Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Material
3.2. General Methods
3.3. General Procedure for the Synthesis of Linear Octapeptides, a Precursor of Cyclopurpuracin (2)
3.4. Cyclisation of Linear Octapeptide
3.4.1. Using HATU/HBTU/PyBOP
3.4.2. Using PyBOP/NaCl
3.5. Microdilution Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Damjanovic, J.; Miao, J.; Huang, H.; Lin, Y.S. Elucidating solution structures of cyclic peptides using molecular dynamics simulations. Chem. Rev. 2021, 121, 2292–2324. [Google Scholar] [CrossRef] [PubMed]
- Jin, K. Developing cyclic peptide-based drug candidates: An overview. Future Med. Chem. 2020, 12, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.M. Peptide Chemistry and Drug Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Matsuzaki, K. Control of Cell Selectivity of Antimicrobial Peptides. Biochim. Biophys. Acta 2009, 1788, 1678–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellavita, R.; Maione, A.; Merlino, F.; Siciliano, A.; Dardano, P.; De Stefano, L.; Galdiero, S.; Galdiero, E.; Grieco, P.; Falanga, A. 2022. Antifungal and antibiofilm activity of cyclic Temporin L peptide analogues against albicans and non-albicans Candida species. Pharmaceutics 2022, 14, 454. [Google Scholar] [CrossRef]
- Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.S.; Joo, S.H. Recent trends in cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2020, 28, 18–24. [Google Scholar] [CrossRef]
- González-Tepale, M.R.; Reyes, L.; Mayorga-Flores, M.; Reyes-Trejo, B.; Gómez-Zepeda, D.; Rio-Portilla, F.; Herbert-Pucheta, J.E. Cyclopurpuracin, a cyclopeptide from Annona purpurea seeds. Phytochem. Lett. 2018, 23, 164–167. [Google Scholar] [CrossRef]
- Dahiya, R.; Dahiya, S. Natural bioeffective cyclooligopeptides from plant seeds of Annona genus. Eur. J. Med. Chem. 2021, 214, 113221. [Google Scholar] [CrossRef]
- Yayat, H.N.A.; Maharani, R.; Hidayat, A.T.; Wiani, I.; Zainuddin, A.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total synthesis of a reversed cyclopurpuracin using a combination of solid and solution phase methods. J. Heterocycl. Chem. 2022, 59, 1963–1970. [Google Scholar] [CrossRef]
- Muhajir, M.; Hardianto, A.; Al-Anshori, J.; Sumiarsa, D.; Mayanti, T.; Nurlelasari.; Harneti, D.; Hidayat, A.T.; Supratman, U.; Maharani, R. Total Synthesis of Nocardiotide A by Using a Combination of Solid- and Solution-Phase Methods. ChemistrySelect 2021, 6, 12941–12946. [Google Scholar] [CrossRef]
- Kurnia, D.Y.; Maharani, R.; Hidayat, A.T.; Al-Anshori, J.; Wiani, I.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total synthesis of xylapeptide B [Cyclo-(L-Leu-L-Pro-N-Me-Phe-L-Val-D-Ala)]. J. Heterocycl. Chem. 2022, 59, 131–136. [Google Scholar] [CrossRef]
- Maharani, R.; Napitupulu, O.I.; Dirgantara, J.M.; Hidayat, A.T.; Sumiarsa, D.; Harneti, D.; Supratman, U.; Fukase, K. Synthesis of cyclotetrapeptide analogues of c-PLAI and evaluation of their antimicrobial properties. R. Soc. Open Sci. 2021, 8, 201822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Amso, Z.; De Leon Rodriguez, L.M.; Kaur, H.; Brimble, M.A. Synthesis of Natural Cyclopentapeptides Isolated from Dianthus chinensis. J. Nat. Prod. 2016, 79, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- Rahmadani, A.; Masruhim, M.A.; Rijai, L.; Hidayat, A.T.; Supratman, U.; Maharani, R. Total synthesis of cyclohexadepsipeptides exumolides A and B. Tetrahedron 2021, 83, 131987. [Google Scholar] [CrossRef]
- Amblard, M.; Fehrentz, J.A.; Martinez, J.; Subra, G. Methods and protocols of modern solid phase peptide synthesis. Mol. Biotechnol. 2006, 33, 239–254. [Google Scholar] [CrossRef]
- Slough, D.P.; McHugh, S.M.; Lin, Y.S. Understanding and designing head-to-tail cyclic peptides. Biopolymers 2018, 109, e23113. [Google Scholar] [CrossRef]
- Thakkar, A.; Trinh, T.B.; Pei, D. Global analysis of peptide cyclization efficiency. ACS Comb. Sci. 2013, 15, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.S. The cyclization of peptides and depsipeptides. J. Pept. Sci. 2003, 9, 471–501. [Google Scholar] [CrossRef]
- Tang, Y.C.; Xie, H.B.; Tian, G.L.; Ye, Y.H. Synthesis of cyclopentapeptides and cycloheptapeptides by DEPBT and the influence of some factors on cyclization. J. Pept. Res. 2002, 60, 95–103. [Google Scholar] [CrossRef]
- Li, P.; Roller, P. Cyclization Strategies in Peptide Derived Drug Design. Curr. Top. Med. Chem. 2005, 2, 325–341. [Google Scholar] [CrossRef]
- Napitupulu, O.I.; Sumiarsa, D.; Subroto, T.; Nurlelasari; Harneti, D.; Supratman, U.; Maharani, R. Synthesis of cyclo-PLAI using a combination of solid- and solution-phase methods. Synth. Commun. 2019, 49, 308–315. [Google Scholar] [CrossRef]
- Chang, Q.; Li, Y.L.; Zhao, X. Total synthesis and cyclization strategy of samoamide A, a cytotoxic cyclic octapeptide rich in proline and phenylalanine isolated from marine cyanobacterium. J. Asian Nat. Prod. Res. 2019, 21, 171–177. [Google Scholar] [CrossRef]
- Williamson, M.P.; Waltho, J.P. Peptide structure from NMR. Chem. Soc. Rev. 1992, 21, 227–236. [Google Scholar] [CrossRef]
- Ye, Y.H.; Gao, X.M.; Liu, M.; Tang, Y.C.; Tian, G.L. Studies on the synthetic methodology of head to tail cyclization of linear peptides. Lett. Pept. Sci. 2003, 10, 571–579. [Google Scholar] [CrossRef]
- White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 2011, 3, 509–524. [Google Scholar] [CrossRef]
- Luo, H.; Yin, H.; Tang, C.; Wang, P.; Liang, F. Synthesis of cyclic peptide reniochalistatin E and conformational isomers. Chin. Chem. Lett. 2018, 29, 1143–1146. [Google Scholar] [CrossRef]
- Gut, V.; Čeřovský, V.; Žertová, M.; Körblová, E.; Maloň, P.; Stocker, H.; Wünsch, E. (The peptides of α-aminosuberic acid II. Synthesis of deamino-dicarba-eel-calcitonin sequence 1–9. Amino Acids 2001, 21, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; Jolliffe, K.A.; Perrier, S. Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polym. Chem. 2011, 2, 1956–1963. [Google Scholar] [CrossRef]
- Yang, Y. Side Reactions in Peptide Synthesis; Elservier: London, UK, 2015. [Google Scholar]
- Guo, J.X.; Wu, W.F.; Zhang, C.M.; Yang, G.J.; Xu, M.J.; Hu, H.G. First total synthesis of antifungal cyclopeptide tunicyclin d by a solid-phase method. Chem. Nat. Compd. 2012, 48, 447–450. [Google Scholar] [CrossRef]
- Li, R.W.; Li, W.J.; Wu, M.C.; Zhao, Q.J.; Zou, Y.; Hu, H.G. Total synthesis of the octacyclopeptide brachystemin F. Chem. Nat. Compd. 2014, 50, 897–899. [Google Scholar] [CrossRef]
- Li, Y.L.; Chang, Q.; Han, W.W.; Bai, M.Y.; Gao, Y.Y.; Zhao, X. Total Synthesis of Cyclic Octapeptide Reniochalistatin E. Chem. Nat. Compd. 2018, 54, 1131–1134. [Google Scholar] [CrossRef]
- Liu, M.; Tang, Y.C.; Fan, K.Q.; Jiang, X.; Lai, L.H.; Ye, Y.H. Cyclization of several linear penta- and heptapeptides with different metal ions studied by CD spectroscopy. J. Pept. Res. 2008, 65, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Ryoo, S.; Lee, Y. A new method for the preparation of 2-chlorotrityl resin and its application to solid-phase peptide synthesis. Tetrahedron Lett. 2007, 48, 389–391. [Google Scholar] [CrossRef]
- Chan, W.C.; White, P.D. Basic Principles in Fmoc Solid Phase Peptide Synthesis; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Huang, F.; Nau, W.M. A Conformational Flexibility Scale for Amino Acids in Peptides. Angew. Chem. Int. Ed. Engl. 2003, 42, 2269–2272. [Google Scholar] [CrossRef] [PubMed]
- Ikai, K.; Shiomi, K.; Takesako, K.; Kato, I.; Naganawa, H. NMR Studies of The Aureobasidins A and E. J. Antibiot. 1991, 44, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharani, R.; Brownlee, R.T.C.; Hughes, A.B.; Abbott, B.M. A total synthesis of a highly N-methylated cyclodepsipeptide [2S,3S-Hmp]-aureobasidin L using solid-phase methods. Tetrahedron 2014, 70, 2351–2358. [Google Scholar] [CrossRef]
- Strandberg, E.; Wadhwani, P.; Ulrich, A.S. Antibiotic Potential and Biophysical Characterization of Amphipathic β-Stranded [XZ]n Peptides with Alternating Cationic and Hydrophobic Residues. Front. Med. Technol. 2021, 3, 622096. [Google Scholar] [CrossRef]
- Morales, G.; Paredes, A.; Sierra, P.; Loyola, L.A. Antimicrobial activity of three baccharis species used in the traditional medicine of Northern Chile. Molecules 2008, 13, 790–794. [Google Scholar] [CrossRef] [Green Version]
- Gunasekera, S.; Muhammad, T.; Strömstedt, A.A.; Rosengren, K.J.; Göransson, U. Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Front. Microbiol. 2020, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Ambroggio, E.E.; Caruso, B.; Villarreal, M.A.; Raussens, V.; Fidelio, G.D. Reversing the peptide sequence impacts on molecular surface behaviour. Colloids Surf. B Biointerfaces 2016, 139, 25–32. [Google Scholar] [CrossRef] [PubMed]
Linear Octapeptides | AA1 | AA2 | AA3 | AA4 | AA5 | AA6 | AA7 | AA8 |
---|---|---|---|---|---|---|---|---|
Linear precursor A | Pro | Val | Pro | Ser | Gly | Ile | Phe | Gly |
Linear precursor B | Val | Pro | Ser | Gly | Ile | Phe | Gly | Pro |
Entry | Starting Material | Coupling Reagent | Solvent, Base | Time | Result |
---|---|---|---|---|---|
1 | Linear precursor A | HBTU | DCM 1.25 mM, DIPEA | 7 days | Trace |
2 | Linear precursor A | HATU | DCM 1.25 mM, DIPEA | 7 days | No reaction |
3 | Linear precursor A | PyBOP | DCM 1.25 mM, DIPEA | 7 days | No reaction |
4 | Linear precursor A | PyBOP (NaCl) | DMF 2.0 mM, DIPEA | 2 days | 20.8% yield |
5 | Linear precursor B | HBTU | DCM 1.25 mM, DIPEA | 7 days | No reaction |
6 | Linear precursor B | HATU | DCM 1.25 mM, DIPEA | 7 days | No reaction |
7 | Linear precursor B | PyBOP | DCM 1.25 mM, DIPEA | 7 days | No reaction |
8 | Linear precursor B | PyBOP (NaCl) | DMF 2.0 mM, DIPEA | 2 days | 18.1% yield |
Cyclopurpuracin from Precursor Linear A (Deuterated DMSO, 1H-NMR 500 MHz, 13C-NMR 125 MHz) | Cyclopurpuracin from Precursor Linear B (Deuterated DMSO, 1H-NMR 500 MHz, 13C-NMR 125 MHz) | Isolated Cyclopurpuracin [9] (Deuterated DMSO, 1H-NMR 700 MHz, 13C-NMR 176 MHz) | ||||
---|---|---|---|---|---|---|
Assignment | 1H δ in ppm (∑H, m) | 13C (ppm) | 1H δ in ppm (∑H, m) | 13C (ppm) | 1Hδ in ppm (∑H, m) | 13C (ppm) |
Pro1 | ||||||
CO | 172.2 | 172.6 | 172.2 | |||
α-CH | 4.10 (1H, d) | 61.0 | 4.37 (1H, d) | 60.9 | 4.15 (1H, d) | 61.6 |
β-CH2 | 1.79 (2H, m) | 29.7 | 1.79 (2H, m) | 29.7 | 1.79 (2H, m) | 29.5 |
γ-CH2 | 2.01 (2H, m) | 25.2 | 1.98 (2H, m) | 25.2 | 2.08 (2H, m) | 25.2 |
δ-CH2 | 4.06 (2H, m) | 48.2 | 4.16 (2H, m) | 48.1 | 4.10 (2H, m) | 48.1 |
Gly2 | ||||||
CO | 168.7 | 169.2 | 168.8 | |||
α-CH | 4.02; 3.10 (1H, dd) | 42.2 | 4.11;3.12 (1H, dd) | 42.1 | 3.97; 3.14 (1H, dd) | 42.9 |
NH | 8.77 (1H, dd) | 8.53 (1H, d) | 8.78 (1H, dd) | |||
Phe3 | ||||||
CO | 171.9 | 172.4 | 171.9 | |||
α-CH | 4.76 (1H, m) | 53.3 | 4.55 (1H, m) | 53.7 | 4.81 (1H, ddd) | 53.3 |
β-CH2 | 2.62; 3.03 (2H, dd) | 37.6 | 2.59; 3.00 (2H, m) | 37.8 | 2.68; 2.97 (2H, dd) | 37.7 |
C1 (ar.) | 138.6 | 137.2 | 138.6 | |||
C2.6 (ar.) | 7.11 (2H, m) | 130.2 | 7.20 (2H, m) | 128.8 | 7.15 (2H, m) | 130.1 |
C3.5 (ar.) | 7.13 (2H, m) | 128.1 | 7.20 (2H, m) | 129.3 | 7.16 (2H, m) | 128.0 |
C4 (ar.) | 7.09 (1H, m) | 126.5 | 7.24 (2H, m) | 127.0 | 7.13 (1H, d) | 126.4 |
NH | 7.61 (1H, d) | 7.75 (1H, dd) | 7.65 (1H, d) | |||
Ile4 | ||||||
CO | 172.6 | 173.0 | 172.4 | |||
α-CH | 3.92 (1H, m) | 59.4 | 3.93 (1H, m) | 59.5 | 3.71 (1H, m) | 59.4 |
β-CH2 CH3− β | 1.68 (1H, m) 0.82 (3H, d) | 35.4 15.5 | 1.50 (1H, m) 0.79 (3H, d) | 36.915.6 | 1.66 (1H, ddt) 0.84 (3H, d) | 35.515.5 |
γ-CH | 1.07; 1.61 (2H, m) | 26.4 | 1.11; 1.28 (2H, m) | 25.6 | 1.12; 1.56 (2H, m) | 25.9 |
δ-CH3 | 0.84 (3H, t) | 11.4 | 0.82 (3H, t) | 11.1 | 0.87 (3H, t) | 11.3 |
NH | 8.56 (1H, d) | 8.40 (1H, dd) | 8.58 (1H, d) | |||
Gly5 | ||||||
CO | 168.4 | 168.7 | 168.3 | |||
α-CH | 3.98; 3.42 (2H, d) | 43.3 | 4.00; 3.45 (2H, d) | 43.6 | 3.80; 3.45 (2H, d) | 43.3 |
NH | 8.80 (1H, t) | 8.63 (1H, t) | 8.83 (1H, t) | |||
Ser6 | ||||||
CO | 171.5 | 169.6 | 171.3 | |||
α-CH | 4.84 (1H, dt) | 51.9 | 4.62 (1H, d) | 53.7 | 4.89 (1H, dt) | 51.9 |
β-CH | 3.76; 3.60 (2H, m) | 64.7 | 3.79; 3.57 (2H, m) | 64.6 | 3.66; 3.57 (2H, m) | 64.5 |
OH | 5.70 (1H, t) | 5.16 (1H, t) | 5.71 (1H, t) | |||
NH | 7.26 (1H, dt) | 7.39(1H, d) | 7.31 (1H, dt) | |||
Pro7 | ||||||
CO | 171.5 | 170.7 | 171.3 | |||
α-CH | 4.40 (1H, dd) | 60.1 | 4.50 (1H, d) | 60.3 | 4.45 (1H, dd) | 60.1 |
β-CH2 | 1.91 (2H, m) | 29.7 | 1.93 (2H, m) | 29.5 | 1.94 (2H, m) | 29.1 |
γ-CH2 | 1.87; 1.70 (2H, m) | 24.8 | 1.82; 1.69 (2H, m) | 24.9 | 1.90; 1.74 (2H, m) | 24.8 |
δ-CH2 | 4.00; 3.65 (2H, m) | 47.3 | 3.96; 3.75 (2H, m) | 47.3 | 3.83; 3.60 (2H, m) | 47.3 |
Val8 | ||||||
CO | 170.4 | 169.7 | 170.4 | |||
α-CH | 4.08 (1H, m) | 56.9 | 4.30 (1H, m) | 59.2 | 4.12 (1H, m) | 56.9 |
β-CH | 1.96 (1H, m) | 30.2 | 1.96 (1H, m) | 30.5 | 1.97 (1H, m) | 29.1 |
γ-CH3 | 0.88 (3H, d) | 19.0 | 0.88 (3H, d) | 19.0 | 0.94 (3H, d) | 19.0 |
γ-CH3 | 0.71 (3H, d) | 19.8 | 0.76 (3H, d) | 20.2 | 0.76 (3H, d) | 19.8 |
NH | 8.06 (1H, d) | 8.07 (1H, dd) | 8.09 (1H, d) |
Peptides | MIC (μg/mL) | ||
---|---|---|---|
Staphylococcus aureus (Gram-Positive) | Escherichia coli (Gram-Negative) | Candida albicans (Fungi) | |
Reversed cyclopurpuracin | 500 | 500 | 500 |
Cyclopurpuracin A | 1000 | 1000 | 1000 |
Cyclopurpuracin B | 1000 | 1000 | 1000 |
Vancomycin | 1.5 | 50 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharani, R.; Yayat, H.N.A.; Hidayat, A.T.; Al Anshori, J.; Sumiarsa, D.; Farabi, K.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity. Molecules 2023, 28, 4779. https://doi.org/10.3390/molecules28124779
Maharani R, Yayat HNA, Hidayat AT, Al Anshori J, Sumiarsa D, Farabi K, Mayanti T, Nurlelasari, Harneti D, Supratman U. Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity. Molecules. 2023; 28(12):4779. https://doi.org/10.3390/molecules28124779
Chicago/Turabian StyleMaharani, Rani, Hasna Noer Agus Yayat, Ace Tatang Hidayat, Jamaludin Al Anshori, Dadan Sumiarsa, Kindi Farabi, Tri Mayanti, Nurlelasari, Desi Harneti, and Unang Supratman. 2023. "Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity" Molecules 28, no. 12: 4779. https://doi.org/10.3390/molecules28124779
APA StyleMaharani, R., Yayat, H. N. A., Hidayat, A. T., Al Anshori, J., Sumiarsa, D., Farabi, K., Mayanti, T., Nurlelasari, Harneti, D., & Supratman, U. (2023). Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity. Molecules, 28(12), 4779. https://doi.org/10.3390/molecules28124779