Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Material
3.2. General Methods
3.3. General Procedure for the Synthesis of Linear Octapeptides, a Precursor of Cyclopurpuracin (2)
3.4. Cyclisation of Linear Octapeptide
3.4.1. Using HATU/HBTU/PyBOP
3.4.2. Using PyBOP/NaCl
3.5. Microdilution Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Damjanovic, J.; Miao, J.; Huang, H.; Lin, Y.S. Elucidating solution structures of cyclic peptides using molecular dynamics simulations. Chem. Rev. 2021, 121, 2292–2324. [Google Scholar] [CrossRef] [PubMed]
- Jin, K. Developing cyclic peptide-based drug candidates: An overview. Future Med. Chem. 2020, 12, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.M. Peptide Chemistry and Drug Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Matsuzaki, K. Control of Cell Selectivity of Antimicrobial Peptides. Biochim. Biophys. Acta 2009, 1788, 1678–1692. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Maione, A.; Merlino, F.; Siciliano, A.; Dardano, P.; De Stefano, L.; Galdiero, S.; Galdiero, E.; Grieco, P.; Falanga, A. 2022. Antifungal and antibiofilm activity of cyclic Temporin L peptide analogues against albicans and non-albicans Candida species. Pharmaceutics 2022, 14, 454. [Google Scholar] [CrossRef]
- Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef]
- Choi, J.S.; Joo, S.H. Recent trends in cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2020, 28, 18–24. [Google Scholar] [CrossRef]
- González-Tepale, M.R.; Reyes, L.; Mayorga-Flores, M.; Reyes-Trejo, B.; Gómez-Zepeda, D.; Rio-Portilla, F.; Herbert-Pucheta, J.E. Cyclopurpuracin, a cyclopeptide from Annona purpurea seeds. Phytochem. Lett. 2018, 23, 164–167. [Google Scholar] [CrossRef]
- Dahiya, R.; Dahiya, S. Natural bioeffective cyclooligopeptides from plant seeds of Annona genus. Eur. J. Med. Chem. 2021, 214, 113221. [Google Scholar] [CrossRef]
- Yayat, H.N.A.; Maharani, R.; Hidayat, A.T.; Wiani, I.; Zainuddin, A.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total synthesis of a reversed cyclopurpuracin using a combination of solid and solution phase methods. J. Heterocycl. Chem. 2022, 59, 1963–1970. [Google Scholar] [CrossRef]
- Muhajir, M.; Hardianto, A.; Al-Anshori, J.; Sumiarsa, D.; Mayanti, T.; Nurlelasari.; Harneti, D.; Hidayat, A.T.; Supratman, U.; Maharani, R. Total Synthesis of Nocardiotide A by Using a Combination of Solid- and Solution-Phase Methods. ChemistrySelect 2021, 6, 12941–12946. [Google Scholar] [CrossRef]
- Kurnia, D.Y.; Maharani, R.; Hidayat, A.T.; Al-Anshori, J.; Wiani, I.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total synthesis of xylapeptide B [Cyclo-(L-Leu-L-Pro-N-Me-Phe-L-Val-D-Ala)]. J. Heterocycl. Chem. 2022, 59, 131–136. [Google Scholar] [CrossRef]
- Maharani, R.; Napitupulu, O.I.; Dirgantara, J.M.; Hidayat, A.T.; Sumiarsa, D.; Harneti, D.; Supratman, U.; Fukase, K. Synthesis of cyclotetrapeptide analogues of c-PLAI and evaluation of their antimicrobial properties. R. Soc. Open Sci. 2021, 8, 201822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Amso, Z.; De Leon Rodriguez, L.M.; Kaur, H.; Brimble, M.A. Synthesis of Natural Cyclopentapeptides Isolated from Dianthus chinensis. J. Nat. Prod. 2016, 79, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- Rahmadani, A.; Masruhim, M.A.; Rijai, L.; Hidayat, A.T.; Supratman, U.; Maharani, R. Total synthesis of cyclohexadepsipeptides exumolides A and B. Tetrahedron 2021, 83, 131987. [Google Scholar] [CrossRef]
- Amblard, M.; Fehrentz, J.A.; Martinez, J.; Subra, G. Methods and protocols of modern solid phase peptide synthesis. Mol. Biotechnol. 2006, 33, 239–254. [Google Scholar] [CrossRef]
- Slough, D.P.; McHugh, S.M.; Lin, Y.S. Understanding and designing head-to-tail cyclic peptides. Biopolymers 2018, 109, e23113. [Google Scholar] [CrossRef]
- Thakkar, A.; Trinh, T.B.; Pei, D. Global analysis of peptide cyclization efficiency. ACS Comb. Sci. 2013, 15, 120–129. [Google Scholar] [CrossRef]
- Davies, J.S. The cyclization of peptides and depsipeptides. J. Pept. Sci. 2003, 9, 471–501. [Google Scholar] [CrossRef]
- Tang, Y.C.; Xie, H.B.; Tian, G.L.; Ye, Y.H. Synthesis of cyclopentapeptides and cycloheptapeptides by DEPBT and the influence of some factors on cyclization. J. Pept. Res. 2002, 60, 95–103. [Google Scholar] [CrossRef]
- Li, P.; Roller, P. Cyclization Strategies in Peptide Derived Drug Design. Curr. Top. Med. Chem. 2005, 2, 325–341. [Google Scholar] [CrossRef]
- Napitupulu, O.I.; Sumiarsa, D.; Subroto, T.; Nurlelasari; Harneti, D.; Supratman, U.; Maharani, R. Synthesis of cyclo-PLAI using a combination of solid- and solution-phase methods. Synth. Commun. 2019, 49, 308–315. [Google Scholar] [CrossRef]
- Chang, Q.; Li, Y.L.; Zhao, X. Total synthesis and cyclization strategy of samoamide A, a cytotoxic cyclic octapeptide rich in proline and phenylalanine isolated from marine cyanobacterium. J. Asian Nat. Prod. Res. 2019, 21, 171–177. [Google Scholar] [CrossRef]
- Williamson, M.P.; Waltho, J.P. Peptide structure from NMR. Chem. Soc. Rev. 1992, 21, 227–236. [Google Scholar] [CrossRef]
- Ye, Y.H.; Gao, X.M.; Liu, M.; Tang, Y.C.; Tian, G.L. Studies on the synthetic methodology of head to tail cyclization of linear peptides. Lett. Pept. Sci. 2003, 10, 571–579. [Google Scholar] [CrossRef]
- White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 2011, 3, 509–524. [Google Scholar] [CrossRef]
- Luo, H.; Yin, H.; Tang, C.; Wang, P.; Liang, F. Synthesis of cyclic peptide reniochalistatin E and conformational isomers. Chin. Chem. Lett. 2018, 29, 1143–1146. [Google Scholar] [CrossRef]
- Gut, V.; Čeřovský, V.; Žertová, M.; Körblová, E.; Maloň, P.; Stocker, H.; Wünsch, E. (The peptides of α-aminosuberic acid II. Synthesis of deamino-dicarba-eel-calcitonin sequence 1–9. Amino Acids 2001, 21, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; Jolliffe, K.A.; Perrier, S. Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polym. Chem. 2011, 2, 1956–1963. [Google Scholar] [CrossRef]
- Yang, Y. Side Reactions in Peptide Synthesis; Elservier: London, UK, 2015. [Google Scholar]
- Guo, J.X.; Wu, W.F.; Zhang, C.M.; Yang, G.J.; Xu, M.J.; Hu, H.G. First total synthesis of antifungal cyclopeptide tunicyclin d by a solid-phase method. Chem. Nat. Compd. 2012, 48, 447–450. [Google Scholar] [CrossRef]
- Li, R.W.; Li, W.J.; Wu, M.C.; Zhao, Q.J.; Zou, Y.; Hu, H.G. Total synthesis of the octacyclopeptide brachystemin F. Chem. Nat. Compd. 2014, 50, 897–899. [Google Scholar] [CrossRef]
- Li, Y.L.; Chang, Q.; Han, W.W.; Bai, M.Y.; Gao, Y.Y.; Zhao, X. Total Synthesis of Cyclic Octapeptide Reniochalistatin E. Chem. Nat. Compd. 2018, 54, 1131–1134. [Google Scholar] [CrossRef]
- Liu, M.; Tang, Y.C.; Fan, K.Q.; Jiang, X.; Lai, L.H.; Ye, Y.H. Cyclization of several linear penta- and heptapeptides with different metal ions studied by CD spectroscopy. J. Pept. Res. 2008, 65, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Ryoo, S.; Lee, Y. A new method for the preparation of 2-chlorotrityl resin and its application to solid-phase peptide synthesis. Tetrahedron Lett. 2007, 48, 389–391. [Google Scholar] [CrossRef]
- Chan, W.C.; White, P.D. Basic Principles in Fmoc Solid Phase Peptide Synthesis; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Huang, F.; Nau, W.M. A Conformational Flexibility Scale for Amino Acids in Peptides. Angew. Chem. Int. Ed. Engl. 2003, 42, 2269–2272. [Google Scholar] [CrossRef] [PubMed]
- Ikai, K.; Shiomi, K.; Takesako, K.; Kato, I.; Naganawa, H. NMR Studies of The Aureobasidins A and E. J. Antibiot. 1991, 44, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Maharani, R.; Brownlee, R.T.C.; Hughes, A.B.; Abbott, B.M. A total synthesis of a highly N-methylated cyclodepsipeptide [2S,3S-Hmp]-aureobasidin L using solid-phase methods. Tetrahedron 2014, 70, 2351–2358. [Google Scholar] [CrossRef]
- Strandberg, E.; Wadhwani, P.; Ulrich, A.S. Antibiotic Potential and Biophysical Characterization of Amphipathic β-Stranded [XZ]n Peptides with Alternating Cationic and Hydrophobic Residues. Front. Med. Technol. 2021, 3, 622096. [Google Scholar] [CrossRef]
- Morales, G.; Paredes, A.; Sierra, P.; Loyola, L.A. Antimicrobial activity of three baccharis species used in the traditional medicine of Northern Chile. Molecules 2008, 13, 790–794. [Google Scholar] [CrossRef]
- Gunasekera, S.; Muhammad, T.; Strömstedt, A.A.; Rosengren, K.J.; Göransson, U. Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Front. Microbiol. 2020, 11, 168. [Google Scholar] [CrossRef]
- Ambroggio, E.E.; Caruso, B.; Villarreal, M.A.; Raussens, V.; Fidelio, G.D. Reversing the peptide sequence impacts on molecular surface behaviour. Colloids Surf. B Biointerfaces 2016, 139, 25–32. [Google Scholar] [CrossRef] [PubMed]
Linear Octapeptides | AA1 | AA2 | AA3 | AA4 | AA5 | AA6 | AA7 | AA8 |
---|---|---|---|---|---|---|---|---|
Linear precursor A | Pro | Val | Pro | Ser | Gly | Ile | Phe | Gly |
Linear precursor B | Val | Pro | Ser | Gly | Ile | Phe | Gly | Pro |
Entry | Starting Material | Coupling Reagent | Solvent, Base | Time | Result |
---|---|---|---|---|---|
1 | Linear precursor A | HBTU | DCM 1.25 mM, DIPEA | 7 days | Trace |
2 | Linear precursor A | HATU | DCM 1.25 mM, DIPEA | 7 days | No reaction |
3 | Linear precursor A | PyBOP | DCM 1.25 mM, DIPEA | 7 days | No reaction |
4 | Linear precursor A | PyBOP (NaCl) | DMF 2.0 mM, DIPEA | 2 days | 20.8% yield |
5 | Linear precursor B | HBTU | DCM 1.25 mM, DIPEA | 7 days | No reaction |
6 | Linear precursor B | HATU | DCM 1.25 mM, DIPEA | 7 days | No reaction |
7 | Linear precursor B | PyBOP | DCM 1.25 mM, DIPEA | 7 days | No reaction |
8 | Linear precursor B | PyBOP (NaCl) | DMF 2.0 mM, DIPEA | 2 days | 18.1% yield |
Cyclopurpuracin from Precursor Linear A (Deuterated DMSO, 1H-NMR 500 MHz, 13C-NMR 125 MHz) | Cyclopurpuracin from Precursor Linear B (Deuterated DMSO, 1H-NMR 500 MHz, 13C-NMR 125 MHz) | Isolated Cyclopurpuracin [9] (Deuterated DMSO, 1H-NMR 700 MHz, 13C-NMR 176 MHz) | ||||
---|---|---|---|---|---|---|
Assignment | 1H δ in ppm (∑H, m) | 13C (ppm) | 1H δ in ppm (∑H, m) | 13C (ppm) | 1Hδ in ppm (∑H, m) | 13C (ppm) |
Pro1 | ||||||
CO | 172.2 | 172.6 | 172.2 | |||
α-CH | 4.10 (1H, d) | 61.0 | 4.37 (1H, d) | 60.9 | 4.15 (1H, d) | 61.6 |
β-CH2 | 1.79 (2H, m) | 29.7 | 1.79 (2H, m) | 29.7 | 1.79 (2H, m) | 29.5 |
γ-CH2 | 2.01 (2H, m) | 25.2 | 1.98 (2H, m) | 25.2 | 2.08 (2H, m) | 25.2 |
δ-CH2 | 4.06 (2H, m) | 48.2 | 4.16 (2H, m) | 48.1 | 4.10 (2H, m) | 48.1 |
Gly2 | ||||||
CO | 168.7 | 169.2 | 168.8 | |||
α-CH | 4.02; 3.10 (1H, dd) | 42.2 | 4.11;3.12 (1H, dd) | 42.1 | 3.97; 3.14 (1H, dd) | 42.9 |
NH | 8.77 (1H, dd) | 8.53 (1H, d) | 8.78 (1H, dd) | |||
Phe3 | ||||||
CO | 171.9 | 172.4 | 171.9 | |||
α-CH | 4.76 (1H, m) | 53.3 | 4.55 (1H, m) | 53.7 | 4.81 (1H, ddd) | 53.3 |
β-CH2 | 2.62; 3.03 (2H, dd) | 37.6 | 2.59; 3.00 (2H, m) | 37.8 | 2.68; 2.97 (2H, dd) | 37.7 |
C1 (ar.) | 138.6 | 137.2 | 138.6 | |||
C2.6 (ar.) | 7.11 (2H, m) | 130.2 | 7.20 (2H, m) | 128.8 | 7.15 (2H, m) | 130.1 |
C3.5 (ar.) | 7.13 (2H, m) | 128.1 | 7.20 (2H, m) | 129.3 | 7.16 (2H, m) | 128.0 |
C4 (ar.) | 7.09 (1H, m) | 126.5 | 7.24 (2H, m) | 127.0 | 7.13 (1H, d) | 126.4 |
NH | 7.61 (1H, d) | 7.75 (1H, dd) | 7.65 (1H, d) | |||
Ile4 | ||||||
CO | 172.6 | 173.0 | 172.4 | |||
α-CH | 3.92 (1H, m) | 59.4 | 3.93 (1H, m) | 59.5 | 3.71 (1H, m) | 59.4 |
β-CH2 CH3− β | 1.68 (1H, m) 0.82 (3H, d) | 35.4 15.5 | 1.50 (1H, m) 0.79 (3H, d) | 36.915.6 | 1.66 (1H, ddt) 0.84 (3H, d) | 35.515.5 |
γ-CH | 1.07; 1.61 (2H, m) | 26.4 | 1.11; 1.28 (2H, m) | 25.6 | 1.12; 1.56 (2H, m) | 25.9 |
δ-CH3 | 0.84 (3H, t) | 11.4 | 0.82 (3H, t) | 11.1 | 0.87 (3H, t) | 11.3 |
NH | 8.56 (1H, d) | 8.40 (1H, dd) | 8.58 (1H, d) | |||
Gly5 | ||||||
CO | 168.4 | 168.7 | 168.3 | |||
α-CH | 3.98; 3.42 (2H, d) | 43.3 | 4.00; 3.45 (2H, d) | 43.6 | 3.80; 3.45 (2H, d) | 43.3 |
NH | 8.80 (1H, t) | 8.63 (1H, t) | 8.83 (1H, t) | |||
Ser6 | ||||||
CO | 171.5 | 169.6 | 171.3 | |||
α-CH | 4.84 (1H, dt) | 51.9 | 4.62 (1H, d) | 53.7 | 4.89 (1H, dt) | 51.9 |
β-CH | 3.76; 3.60 (2H, m) | 64.7 | 3.79; 3.57 (2H, m) | 64.6 | 3.66; 3.57 (2H, m) | 64.5 |
OH | 5.70 (1H, t) | 5.16 (1H, t) | 5.71 (1H, t) | |||
NH | 7.26 (1H, dt) | 7.39(1H, d) | 7.31 (1H, dt) | |||
Pro7 | ||||||
CO | 171.5 | 170.7 | 171.3 | |||
α-CH | 4.40 (1H, dd) | 60.1 | 4.50 (1H, d) | 60.3 | 4.45 (1H, dd) | 60.1 |
β-CH2 | 1.91 (2H, m) | 29.7 | 1.93 (2H, m) | 29.5 | 1.94 (2H, m) | 29.1 |
γ-CH2 | 1.87; 1.70 (2H, m) | 24.8 | 1.82; 1.69 (2H, m) | 24.9 | 1.90; 1.74 (2H, m) | 24.8 |
δ-CH2 | 4.00; 3.65 (2H, m) | 47.3 | 3.96; 3.75 (2H, m) | 47.3 | 3.83; 3.60 (2H, m) | 47.3 |
Val8 | ||||||
CO | 170.4 | 169.7 | 170.4 | |||
α-CH | 4.08 (1H, m) | 56.9 | 4.30 (1H, m) | 59.2 | 4.12 (1H, m) | 56.9 |
β-CH | 1.96 (1H, m) | 30.2 | 1.96 (1H, m) | 30.5 | 1.97 (1H, m) | 29.1 |
γ-CH3 | 0.88 (3H, d) | 19.0 | 0.88 (3H, d) | 19.0 | 0.94 (3H, d) | 19.0 |
γ-CH3 | 0.71 (3H, d) | 19.8 | 0.76 (3H, d) | 20.2 | 0.76 (3H, d) | 19.8 |
NH | 8.06 (1H, d) | 8.07 (1H, dd) | 8.09 (1H, d) |
Peptides | MIC (μg/mL) | ||
---|---|---|---|
Staphylococcus aureus (Gram-Positive) | Escherichia coli (Gram-Negative) | Candida albicans (Fungi) | |
Reversed cyclopurpuracin | 500 | 500 | 500 |
Cyclopurpuracin A | 1000 | 1000 | 1000 |
Cyclopurpuracin B | 1000 | 1000 | 1000 |
Vancomycin | 1.5 | 50 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharani, R.; Yayat, H.N.A.; Hidayat, A.T.; Al Anshori, J.; Sumiarsa, D.; Farabi, K.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity. Molecules 2023, 28, 4779. https://doi.org/10.3390/molecules28124779
Maharani R, Yayat HNA, Hidayat AT, Al Anshori J, Sumiarsa D, Farabi K, Mayanti T, Nurlelasari, Harneti D, Supratman U. Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity. Molecules. 2023; 28(12):4779. https://doi.org/10.3390/molecules28124779
Chicago/Turabian StyleMaharani, Rani, Hasna Noer Agus Yayat, Ace Tatang Hidayat, Jamaludin Al Anshori, Dadan Sumiarsa, Kindi Farabi, Tri Mayanti, Nurlelasari, Desi Harneti, and Unang Supratman. 2023. "Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity" Molecules 28, no. 12: 4779. https://doi.org/10.3390/molecules28124779
APA StyleMaharani, R., Yayat, H. N. A., Hidayat, A. T., Al Anshori, J., Sumiarsa, D., Farabi, K., Mayanti, T., Nurlelasari, Harneti, D., & Supratman, U. (2023). Synthesis of a Cyclooctapeptide, Cyclopurpuracin, and Evaluation of Its Antimicrobial Activity. Molecules, 28(12), 4779. https://doi.org/10.3390/molecules28124779