Comprehensive Metabolite Profiling of Chemlali Olive Tree Root Extracts Using LC-ESI-QTOF-MS/MS, Their Cytotoxicity, and Antiviral Assessment
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Quantitative Study of the Different Extracts
2.2. Qualitative Profiling via HPLC-DAD and LC-ESIMS/MS and Their Relative MS/MS Data
2.2.1. Sugars and Derivatives
2.2.2. Organic Acids
2.2.3. Flavonoids
2.2.4. Caffeoylphenylethanoid Derivatives
2.2.5. Phenylethanoids
2.2.6. Iridoids and Derivatives
2.2.7. Secoiridoids and Derivatives
2.2.8. Lignans
2.3. Cytotoxicity and Antiviral Activity
3. Materials and Methods
3.1. Sample Extraction
3.2. HPLC Analysis
3.3. MS-MS Analysis
3.4. Cytotoxicity and Antiviral Activity
3.4.1. Cytotoxicity Testing
3.4.2. Antiviral Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Clodoveo, M.L.; Yangui, A.; Fendri, M.; Giordano, S.; Crupi, P.; Corbo, F. Protected Geographical Indications for EVOO in Tunisia: Towards Environmental, Social, and Economic Sustainable Development. Sustainability 2021, 13, 11201. [Google Scholar] [CrossRef]
- Alibes, X.; Berge, P.H. Valorización de los Subproductos del Olivar Como Alimentos Para los Rumiantes en España; Division de la Production Animale; FAO: Rome, Italy, 1983. [Google Scholar]
- Madejon, E.; Galli, E.; Tomati, U. Composting of wastes produced by low water consuming olive mill technology. Agrochimica 1998, 42, 135–146. [Google Scholar]
- Ortega-García, F.; Peragón, J. HPLC analysis of oleuropein, hydroxytyrosol, and tyrosol in stems and roots of Olea europaea L. cv. Picual during ripening. J. Sci. Food Agric. 2010, 90, 2295–2300. [Google Scholar] [CrossRef] [PubMed]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [Green Version]
- Ozkaya, M.T.; Celik, M. The effects of various treatments on endogenous carbohydrate content of cuttings in easy-to-root and hard-to-root olive cultivars. Acta Hortic. 1999, 474, 51–54. [Google Scholar] [CrossRef]
- Malik, N.S.; Bradford, J.M. Changes in oleuropein levels during differentiation and development of floral buds in ‘Arbequina’ olives. Sci. Hortic. 2006, 110, 274–278. [Google Scholar] [CrossRef]
- Leong, L.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Michel, T.; Khlif, I.; Kanakis, P.; Termentzi, A.; Allouche, N.; Halabalaki, M.; Skaltsounis, A.-L. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem. Lett. 2015, 11, 424–439. [Google Scholar] [CrossRef]
- Luque-Muñoz, A.; Tapia, R.; Haidour, A.; Justicia, J.; Cuerva, J.M. Direct determination of phenolic secoiridoids in olive oil by ultra-high performance liquid chromatography-triple quadruple mass spectrometry analysis. Sci. Rep. 2019, 9, 15545. [Google Scholar] [CrossRef] [Green Version]
- Ammar, S.; Contreras, M.D.M.; Gargouri, B.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochem. Anal. 2017, 28, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’ and ‘Picual’ olive leaves. LWT-Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Pérez-Bonilla, M.; Salido, S.; van Beek, T.A.; Altarejos, J. Radical-Scavenging Compounds from Olive Tree (Olea europaea L.) Wood. J. Agric. Food Chem. 2014, 62, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Salido, S.; Pérez-Bonilla, M.; Adams, R.P.; Altarejos, J. Phenolic Components and Antioxidant Activity of Wood Extracts from 10 Main Spanish Olive Cultivars. J. Agric. Food Chem. 2015, 63, 6493–6500. [Google Scholar] [CrossRef]
- Abu-Reidah, I.; Contreras, M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J. Chromatogr. A 2013, 1313, 212–227. [Google Scholar] [CrossRef]
- Ammar, S.; Contreras, M.D.M.; Belguith-Hadrich, O.; Segura-Carretero, A.; Bouaziz, M. Assessment of the distribution of phenolic compounds and contribution to the antioxidant activity in Tunisian fig leaves, fruits, skins and pulps using mass spectrometry-based analysis. Food Funct. 2015, 6, 3663–3677. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibanez, E.; Segura-Carretero, A.; Gutierrez, A.F. HPLC-ESI-QTOF-MS as a Powerful Analytical Tool for Characterising Phenolic Compounds in Olive-leaf Extracts. Phytochem. Anal. 2013, 24, 213–223. [Google Scholar] [CrossRef]
- Taamalli, A.; Abaza, L.; Román, D.A.; Carretero, A.S.; Gutiérrez, A.F.; Zarrouk, M.; Ben Youssef, N. Characterisation of Phenolic Compounds by HPLC-TOF/IT/MS in Buds and Open Flowers of ‘Chemlali’ Olive Cultivar. Phytochem. Anal. 2013, 24, 504–512. [Google Scholar] [CrossRef]
- Obied, H.K.; Prenzler, P.D.; Ryan, D.; Servili, M.; Taticchi, A.; Esposto, S.; Robards, K. Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat. Prod. Rep. 2008, 25, 1167–1179. [Google Scholar] [CrossRef]
- Peralbo-Molina, Á.; Priego-Capote, F.; de Castro, M.D.L. Tentative Identification of Phenolic Compounds in Olive Pomace Extracts Using Liquid Chromatography–Tandem Mass Spectrometry with a Quadrupole–Quadrupole-Time-of-Flight Mass Detector. J. Agric. Food Chem. 2012, 60, 11542–11550. [Google Scholar] [CrossRef]
- Kanakis, P.; Termentzi, A.; Michel, T.; Gikas, E.; Halabalaki, M.; Skaltsounis, A.-L. From Olive Drupes to Olive Oil. An HPLC-Orbitrap-based Qualitative and Quantitative Exploration of Olive Key Metabolites. Planta Med. 2013, 79, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.; de Simón, B.F.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Hernández, T.; Estrella, I.; Pinto, E. LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage. J. Mass Spectrom. 2012, 47, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Mahomoodally, M.F.; Rocchetti, G.; Lucini, L.; Sieniawska, E.; Świątek, Ł.; Rajtar, B.; Polz-Dacewicz, M.; Senkardes, I.; Aktumsek, A.; et al. Chemical Characterization and Bioactive Properties of Different Extracts from Fibigia clypeata, an Unexplored Plant Food. Foods 2020, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Leila, A.; Lamjed, B.; Roudaina, B.; Najla, T.; Taamalli, A.; Jellouli, S.; Mokhtar, Z. Isolation of an antiviral compound from Tunisian olive twig cultivars. Microb. Pathog. 2019, 128, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Zaïri, A.; Nouir, S.; Zarrouk, A.; Haddad, H.; Khélifa, A.; Achour, L. Phytochemical profile, cytotoxic, antioxidant, and allelopathic potentials of aqueous leaf extracts of Olea europaea. Food Sci. Nutr. 2020, 8, 4805–4813. [Google Scholar] [CrossRef]
- Ha, J.Y.; Goo, S.Y.; Sung, J.S.; Shin, H.S. Antioxidant and cytoprotective activity of the olive leaf (Olea europaea L. var. Kalamata) extracts on the mouse embryonic fibroblast cell. Food Sci. Biotechnol. 2009, 18, 965–970. [Google Scholar]
- Samet, I.; Han, J.; Jlaiel, L.; Sayadi, S.; Isoda, H. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism. Oxid. Med. Cell. Longev. 2014, 2014, 927619. [Google Scholar] [CrossRef] [Green Version]
- Rhouma, H.E.; Trabelsi, N.; Chimento, A.; Benincasa, C.; Tamaalli, A.; Perri, E.; Zarrouk, M.; Pezzi, V. Olea europaea L. Flowers as a new promising anticancer natural product: Phenolic composition, antiproliferative activity and apoptosis induction. Nat. Prod. Res. 2019, 35, 1836–1839. [Google Scholar] [CrossRef]
- Pennisi, R.; Ben Amor, I.; Gargouri, B.; Attia, H.; Zaabi, R.; Ben Chira, A.; Saoudi, M.; Piperno, A.; Trischitta, P.; Tamburello, M.P.; et al. Analysis of Antioxidant and Antiviral Effects of Olive (Olea europaea L.) Leaf Extracts and Pure Compound Using Cancer Cell Model. Biomolecules 2023, 13, 238. [Google Scholar] [CrossRef]
- Świątek, Ł.; Sieniawska, E.; Mahomoodally, M.F.; Sadeer, N.B.; Wojtanowski, K.K.; Rajtar, B.; Polz-Dacewicz, M.; Paksoy, M.Y.; Zengin, G. Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia). Pharmaceuticals 2022, 15, 50. [Google Scholar] [CrossRef]
Organs | Yield (%) |
---|---|
External part | 31.61 |
Internal part | 10.23 |
Root sum | 15.72 |
N° | m/z | Compound | Concentration [mg/g] | |
---|---|---|---|---|
External Part | Internal Part | |||
1 | 181 | D-Mannitol | 0.493 ± 0.02 | 1.530 ± 0.06 |
2 | 389 | Oleoside | 0.317 ± 0.01 | - |
3 | 403 | Elenolic acid hexoside | 4.54 ± 0.19 | 0.116 ± 0.01 |
4 | 583 | 2″-Ethoxyoleuropein | 2.227 ± 0.10 | 3.356 ± 0.13 |
5 | 555 | Hydroxyoleuropein | 4.892 ± 0.19 | 3.342 ± 0.15 |
6 | 701 | Oleuropein hexoside | 3.484 ± 0.14 | 0.141 ± 0.01 |
8 | 539 | Oleuropein | 5.892 ± 0.41 | 10.362 ± 0.44 |
9 | 623 | verbascoside | 0.115 ± 0.01 | 3.207 ± 0.13 |
10 | 523 | Ligstroside | 2.112 ± 0.09 | 5.241 ± 0.22 |
11 | 925 | Jaspolyoside | 2.648 ± 0.12 | 0.460 ± 0.018 |
N° | RT (min) | Molecular Mass | [M-H]- | Molecular Formula | Mass Error (ppm) | Main Fragments via MS/MS | Proposed Compound | External Part | Internal Part | Total of the Root |
---|---|---|---|---|---|---|---|---|---|---|
sugar and derivates | ||||||||||
1 | 1.49 | 182.079 | 181.0708 | C6H14O6 | 5.28 | 89.0244, 71.0141, 163.0600, 119.0343 | D-Mannitol | + | + | + |
organic acids | ||||||||||
2 | 1.657 | 196.0583 | 195.0500 | C6H12O7 | −5.23 | 177.0418, 159.0282, 75.0095, 129.0192, 99.0107 | Gluconic acid | + | + | + |
3 | 1.875 | 136.0372 | 135.0299 | C4H8O5 | −5.86 | 75.0095, 117.0167, 89.0242 | Threonic acid | + | - | + |
4 | 1.958 | 134.0215 | 133.0142 | C4H6O5 | −5.57 | 115.0038, 71.0142 | Malic acid | + | + | + |
5 | 2.410 | 192.027 | 191.0177 | C6H8O7 | 0.55 | 111.0085, 87.0084, 129.0197 173.0060 | Citric acid | + | + | + |
6 | 5.221 | 168.0423 | 167.0354 | C8H8O4 | −6.44 | 123.0429, 149.0199, 109.0304 93.0356 | 3,4-dihydroxyphenylacetic acid | + | - | + |
iridoids | ||||||||||
7 | 3.748 | 376.1369 | 375.1285 | C16H24O10 | 1.41 | 213.0763, 341.1061 | Loganic acid | + | + | + |
8 | 6.007 | 390.1162 | 389.1087 | C16H22O11 | 0.68 | 345.1138, 183.0676, 121.0673 227.0571, 89.0225, 165.0560 | Secologanoside | + | + | + |
9 | 11.244 | 390.1526 | 389.1442 | C17H26O10 | 1.74 | 345.1559, 115.0395, 301.1637 151.0773, 101.0252, 83.0132 | Loganin | + | - | + |
10 | 19.358 | 360.142 | 359.1344 | C16H24O9 | −0.99 | 197.0814, 153.0922, 135.0815, 109.0668 | 7-Deoxyloganic acid | + | + | + |
Phenylethanoids | ||||||||||
11 | 4.384 | 316.1158 | 315.1085 | C14H20O8 | −3.93 | 153.0539, 135.0447, 101.0248 | Hydroxytyrosol-glucoside | + | + | + |
12 | 4.669 | 154.063 | 153.0546 | C8H10O3 | −7.26 | 123.0447 | Hydroxytyrosol | + | + | + |
Caffeoyl phenylethanoid derivatives | ||||||||||
13 | 23.055 | 624.2054 | 623.1983 | C29H36O15 | −1.19 | 461.1662, 161.0238, 113.0242 135.0451, 315.1103 | verbascoside | + | + | + |
14 | 23.089 | 624.2054 | 623.1983 | C29H36O15 | −1.19 | 461.1662, 161.0238, 113.0242 135.0451, 315.1103 | Isoverbascoside | + | + | + |
Phenolic acids | ||||||||||
15 | 7.814 | 448.1581 | 447.1508 | C19 H28 O12 | 3.06 | 153.0547, 285.0980, 363.1466 89.0221, 112.9829 | Dihydroxybenzoic acid hexoside pentoside | + | - | + |
Flavonoids | ||||||||||
16 | 46.227 | 286.1846 | 285.1866 | C15H10O6 | 2.18 | 201.0876, 270.1543, 255.1314, 131.9020, 114.9548, 135.0262 | Luteolin | + | - | + |
Secoiridoids and derivatives | ||||||||||
17 | 4.970 | 390.1162 | 389.1087 | C16H22O11 | 0.6 | 183.0681, 227.0553, 121.0674 209.0414, 165.0562 | Oleoside | + | - | + |
18 | 6.559 | 408.1632 | 407.1559 | C17H28O11 | −3.88 | 389.1447, 357.1187, 89.0239, | Acyclodihydroelenolic acid hexoside I | + | - | + |
19 | 9.738 | 422.1788 | 421.1697 | C18H30O11 | −0.79 | 403.1614, 359.1688, 115.0389, 101.0235, 73.0283, 379.1549 151.0737 | Oleoside methyl ester derivative | + | + | + |
20 | 11.528 | 404.1319 | 403.1243 | C17H24O11 | −0.71 | 89.0251, 223.0607, 119.0338, 179.0564, 71.0146, 101.0236 | Elenolic acid hexoside | + | + | + |
21 | 13.837 | 392.1682 | 391.1602 | C17H28O10 | −0.18 | 225.1114, 183.1017, 255.1255, 285.1284, 167.0704, 113.0238, 89.0228 | Methyl oleuropein aglycone | + | + | + |
22 | 14.038 | 584.2105 | 583.2032 | C27H36O14 | 1.15 | 537.1984, 375.1453, 179.0710, 195.0667, 345.1339 | 2″-Ethoxyoleuropein | + | + | + |
23 | 18.187 | 462.1373 | 461.1301 | C19H26O13 | 0.08 | 403.1209,75.0099, 223.0617 149.0428 | Elenolic acid hexoside Derivative | + | + | + |
24 | 21.399 | 556.1792 | 555.1759 | C25H32O14 | 1.75 | 151.0396, 509.2231, 537.1625 403.1237, 223.0607 | Hydroxyoleuropein | + | + | + |
25 | 21.282 | 526.1686 | 525.1618 | C24H30O13 | 0.83 | 195.0662, 389.1059, 345.0980 319.1235, 209.0476 | Demethyloleuropein | + | + | + |
26 | 21.449 | 702.2371 | 701.2319 | C31H42O18 | 2.65 | 315.1071, 539.1808, 469.1349 437.1439 | Oleuropein hexoside | + | + | + |
27 | 21.7 | 702.2371 | 701.2304 | C31H42O18 | 0.8 | 315.1054, 539.1741, 469.1353 437.1428 | Oleuropein hexoside | + | + | + |
28 | 23.708 | 686.2422 | 685.2371 | C31H42O17 | −1.05 | 523.1801, 453.1276, 421.1484 299.1130 | Nuezhenide | + | - | + |
29 | 25.498 | 570.1949 | 569.498 | C26H34O14 | 0.74 | 537.1619, 403.1237, 223.0612 151.0396, 179.0555, 119.0350 89.0250, 337.0904, 305.1026 | Methoxyoleuropein | + | + | + |
30 | 26.358 | 544.2215 | 543.2316 | C25H36O13 | 1.18 | 377.1364, 197.0780, 153.0949 183.1068, 109.1033 | Dihydro oleuropein | + | + | + |
31 | 26.586 | 540.1843 | 539.1781 | C25H32O13 | 2.01 | 403.1217, 377.1217, 307.0792 275.0898, 223.0594, 179.0533 149.0228, 119.0331, 89.0240 | Oleuropein | + | + | + |
32 | 27.054 | 584.1741 | 583.1732 | C27H36O14 | 1.29 | 537.1590, 403.1224, 223.0573 151.0403, 179.0521 | Lucidumoside C | + | - | + |
33 | 28.058 | 558.2312 | 557.2225 | C26H38O13 | −2.62 | 513.2315, 227.1269, 371.0920 121.0659, 183.0636, 165.0614 | 60-O-[(2E)-2.6-Dimethyl-8- hydroxy-2-octenoyloxy]- secologanoside | + | - | + |
34 | 28.426 | 524.1894 | 523.1822 | C25H32O12 | 0.19 | 361.1297, 291.0869, 259.0975 101.0252, 127.0393, 179.0593 | Ligustroside | + | + | + |
35 | 28.644 | 362.1366 | 361.1193 | C19H22O7 | 1.17 | 291.0882, 259.0991, 127.0401 101.0245, 171.0286 | Ligstroside aglycone | + | + | + |
36 | 29.580 | 926.3056 | 925.3006 | C42H54O23 | 2.47 | 789.2470, 745.2361, 661.2086 539.1780, 521.1652, 403.1245 377.1234, 307.0824, 275.0915 223.0613, 149.0242, 119.0339 89.0247 | Jaspolyoside I | + | + | + |
37 | 31.354 | 394.1264 | 393.1194 | C19H22O9 | 0.75 | 317.1027, 349.1270, 289.1046 181.0490, 137.0590, 153.0540 | Hydroxy oleuropein aglycone | + | + | + |
38 | 32,19 | 706.2837 | 705.2774 | C35H46O15 | 1.42 | 539.1748, 521.1635, 377.1211 327.2138, 307.0799, 275.0896 223.0596, 149.0223 | Oleuropein derivate | + | + | + |
Lignan | ||||||||||
39 | 15.376 | 538.205 | 537.1990 | C26H34O12 | 0.84 | 375.1448, 179.0703, 195.0666 345.1343, 327.1202 | Olivil 4-O-β-D-glucopyranoside | + | + | + |
40 | 15.510 | 376.1522 | 375.1476 | C20H24O7 | 2.85 | 360.1440, 345.1361, 327.1244 195.0672, 179.0725, 161.0561 146.0376, 122.0408 | Olivil | + | + | + |
41 | 16.096 | 416.1682 | 415.1581 | C19H28O10 | −0.17 | 149.0447, 89.0233, 191.0577 251.0803, 131.0396 | 1-acetoxy-pinoresinol | + | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toumi, K.; Świątek, Ł.; Boguszewska, A.; Skalicka-Woźniak, K.; Bouaziz, M. Comprehensive Metabolite Profiling of Chemlali Olive Tree Root Extracts Using LC-ESI-QTOF-MS/MS, Their Cytotoxicity, and Antiviral Assessment. Molecules 2023, 28, 4829. https://doi.org/10.3390/molecules28124829
Toumi K, Świątek Ł, Boguszewska A, Skalicka-Woźniak K, Bouaziz M. Comprehensive Metabolite Profiling of Chemlali Olive Tree Root Extracts Using LC-ESI-QTOF-MS/MS, Their Cytotoxicity, and Antiviral Assessment. Molecules. 2023; 28(12):4829. https://doi.org/10.3390/molecules28124829
Chicago/Turabian StyleToumi, Karim, Łukasz Świątek, Anastazja Boguszewska, Krystyna Skalicka-Woźniak, and Mohamed Bouaziz. 2023. "Comprehensive Metabolite Profiling of Chemlali Olive Tree Root Extracts Using LC-ESI-QTOF-MS/MS, Their Cytotoxicity, and Antiviral Assessment" Molecules 28, no. 12: 4829. https://doi.org/10.3390/molecules28124829
APA StyleToumi, K., Świątek, Ł., Boguszewska, A., Skalicka-Woźniak, K., & Bouaziz, M. (2023). Comprehensive Metabolite Profiling of Chemlali Olive Tree Root Extracts Using LC-ESI-QTOF-MS/MS, Their Cytotoxicity, and Antiviral Assessment. Molecules, 28(12), 4829. https://doi.org/10.3390/molecules28124829