Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Considerations
3.2. Typical Procedure for the Synthesis of RR-1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ahad, F.; Ganie, S.A. Iodine, iodine metabolism and iodine deficiency disorders revisited. Indian J. Endocrinol. Metab. 2010, 14, 13–17. [Google Scholar] [PubMed]
- Chung, H.R. Iodine and thyroid function. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 8–12. [Google Scholar] [CrossRef]
- Dai, G.; Levy, O.; Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature 1996, 379, 458–460. [Google Scholar] [CrossRef]
- Di Lemma, F.G.; Colle, J.Y.; Beneš, O.; Konings, R.J.M. A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel. J. Nucl. Mater. 2015, 465, 499–508. [Google Scholar] [CrossRef]
- Gloe, K. Macrocyclic Chemistry: Current Trends and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Han, Y.; Meng, Z.; Ma, Y.-X.; Chen, C.-F. Iptycene-derived crown ether hosts for molecular recognition and self-assembly. Acc. Chem. Res. 2014, 47, 2026–2040. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Li, C. Biphen[n]arenes: Modular Synthesis, Customizable Cavity Sizes, and Diverse Skeletons. Acc. Chem. Res. 2022, 55, 916–929. [Google Scholar] [CrossRef]
- Zeng, F.; Cheng, L.; Ou, G.-C.; Tang, L.-L.; Ding, M.-H. Pyromellitic Diimide-Extended Pillar[6]arene: Synthesis, Sturcture, and Its Complexation with Polycyclic Aromatic Hydrocarbons. J. Org. Chem. 2022, 87, 3863–3867. [Google Scholar] [CrossRef]
- Ding, M.-H.; Liao, J.; Tang, L.-L.; Ou, G.-C.; Zeng, F. High-yield synthesis of a novel water-soluble macrocycle for selective recognition of naphthalene. Chin. Chem. Lett. 2021, 32, 1665–1668. [Google Scholar] [CrossRef]
- Zeng, F.; Cheng, L.; Zhang, W.-J.; Tang, L.-L.; Wang, X.-F. Phenanthrene[2]arene: Synthesis and application as nonporous adaptive crystals in the separation of benzene from cyclohexane. Org. Chem. Front. 2022, 9, 3307–3311. [Google Scholar] [CrossRef]
- Zeng, F.; Xiao, X.-S.; Gong, S.-F.; Yuan, L.; Tang, L.-L. An electron-deficient supramolecular macrocyclic host for the selective separation of aromatics and cyclic aliphatics. Org. Chem. Front. 2022, 9, 4829–4833. [Google Scholar] [CrossRef]
- Gale, P.A.; Sessler, J.L.; Král, V.; Lynch, V. Calix[4]pyrroles: Old Yet New Anion-Bing Agents. J. Am. Chem. Soc. 1996, 118, 5140–5141. [Google Scholar] [CrossRef]
- Kim, S.K.; Sessler, J.L. Calix[4]pyrrole-Based Ion Pair Receptors. Acc. Chem. Res. 2014, 47, 2525–2536. [Google Scholar] [CrossRef]
- Kim, D.S.; Sessler, J.L. Calix[4]pyrroles: Versatile molecular containers with ion transport, recognition, and molecular switching functions. Chem. Soc. Rev. 2015, 44, 532–546. [Google Scholar] [CrossRef]
- Farnham, W.B.; Roe, D.C.; Dixon, D.A.; Calabrese, J.C.; Harlow, R.L. Fluorinated macrocyclic ethers as fluoride ion hosts. Novel structures and dynamic properties. J. Am. Chem. Soc. 1990, 112, 7707–7718. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Chen, C.-H.; Flood, A.H. Chloride capture using a C-H hydrogen-bonding cage. Science 2019, 365, 159–161. [Google Scholar]
- Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: The latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 2010, 39, 1262–1271. [Google Scholar] [CrossRef]
- McDonald, K.P.; Hua, Y.; Lee, S.; Flood, A.H. Shape persistence delivers lock-and-key chloride binding in triazolophanes. Chem. Commun. 2012, 48, 5065–5075. [Google Scholar] [CrossRef]
- Yawer, M.A.; Havel, V.; Sindelar, V.A. Bambusuril Macrocycle that Binds Anions in Water with High Affinity and Selectivity. Angew. Chem. Int. Ed. 2015, 54, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Svec, J.; Necas, M.; Sindelar, V. Bambus[6]uril. Angew. Chem. Int. Ed. 2010, 49, 2378–2381. [Google Scholar] [CrossRef] [PubMed]
- Havel, V.; Sindelar, V.; Necas, M.; Kaifer, A.E. Water-mediated inclusion of benzoates and tosylates inside the bambusuril macrocycle. Chem. Commun. 2014, 50, 1372–1374. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, M.; Langton, M.J.; Beer, P.D. Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle. Chem. Commun. 2015, 51, 4499–4502. [Google Scholar] [CrossRef]
- Langton, M.J.; Duckworth, L.C.; Beer, P.D. Nitrate anion templated assembly of a [2]rotaxane for selective nitrate recognition in aqueous solvent mixtures. Chem. Commun. 2013, 49, 8608–8610. [Google Scholar] [CrossRef]
- Mullen, K.M.; Beer, P.D. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. Chem. Soc. Rev. 2009, 38, 1701–1713. [Google Scholar] [CrossRef]
- Barendt, T.A.; Robinson, S.W.; Beer, P.D. Superior anion induced shuttling behaviour exhibited by a halogen bonding two station rotaxane. Chem. Sci. 2016, 7, 5171–5180. [Google Scholar] [CrossRef]
- Tuo, D.-H.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Naphthalene-pillared benzene triimide cage: An efficient receptor for polyhedral anions and a general tool for probing theoretically existing anion-πbinding motifs. CCS Chem. 2022, 4, 2806–2815. [Google Scholar] [CrossRef]
- Wang, D.X.; Wang, M.X. Exploring anion–π interactions and their applications in supramolecular chemistry. Acc. Chem. Res. 2020, 53, 1364–1380. [Google Scholar] [CrossRef] [PubMed]
- Tuo, D.-H.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Benzene triimide cage as a selective container of azide. Org. Lett. 2019, 21, 7158–7162. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Chen, F.; Zhao, T.; Li, A.; Xu, G.; Sessler, J.L.; He, Q. Selective Inclusion of Fluoride within the Cavity of a Two-Wall Biscalix[4]pyrrole. Org. Lett. 2020, 22, 4451–4455. [Google Scholar] [CrossRef]
- Kim, S.H.; Yeon, Y.; Lee, A.; Lynch, V.M.; He, Q.; Sessler, J.L.; Kim, S.K. Tetraamidoindoly calix[4]arene as a selective ion pair receptor. Org. Chem. Front. 2022, 9, 6888–6893. [Google Scholar] [CrossRef]
- Li, Y.; Pink, M.; Karty, J.A.; Flood, A.H. Dipole-Promoted and Size-Dependent Cooperativity between Pyridyl-Containing Triazolophanes and Halides Leads to Persistent Sandwich Complexes with Iodide. J. Am. Chem. Soc. 2008, 130, 17293–17295. [Google Scholar] [CrossRef]
- Mendy, J.S.; Saeed, M.A.; Fronczek, F.R.; Powell, D.R.; Hossain, M.A. Anion Recognition and Sensing by a New Macrocyclic Dinuclear Copper(II) Complex: A Selective Receptor for Iodide. Inorg. Chem. 2010, 49, 7223–7225. [Google Scholar] [CrossRef]
- Lee, D.Y.; Singh, N.; Kim, M.J.; Jang, D.O. Chromogenic and Fluorescent Recognition of Iodide with a Benzimidazole-Based Tripodal Receptor. Org. Lett. 2011, 13, 3024–3027. [Google Scholar] [CrossRef]
- Zhu, S.S.; Staats, H.; Brandhorst, K.; Grunenberg, J.; Gruppi, F.; Dalcanale, E.; Luetzen, A.; Rissanen, K.; Schalley, C.A. Anion Binding to Resorcinarene-Based Cacitands: The Importance of C-H… Anion Interactions. Angew. Chem. Int. Ed. 2008, 47, 788–792. [Google Scholar] [CrossRef]
- Li, Y.; Flood, A.H. Pure C-H Hydrogen Binding of Chloride Ions: A Preorganized and Rigid Macrocyclic Receptor. Angew. Chem. Int. Ed. 2008, 47, 2649–2652. [Google Scholar] [CrossRef]
- Juwarker, H.; Lenhardt, J.M.; Pham, D.M.; Craig, S.L. 1,2,3-Triazole CH…Cl− Contacts Guide Anion Binding and Concomitant Folding in 1,4-Diaryl Triazole Oligomers. Angew. Chem. Int. Ed. 2008, 47, 3740–3743. [Google Scholar] [CrossRef]
- Berryman, O.B.; Sather, A.C.; Hay, B.P.; Meisner, J.S.; Johnson, D.W. Solution Phase Measurement of Both Weak σ and C−H···X− Hydrogen Bonding Interactions in Synthetic Anion Receptors. J. Am. Chem. Soc. 2008, 130, 10895–10897. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, G.; Chen, L.; Tong, L.; Lei, Y.; Shen, L.; Jiao, T.; Li, H. Selective Recognition of Chloride Anion in Water. Org. Lett. 2020, 22, 4878–4882. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fang, S.; Wu, G.; Lei, Y.; Chen, Q.; Wang, H.; Wu, Y.; Lin, C.; Hong, X.; Kim, S.K.; et al. Constraining Homo- and Heteroanion Dimers in Ultraclos Proximity within a Self-Assembled Hexacationic Cage. J. Am. Chem. Soc. 2020, 142, 20182–20190. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, C.; Fang, S.; Zhu, D.; Chen, Y.; Ge, C.; Tang, H.; Li, H. A Self-Assembled Cage Binding Iodide Anions over Other Halid Ions in Water. Angew. Chem. Int. Ed. 2022, 61, e202209078. [Google Scholar]
- Zhu, H.; Shi, B.; Chen, K.; Wei, P.; Xia, D.; Mondal, J.H.; Huang, F. Cyclo[4]carbazole, an Iodide Anion Macrocyclic Receptor. Org. Lett. 2016, 18, 5054–5057. [Google Scholar] [CrossRef]
- Bryantsev, V.S.; Hay, B.P. Are C−H Groups Significant Hydrogen Bonding Sites in Anion Receptors? Benzene Complexes with Cl−, NO3−, and ClO4−. J. Am. Chem. Soc. 2005, 127, 8282–8283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ao, Y.-F.; Wang, D.-X.; Wang, Q.Q. Triazine- and Binaphthol-Based Chiral Macrocycles and Cages: Synthesis, Structure, and Solid-State Assembly. J. Org. Chem. 2022, 87, 3491–3497. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Liang, F.; Wang, Y.; Xu, M.; Wang, X. A highly sensitive water-soluble system to sense glucose in aqueous solution. Org. Biomol. Chem. 2011, 9, 2938–2942. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-C.; Tan, Y.-Z.; Tang, L.-L.; Zeng, F. Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions. Molecules 2023, 28, 4784. https://doi.org/10.3390/molecules28124784
Wang Z-C, Tan Y-Z, Tang L-L, Zeng F. Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions. Molecules. 2023; 28(12):4784. https://doi.org/10.3390/molecules28124784
Chicago/Turabian StyleWang, Zong-Cheng, Ying-Zi Tan, Lin-Li Tang, and Fei Zeng. 2023. "Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions" Molecules 28, no. 12: 4784. https://doi.org/10.3390/molecules28124784
APA StyleWang, Z.-C., Tan, Y.-Z., Tang, L.-L., & Zeng, F. (2023). Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions. Molecules, 28(12), 4784. https://doi.org/10.3390/molecules28124784