. Chem. Nat. Compd. 2020, 56, 923–926. [Google Scholar] [CrossRef]
- Kan, X.; Yan, Y.; Ran, L.; Lu, L.; Cao, Y. Ultrasonic-assisted extraction and high-speed counter-current chromatography purification of zeaxanthin dipalmitate from the fruits of Lycium barbarum L. Food Chem. 2019, 310, 125854. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Zhang, H.; Wang, C.; Zhao, L.; Huang, T.; Qing, K. Chemical composition, crystal morphology, and key gene expression of the cuticular waxes of Goji (Lycium barbarum L.) berries. J. Agr. Food Chem. 2021, 69, 7874–7883. [Google Scholar] [CrossRef]
- Chen, D.; Guo, S.; Zhou, J.; Zhu, Y.; Zhang, F.; Zeng, F.; Duan, R.; Xu, M.; Duan, J. Chemical constituents from Lycium barbarum (Solanaceae) and their chemophenetic significance. Biochem. Syst. Ecol. 2021, 97, 104292. [Google Scholar] [CrossRef]
- Liu, W.; Xia, M.; Bai, J.; Yang, L.; Wang, Z.; Wang, R.; Shi, Y. Chemical characterization and 5α-reductase inhibitory activity of phenolic compounds in goji berries. J. Pharm. Biomed. Anal. 2021, 201, 114119. [Google Scholar] [CrossRef]
- Mocan, A.; Cairone, F.; Locatelli, M.; Cacciagrano, F.; Carradori, S.; Vodnar, D.C.; Crișan, G.; Simonetti, G.; Cesa, S. Polyphenols from Lycium barbarum (Goji) fruit European cultivars at different maturation steps: Extraction, HPLC-DAD analyses, and biological evaluation. Antioxidants 2019, 8, 562. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Moldovan, C.; Zengin, G.; Bender, O.; Locatelli, M.; Simirgiotis, M.; Atalay, A.; Vodnar, D.C.; Rohn, S.; Crișan, G. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem. Toxicol. 2018, 115, 414–424. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Shi, Y. Visualizing the spatial distribution of endogenous molecules in wolfberry fruit at different development stages by matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2021, 234, 122687. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Meng, J.; Du, J.; Liu, X.; Pu, Q.; Di, D.; Chen, C. Preparative separation of flavonoids from Goji berries by mixed-mode macroporous adsorption resins and effect on Aβ-expressing and anti-aging genes. Molecules 2020, 25, 3511. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Kasprzak, K.; Wójtowicz, A.; Oniszczuk, T.; Nowak, R.; Waksmundzka-Hajnos, M.; Combrzyński, M.; Gancarz, M.; Kowalska, I.; Krajewska, A.; et al. Polyphenol composition and antioxidant potential of instant gruels enriched with Lycium barbarum L. fruit. Molecules 2020, 25, 4538. [Google Scholar] [CrossRef]
- Zheng, Y.; Pang, X.; Zhu, X.; Meng, Z.; Chen, X.; Zhang, J.; Ding, Q.; Li, Q.; Dou, G.; Ma, B. Lycium barbarum mitigates radiation injury via regulation of the immune function, gut microbiota, and related metabolites. Biomed. Pharmacother. 2021, 139, 111654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Z.; Wang, J.; Wang, P.; Lu, D.; Deng, S.; Lei, H.; Gao, Y.; Tao, Y. Treatment with exogenous salicylic acid maintains quality, increases bioactive compounds, and enhances the antioxidant capacity of fresh goji (Lycium barbarum L.) fruit during storage. LWT 2021, 140, 110837. [Google Scholar] [CrossRef]
- Yang, T.; Hu, Y.; Yan, Y.; Zhou, W.; Chen, G.; Zeng, X.; Cao, Y. Characterization and evaluation of antioxidant and anti-inflammatory activities of flavonoids from the fruits of Lycium barbarum. Foods 2022, 11, 306. [Google Scholar] [CrossRef]
- Mocan, A.; Vlase, L.; Vodnar, D.C.; Bischin, C.; Hanganu, D.; Gheldiu, A.M.; Oprean, R.; Silaghi-Dumitrescu, R.; Crișan, G. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. Leaves. Molecules 2014, 19, 10056–10073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, W.; Zhao, J.; Xi, W. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem. 2016, 200, 230–236. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, Y.; Dai, Z.; Qin, X.; Yuan, H.; Jin, Q.; Wang, Y.; Liu, Y.; Luo, X. Phenolic amides with immunomodulatory activity from the nonpolysaccharide fraction of Lycium barbarum fruits. J. Agr. Food Chem. 2020, 68, 3079–3087. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Savolainen, O.; Törrönen, R.; Martinez, J.A.; Poutanen, K.; Hanhineva, K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res. Int. 2014, 63, 132–138. [Google Scholar] [CrossRef]
- Gouda, M.; Nassarawa, S.S.; Gupta, S.D.; Sanusi, N.I.I.; Nasiru, M.M. Evaluation of carbon dioxide elevation on phenolic compounds and antioxidant activity of red onion (Allium cepa L.) during postharvest storage. Plant Physiol. Biochem. 2023, 200, 107752. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Zhang, Z.; Zhu, J.; Zhang, D.; Qian, D.; Teng, F.; Zhao, Y.; Chen, F.; Li, R.; Yang, J. Comparative analysis of the phenolic profile of Lycium barbarum L. fruits from different regions in China. Molecules 2022, 27, 5842. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Liang, X.J.; Guo, S.J.; Li, Y.K.; Zhang, B.; Yin, Y.; An, W.; Cao, Y.L.; Zhao, J.H. Evaluation of nutrients and related environmental factors for wolfberry (Lycium barbarum) fruits grown in the different areas of China. Biochem. Syst. Ecol. 2019, 86, 103916. [Google Scholar]
- Wang, Y.; Liang, X.; Li, Y.; Fan, Y.; Li, Y.; Cao, Y.; An, W.; Shi, Z.; Zhao, J.; Guo, S. Changes in metabolome and nutritional quality of Lycium barbarum fruits from three typical growing areas of China as revealed by widely targeted metabolomics. Metabolites 2020, 10, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.Y.; Guo, S.; Zhang, F.; Yan, H.; Qian, D.; Wang, H.; Jin, L.; Duan, J. Comparison of functional components and antioxidant activity of Lycium barbarum L. fruits from different regions in China. Molecules 2019, 24, 2228. [Google Scholar] [CrossRef] [Green Version]
- Yossa Nzeuwa, I.B.; Guo, B.; Zhang, T.; Wang, L.; Ji, Q.; Xia, H.; Sun, G. Comparative metabolic profiling of Lycium fruits (Lycium barbarum and Lycium chinense) from different areas in China and from Nepal. J. Food Qual. 2019, 2019, 4396027. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shi, X.; Lin, H.; He, C.; Li, Q.; Shen, G.; Feng, J. Geographical origin identification and quality comparison of Ningxia goji berries (Lycium barbarum L.) by NMR-based techniques. J. Food Compos. Anal. 2023, 119, 105258. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, W.; Chen, J.; Pan, H.; Xu, E.; Chen, S.; Ye, X.; Chen, J. Establishment of anthocyanin fingerprint in black wolfberry fruit for quality and geographical origin identification. LWT 2022, 157, 113080. [Google Scholar] [CrossRef]
- Lin, S.; Guo, H.; Gong, J.D.B.; Lu, M.; Lu, M.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J. Cereal Sci. 2018, 81, 69–75. [Google Scholar] [CrossRef]
- Magiera, S.; Zaręba, M. Chromatographic determination of phenolic acids and flavonoids in Lycium barbarum L. and evaluation of antioxidant activity. Food Anal. Methods 2015, 8, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Lv, H.Y.; Wang, F.Z.; Wang, Y. Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MSE and their antioxidant activity in Caco-2 cells. J. Agric. Food Chem. 2016, 64, 2280–2288. [Google Scholar] [CrossRef]
- Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Ghisoni, S.; Baccolo, G.; Blasi, F.; Montesano, D.; Trevisan, M.; Lucini, L. UHPLC-ESI-QTOF-MS profile of polyphenols in Goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation. J. Funct. Foods 2018, 40, 564–572. [Google Scholar] [CrossRef]
- Lv, J.M.; Gouda, M.; Zhu, Y.Y.; Ye, X.Q.; Chen, J.C. Ultrasound-assisted extraction optimization of proanthocyanidins from kiwi (Actinidia chinensis) leaves and evaluation of its antioxidant activity. Antioxidants 2021, 10, 1317. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.; Dagur, H.S.; Khan, M.; Malik, N.; Alam, M.; Mushtaque, M. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. Eur. J. Med. Chem. Rep. 2021, 3, 100010. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, C.; Dong, Q.; Shao, Y.; Zhao, X.; Tao, Y.; Yue, H. Alkaloids and phenolics identification in fruit of Nitraria tangutorum Bobr. By UPLC-Q-TOF-MS/MS and their a-glucosidase inhibitory effects in vivo and in vitro. Food Chem. 2021, 364, 130412. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Lu, H.L.; Wang, Q.; Liu, H.L.; Shen, H.T.; Xu, W.B.; Ge, J.; He, D.J. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
- Kroslakova, I.; Pedrussio, S.; Wolfram, E. Direct coupling of HPTLC with MALDI-TOF MS for qualitative detection of flavonoids on phytochemical fingerprints. Phytochem. Anal. 2016, 27, 222–228. [Google Scholar] [CrossRef]
- Goufo, P.; Pereira, J.; Moutinho-Pereira, J.; Correia, C.M.; Figueiredo, N.; Carranca, C.; Rosa, E.; Trindade, H. Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ. Exp. Bot. 2014, 99, 28–37. [Google Scholar] [CrossRef]
- Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of industrial broccoli discards (Brassica oleracea var. Italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem. 2018, 245, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, M.; Jiang, N.; Wang, Y.; Feng, X. Use of ultra–performance liquid chromatography-tandem mass spectrometry on sweet cherries to determine phenolic compounds in peel and flesh. J. Sci. Food Agr. 2019, 99, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Pyrzynska, K. Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. J. Chromatogr. A 2009, 1216, 6620–6626. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Torres, J.L. Analysis of proanthocyanidins in almond blanch water by HPLC-ESI-QqQ-MS/MS and MALDI-TOF/TOF MS. Food Res. Int. 2012, 49, 798–806. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, B.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Arab. J. Chem. 2021, 14, 103151. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Zhang, L.; Liu, X. Phytochemicals and antioxidant activity in four varieties of head cabbages commonly consumed in China. Food Prod. Process. Nutr. 2019, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
Variety | Contents in the Summer of 2020 (mg GAE/g DW) | Contents in the Autumn of 2020 (mg GAE/g DW) | Contents in the Summer of 2021 (mg GAE/g DW) | Contents in the Autumn of 2021 (mg GAE/g DW) |
---|---|---|---|---|
5# | 7.64 ± 0.24 b | 9.35 ± 0.29 c | 9.18 ± 0.88 bc | 9.63 ± 0.37 c |
7# | 8.21 ± 0.40 a | 10.88 ± 0.66 a | 10.25 ± 0.60 a | 10.08 ± 0.59 b |
9# | 5.52 ± 0.22 c | 9.54 ± 0.27 c | 8.70 ± 0.98 c | 9.90 ± 0.53 bc |
1801# | 8.14 ± 0.48 a | 10.24 ± 0.13 b | 9.70 ± 0.82 b | 11.72 ± 0.60 a |
Variety | DPPH (mg VC/g DW) | ABTS (mmol VC/g DW) | FRAP (mmol VC/g DW) |
---|---|---|---|
5# | 10.68 ± 1.10 b | 20.81 ± 0.63 bc | 59.15 ± 1.72 c |
7# | 12.09 ± 1.03 a | 21.76 ± 1.04 ab | 63.76 ± 1.91 a |
9# | 9.43 ± 1.38 c | 19.97 ± 1.80 c | 59.87 ± 2.01 c |
1801# | 11.60 ± 0.71 a | 22.41 ± 1.23 a | 61.43 ± 2.72 b |
Compounds | Linear Equation | Linear Range (μg/L) | R2 | Contents in Jinghe (μg/g) | Contents in Zhongning (μg/g) |
---|---|---|---|---|---|
Rutin | y = 16.283x + 205.61 | 1500–90,000 | 0.9978 | 125.38 ± 21.89 | 98.59 ± 23.76 |
p-coumaric acid | y = 8.9186x − 15058 | 3300–12,000 | 0.9973 | 90.05 ± 11.46 | 70.38 ± 6.97 |
Ferulic acid | y = 3.7786x − 5304 | 5000–20,000 | 0.9957 | 78.75 ± 3.41 | 62.01 ± 5.65 |
Quercetin | y = 12.129x − 21.878 | 450–6500 | 0.9954 | 38.62 ± 3.19 | 41.32 ± 8.23 |
Kaempferol-3-O-rutinoside | y = 29.865x + 732.33 | 30–1500 | 0.9957 | 25.12 ± 3.60 | 18.22 ± 3.12 |
Isoquercetin | y = 18.515x + 802.05 | 100–900 | 0.9946 | 21.54 ± 2.98 | 13.39 ± 2.40 |
Isorhamnetin-3-glucoside | y = 28.776x + 586.64 | 10–180 | 0.9929 | 21.13 ± 2.82 | 17.56 ± 2.53 |
Chlorogenic acid | y = 4.7343x − 767.2 | 400–3600 | 0.9960 | 18.65 ± 2.80 | 10.06 ± 2.71 |
Isorhamnetin-3-O-rutinoside | y = 31.045x + 672.94 | 40–360 | 0.9962 | 18.17 ± 1.20 | 15.34 ± 1.91 |
Isorhamnetin | y = 32.993x + 487.01 | 50–450 | 0.9939 | 15.30 ± 2.17 | 11.59 ± 3.61 |
Caffeic acid | y = 1.3820x − 1179.7 | 10,000–70,000 | 0.9931 | 10.44 ± 2.62 | 9.06 ± 2.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Y.; Wang, Y.; Ma, L.; Kang, L.; Liu, H.; Ma, X.; Zhao, D. Comparative Analysis of Polyphenols in Lycium barbarum Fruits Using UPLC-IM-QTOF-MS. Molecules 2023, 28, 4930. https://doi.org/10.3390/molecules28134930
Ju Y, Wang Y, Ma L, Kang L, Liu H, Ma X, Zhao D. Comparative Analysis of Polyphenols in Lycium barbarum Fruits Using UPLC-IM-QTOF-MS. Molecules. 2023; 28(13):4930. https://doi.org/10.3390/molecules28134930
Chicago/Turabian StyleJu, Yanjun, Yujie Wang, Lei Ma, Lu Kang, Hejiang Liu, Xue Ma, and Duoyong Zhao. 2023. "Comparative Analysis of Polyphenols in Lycium barbarum Fruits Using UPLC-IM-QTOF-MS" Molecules 28, no. 13: 4930. https://doi.org/10.3390/molecules28134930
APA StyleJu, Y., Wang, Y., Ma, L., Kang, L., Liu, H., Ma, X., & Zhao, D. (2023). Comparative Analysis of Polyphenols in Lycium barbarum Fruits Using UPLC-IM-QTOF-MS. Molecules, 28(13), 4930. https://doi.org/10.3390/molecules28134930