Omics-Based Investigations of Breast Cancer
Abstract
:1. Introduction
2. Breast Cancer Investigation in the Multi-Omics Era
Central dogma of cancer biology | nDNA, cfDNA/ctDNA, mtDNA | aberrant DNA methylation, HMs [98] | mRNA, ncRNAs [99]: circRNAs [100,101], miRNA, snRNA, snoRNA, piRNA, and lncRNA [102] | translating mRNAs, rRNAs [103], tRNAs [104,105], regulatory ncRNAs, nascent polypeptide chains [106] | peptides, proteins, isoforms, proteoforms, protein–protein interaction networks | metabolites lipids |
Omes | genome | methylome | transcriptome | translatome | proteome phosphoproteome acethylproteome glycoproteome interactome | metabolome lipidome |
Omics | Genomics | Epigenomics | Transcriptomics miRomics | Translatomics | Proteomics Phosphoproteomics Glycoproteomics Interactomics [107] | Metabolomics [30] Lipidomics |
Technologies | DNA microarray [108,109]; sc-genomics/scDNA-seq [110]; RT-qPCR in tissue [111] and plasma [112]; DNA-seq: first generation seq, NGS (WGS [113]; WES [114,115], targeted gene sequencing); GWAS [52,116]; mtDNA-seq (tissue and NAF [117,118]) | sc-epigenomics; microfluidics assays; NGS (single-gene NGS, genome-wide DNA methylation analysis seq, ChIP-seq); MS for HMs; RNA-seq for miRNAs [98] | sc-transcriptomics/scRNA-seq (CITE-seq [119,120]), RNA microarray [121]; microarray-based ST RNA qRT-PCR; NGS: RNA transcription group seq (whole transcriptome analysis, snRNA-seq, ncRNAs analysis) | translating RNA (polysome profiling, ribo-seq, RNC-seq, TRAP-seq); tRNAome: (2-DE, MS, HPLC, NGS, Ribo-tRNA-seq); folding state of nascent polypeptides (X-ray diffraction, cryo-EM, NMR); identification and quantification of nascent peptides (pSILAC, BONCAT/QuaNCAT, PUNCH-P); in vivo visualization of translation (FRET) | LC-MS LC-MS/MS [122]; LC-ESI-MS/MS [70]; MALDI-ToF MS [123]; MALDI-ToF-MSI, multiplex MALDI-IHC and LC-MS/MS [124]; SELDI-ToF-MS for NAF [125,126]; DESI-FAIMS-MSI [127]; SP3-CTP multiplex MS proteomics [128] | NMR (LC-NMR and GC-NMR) and MS (LC-MS and GC-MS) [129]; GC-ToF MS CE-ToF-MS LC-ESI-MS LC-MS/MS LC-QToF-MS and LC-QQQ-MS [73]; RRLC-ESI-MS/MS HR-MAS MRS [121]; lipid tissue signatures by DESI-MSI [76]; MasSpec Pen [130] |
- BigOmics Analytics (https://www.bigomics.ch, accessed on 7 June 2023), in which the company has an easy to use set of tools called “Omics Analysis for Everyone—Easy-to-use omics tool”;
- BioCyc (https://biocyc.org/omics.shtml, accessed on 7 June 2023) offers omics data analyses. The website offers multiple tools for the analysis of gene expression, metabolomics, and other large-scale datasets. Options for gene expression and metabolomics data are detailed here, but many of the options that involve pathways or the metabolic map can also be used for proteomics, multi-omics, or other kinds of high-throughput data;
- NetGestalt (https://www.altexsoft.com/blog/omics-data-analysis/, accessed on 7 June 2023) is a web app for multi-omics data visualization and integration;
- MiBiOmics (https://shiny-bird.univ-nantes.fr/app/Mibiomics, on 7 June 2023) is an interactive web-based (and standalone) application for easily and dynamically exploring associations across omics datasets;
- Subio Platform (https://www.subioplatform.com/, accessed on 7 June 2023) is professional software for analyzing quantitative omics data such as transcriptomics, epigenetics, or proteomics.
2.1. Genomics- and Epigenomics-Based Investigation of Breast Cancer
2.2. Transcriptomics- and Translatomics-Based Investigation of Breast Cancer
2.3. Proteomics-Based Investigation of Breast Cancer
2.4. Metabolomics-Based Investigation of Breast Cancer
2.5. Other Omics-Based Investigation of Breast Cancer
3. Omics-Based Classification and Characterization of Breast Cancer Subtypes
4. Omics-Based Applications in Breast Cancer Modeling
5. Omics-Based Investigations of the Tumoral Suppressor TP53
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, W. Next Generation Breast Cancer Omics. Am. J. Pathol. 2017, 187, 2130–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.S.; Rahaman, M.M.; Sultana, A.; Wang, G.; Mollah, M.N.H. Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer. Comput. Biol. Med. 2022, 145, 105508. [Google Scholar] [CrossRef]
- Athanasopoulou, K.; Daneva, G.N.; Boti, M.A.; Dimitroulis, G.; Adamopoulos, P.G.; Scorilas, A. The Transition from Cancer “omics” to “epi-omics” through Next-and Third-Generation Sequencing. Life 2022, 12, 2010. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, S.D.; Neubert, T.A.; Sharma, S.; Digwal, C.S.; Yan, P.; Timbus, C.; Wang, T.; Chiosis, G. Disease-specific interactome alterations via epichaperomics: The case for Alzheimer’s disease. FEBS J. 2022, 289, 2047–2066. [Google Scholar] [CrossRef] [PubMed]
- Showalter, M.R.; Cajka, T.; Fiehn, O. Epimetabolites: Discovering metabolism beyond building and burning. Curr. Opin. Chem. Biol. 2017, 36, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, M.; Hernández-Lemus, E. Data Integration Challenges for Machine Learning in Precision Medicine. Front. Med. 2022, 8, 3082. [Google Scholar] [CrossRef]
- Manem, V.S.K.; Salgado, R.; Aftimos, P.; Sotiriou, C.; Haibe-Kains, B. Network science in clinical trials: A patient-centered approach. Semin Cancer Biol 2018, 52, 135–150. [Google Scholar] [CrossRef] [Green Version]
- De Anda-Jáuregui, G.; Hernández-Lemus, E. Computational Oncology in the Multi-Omics Era: State of the Art. Front. Oncol. 2020, 10, 423. [Google Scholar] [CrossRef]
- Alam, M.; Sultana, A.; Reza, M.S.; Amanullah, M.; Kabir, S.R.; Haque, M. Integrated bioinformatics and statistical approaches to explore molecular biomarkers for breast cancer diagnosis, prognosis and therapies. PloS ONE 2022, 17, e0268967. [Google Scholar] [CrossRef]
- Jiang, P.; Sinha, S.; Aldape, K.; Hannenhalli, S.; Sahinalp, C.; Ruppin, E. Big data in basic and translational cancer research. Nat. Rev. Cancer 2022, 22, 625–639. [Google Scholar] [CrossRef]
- Amjad, E.; Asnaashari, S.; Sokouti, B.; Dastmalchi, S. Systems biology comprehensive analysis on breast cancer for identification of key gene modules and genes associated with TNM-based clinical stages. Sci. Rep. 2020, 10, 10816. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y. Cancer Target Gene Screening: A web application for breast cancer target gene screening using multi-omics data analysis. Brief. Bioinform. 2019, 21, 663–675. [Google Scholar] [CrossRef]
- Hwang, K.-T. Clinical Databases for Breast Cancer Research. Transl. Res. Breast Cancer 2021, 1187, 493–509. [Google Scholar]
- Kaddoura, R.; Alqutami, F.; Asbaita, M.; Hachim, M. In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers. Life 2023, 13, 422. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Børresen-Dale, A.-L. Systems Biology and Genomics of Breast Cancer. Cold Spring Harb. Perspect. Biol. 2011, 3, a003293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, H.; Breitling, R.; Francavilla, C.; Schwartz, J.-M. Data integration and mechanistic modelling for breast cancer biology: Current state and future directions. Curr. Opin. Endocr. Metab. Res. 2022, 24, 100350. [Google Scholar] [CrossRef]
- Dhillon, B.K.; Smith, M.; Baghela, A.; Lee, A.H.Y.; Hancock, R.E.W. Systems Biology Approaches to Understanding the Human Immune System. Front. Immunol. 2020, 11, 1683. [Google Scholar] [CrossRef]
- Merrick, A.; London, R.; Bushel, P.; Grissom, S.; Paules, R. Platforms for Biomarker Analysis Using High-Throughput Approaches in Genomics, Transcriptomics, Proteomics, Metabolomics, and Bioinformatics; IARC Scientific Publications: Lyon, France, 2011; pp. 121–142. [Google Scholar]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 2018, 19, 286–302. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.; Francavilla, C. ‘Omics Approaches to Explore the Breast Cancer Landscape. Front. Cell Dev. Biol. 2020, 7, 395. [Google Scholar] [CrossRef]
- Akcakanat, A.; Zheng, X.; Cruz Pico, C.; Kim, T.; Chen, K.; Korkut, A.; Sahin, A.; Holla, V.; Tarco, E.; Singh, G.; et al. Genomic, Transcriptomic and Proteomic Profiling of Metastatic Breast Cancer. Clin. Cancer Res. 2021, 27, 3243–3252. [Google Scholar] [CrossRef]
- Chatterji, S.; Krzoska, E.; Thoroughgood, C.; Saganty, J.; Liu, P.; Elsberger, B.; Abu Eid, R.; Speirs, V. Defining genomic, transcriptomic, proteomic, epigenetic, and phenotypic biomarkers with prognostic capability in male breast cancer: A systematic review. Lancet Oncol. 2023, 24, e74–e85. [Google Scholar] [CrossRef] [PubMed]
- Hari, P.S.; Balakrishnan, L.; Kotyada, C.; Everad John, A.; Tiwary, S.; Shah, N.; Sirdeshmukh, R. Proteogenomic Analysis of Breast Cancer Transcriptomic and Proteomic Data, Using De Novo Transcript Assembly: Genome-Wide Identification of Novel Peptides and Clinical Implications. Mol. Cell. Proteom. 2022, 21, 100220. [Google Scholar] [CrossRef] [PubMed]
- Michaut, M.; Chin, S.-F.; Majewski, I.; Severson, T.M.; Bismeijer, T.; de Koning, L.; Peeters, J.K.; Schouten, P.C.; Rueda, O.M.; Bosma, A.J.; et al. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer. Sci. Rep. 2016, 6, 18517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, K.; Jaehnig, E.J.; Satpathy, S.; Blumenberg, L.; Karpova, A.; Anurag, M.; Miles, G.; Mertins, P.; Geffen, Y.; Tang, L.C.; et al. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020, 183, 1436–1456.e1431. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, M.; Dorsey, T.H.; Prieto, D.A.; Wang, X.W.; Ruppin, E.; Veenstra, T.D.; Ambs, S. Integrated proteotranscriptomics of breast cancer reveals globally increased protein-mRNA concordance associated with subtypes and survival. Genome Med. 2018, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.H.; Xue, L.; Hsu, C.-C.; Paez, J.S.P.; Pan, L.; Andaluz, H.; Wendt, M.K.; Iliuk, A.B.; Zhu, J.-K.; Tao, W.A. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl. Acad. Sci. USA 2017, 114, 3175–3180. [Google Scholar] [CrossRef] [Green Version]
- Bel’skaya, L.V.; Sarf, E.A. «Salivaomics» of Different Molecular Biological Subtypes of Breast Cancer. Curr. Issues Mol. Biol. 2022, 44, 3053–3074. [Google Scholar] [CrossRef]
- Tan, Z.; Kan, C.; Sun, M.; Yang, F.; Wong, M.; Wang, S.; Zheng, H. Mapping Breast Cancer Microenvironment Through Single-Cell Omics. Front. Immunol. 2022, 13, 1439. [Google Scholar] [CrossRef]
- Subramani, R.; Poudel, S.; Smith, K.D.; Estrada, A.; Lakshmanaswamy, R. Metabolomics of Breast Cancer: A Review. Metabolites 2022, 12, 643. [Google Scholar] [CrossRef]
- Kumar, S.; Mohapatra, T. Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Front. Cell Dev. Biol. 2021, 9, 628415. [Google Scholar] [CrossRef]
- Mantini, G.; Pham, T.V.; Piersma, S.R.; Jimenez, C.R. Computational Analysis of Phosphoproteomics Data in Multi-Omics Cancer Studies. Proteomics 2021, 21, 1900312. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Paul, S. The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front. Biosci. 2014, 19, 605–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrgou, A.; Akouchekian, M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med. J. Islam. Repub. Iran 2016, 30, 369. [Google Scholar] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Bludau, I.; Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. 2020, 21, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.F.; Nathanson, K.L.; Couch, F.J.; Offit, K. Genomic Biomarkers for Breast Cancer Risk. Adv. Exp. Med. Biol. 2016, 882, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Dawson, S.-J.; Rueda, O.M.; Aparicio, S.; Caldas, C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 2013, 32, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Rueda, O.; Chin, S.-F.; Curtis, C.; Dunning, M.; Aparicio, S.; Caldas, C. Genome-driven integrated classification of breast cancer validated in over 7500 samples. Genome Biol. 2014, 15, 431. [Google Scholar] [CrossRef]
- Rohani, N.; Eslahchi, C. Classifying Breast Cancer Molecular Subtypes by Using Deep Clustering Approach. Front. Genet. 2020, 11, 1108. [Google Scholar] [CrossRef]
- Taherian-Fard, A.; Srihari, S.; Ragan, M.A. Breast cancer classification: Linking molecular mechanisms to disease prognosis. Brief. Bioinform. 2014, 16, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Hamdan, D.; Nguyen, T.T.; Leboeuf, C.; Meles, S.; Janin, A.; Bousquet, G. Genomics applied to the treatment of breast cancer. Oncotarget 2019, 10, 4786–4801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taron, C.; Rudd, P. Glycomics: A Rapidly Evolving Field with a Sweet Future; NEB Expressions: Boston, MA, USA, 2016; pp. 1–4. [Google Scholar]
- Goncalves, R.; Warner, W.A.; Luo, J.; Ellis, M.J. New concepts in breast cancer genomics and genetics. Breast Cancer Res. 2014, 16, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopajtich, R.; Smirnov, D.; Stenton, S.L.; Loipfinger, S.; Meng, C.; Scheller, I.F.; Freisinger, P.; Baski, R.; Berutti, R.; Behr, J.; et al. Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders. medRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Climente-González, H.; Lonjou, C.; Lesueur, F.; GENESIS study group; Stoppa-Lyonnet, D.; Andrieu, N.; Azencott, C.-A. Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer. PLoS Comput. Biol. 2021, 17, e1008819. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Prim. 2021, 1, 59. [Google Scholar] [CrossRef]
- Jurj, M.-A.; Buse, M.; Zimta, A.-A.; Paradiso, A.; Korban, S.S.; Pop, L.-A.; Berindan-Neagoe, I. Critical Analysis of Genome-Wide Association Studies: Triple Negative Breast Cancer Quae Exempli Causa. Int. J. Mol. Sci. 2020, 21, 5835. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Kapoor, P.; Su, Y.-R.; Bolla, M.; Dennis, J.; Dunning, A.; Lush, M.; Wang, Q.s.; Michailidou, K.; et al. A Genome-Wide Gene-Based Gene–Environment Interaction Study of Breast Cancer in More than 90,000 Women. Cancer Res. Commun. 2022, 2, 211–219. [Google Scholar] [CrossRef]
- Gold, B.; Kirchhoff, T.; Stefanov, S.; Lautenberger, J.; Viale, A.; Garber, J.; Friedman, E.; Narod, S.; Olshen, A.B.; Gregersen, P.; et al. Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc. Natl. Acad. Sci. USA 2008, 105, 4340–4345. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Mahfoudh, W.; Dsouza, S.P.; Hassen, E.; Bouaouina, N.; Abdelhak, S.; Benhadjayed, A.; Memmi, H.; Mathew, R.; Aigha, I.I.; et al. Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: Susceptibility and prognostic implications in Tunisians. Breast Cancer Res. Treat. 2012, 135, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ahearn, T.U.; Lecarpentier, J.; Barnes, D.; Beesley, J.; Qi, G.; Jiang, X.; O’Mara, T.A.; Zhao, N.; Bolla, M.K.; et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat. Genet. 2020, 52, 572–581. [Google Scholar] [CrossRef]
- Jung, S.Y.; Scott, P.A.; Papp, J.C.; Sobel, E.M.; Pellegrini, M.; Yu, H.; Han, S.; Zhang, Z.-F. Genome-wide Association Analysis of Proinflammatory Cytokines and Gene–lifestyle Interaction for Invasive Breast Cancer Risk: The WHI dbGaP Study. Cancer Prev. Res. 2021, 14, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Fan, S.; Stone, J.; Thompson, D.J.; Douglas, J.; Li, S.; Scott, C.; Bolla, M.K.; Wang, Q.; Dennis, J.; et al. Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci. Breast Cancer Res. 2022, 24, 27. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Ping, J.; Shu, X.; Yang, Y.; Cai, Q.; Kweon, S.-S.; Choi, J.-Y.; Kubo, M.; Park, S.K.; Bolla, M.K.; et al. Genome- and transcriptome-wide association studies of 386,000 Asian and European-ancestry women provide new insights into breast cancer genetics. Am. J. Hum. Genet. 2022, 109, 2185–2195. [Google Scholar] [CrossRef]
- Allahyari, E.; Velaei, K.; Sanaat, Z.; Jalilzadeh, N.; Mehdizadeh, A.; Rahmati, M. RNA interference: Promising approach for breast cancer diagnosis and treatment. Cell Biol. Int. 2022, 47, 833–847. [Google Scholar] [CrossRef]
- Tian, Z.; Liang, G.; Cui, K.; Liang, Y.; Wang, Q.; Lv, S.; Cheng, X.; Zhang, L. Insight Into the Prospects for RNAi Therapy of Cancer. Front. Pharm. 2021, 12, 644718. [Google Scholar] [CrossRef] [PubMed]
- Mohr, S.E.; Perrimon, N. RNAi screening: New approaches, understandings, and organisms. Wiley Interdiscip. Rev. RNA 2012, 3, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macklin, A.; Khan, S.; Kislinger, T. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin. Proteom. 2020, 17, 17. [Google Scholar] [CrossRef]
- Silva, J.M.; Silva, J.; Sanchez, A.; Garcia, J.M.; Dominguez, G.; Provencio, M.; Sanfrutos, L.; Jareño, E.; Colas, A.; España, P.; et al. Tumor DNA in Plasma at Diagnosis of Breast Cancer Patients Is a Valuable Predictor of Disease-free Survival1. Clin. Cancer Res. 2002, 8, 3761–3766. [Google Scholar]
- Ortolan, E.; Appierto, V.; Silvestri, M.; Miceli, R.; Veneroni, S.; Folli, S.; Pruneri, G.; Vingiani, A.; Belfiore, A.; Cappelletti, V.; et al. Blood-based genomics of triple-negative breast cancer progression in patients treated with neoadjuvant chemotherapy. ESMO Open 2021, 6, 100086. [Google Scholar] [CrossRef]
- Kingston, B.; Cutts, R.J.; Bye, H.; Beaney, M.; Walsh-Crestani, G.; Hrebien, S.; Swift, C.; Kilburn, L.S.; Kernaghan, S.; Moretti, L.; et al. Genomic profile of advanced breast cancer in circulating tumour DNA. Nat. Commun. 2021, 12, 2423. [Google Scholar] [CrossRef]
- Holsbø, E.; Olsen, K.S. Metastatic Breast Cancer and Pre-Diagnostic Blood Gene Expression Profiles—The Norwegian Women and Cancer (NOWAC) Post-Genome Cohort. Front. Oncol. 2020, 10, 575461. [Google Scholar] [CrossRef]
- Shaw, J.A.; Page, K.; Blighe, K.; Hava, N.; Guttery, D.; Ward, B.; Brown, J.; Ruangpratheep, C.; Stebbing, J.; Payne, R.; et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res. 2012, 22, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, T.; Amritha, S.; Sridevi, V.; Gopal, G.; Sabitha, K.; Shirley, S.; Swaminathan, R. Identification and validation of plasma biomarkers for diagnosis of breast cancer in South Asian women. Sci. Rep. 2022, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, Y.; Guo, R.; Zhao, J.; Chi, W.; Lai, H.; Wang, J.; Wang, Z.; Li, L.; Sang, Y.; et al. Plasma extracellular vesicle long RNA profiles in the diagnosis and prediction of treatment response for breast cancer. NPJ Breast Cancer 2021, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Cai, G.-X.; Zhai, X.-M.; Yang, X.-X.; Li, M.; Li, K.; Zhou, C.-L.; Liu, T.-C.; Han, B.-W.; Liu, Z.-J.; et al. Plasma-Derived Extracellular Vesicles Circular RNAs Serve as Biomarkers for Breast Cancer Diagnosis. Front. Oncol. 2021, 11, 752651. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Song, Q.; Zhao, J.; Ruan, J.; He, F.; Yang, X.; Yu, X. Identification of plasma hsa_circ_0008673 expression as a potential biomarker and tumor regulator of breast cancer. J. Clin. Lab. Anal. 2020, 34, e23393. [Google Scholar] [CrossRef]
- Li, X.; Zou, W.; Wang, Y.; Liao, Z.; Li, L.; Zhai, Y.; Zhang, L.; Gu, S.; Zhao, X. Plasma-based microRNA signatures in early diagnosis of breast cancer. Mol. Genet. Genom. Med. 2020, 8, e1092. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, J.; Bowden, P.; Thavarajah, T.; Florentinus-Mefailoski, A.; Chen, Z.Z.; Tucholska, M.; Norzin, T.; Ho, M.T.; Phan, M.; Mohamed, N.; et al. The plasma peptides of breast versus ovarian cancer. Clin. Proteom. 2019, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Shin, Y.; Kim, T.; Kim, D.-H.; Lee, A. Plasma metabolites as possible biomarkers for diagnosis of breast cancer. PLoS ONE 2019, 14, e0225129. [Google Scholar] [CrossRef]
- Jasbi, P.; Wang, D.; Cheng, S.L.; Fei, Q.; Cui, J.Y.; Liu, L.; Wei, Y.; Raftery, D.; Gu, H. Breast cancer detection using targeted plasma metabolomics. J. Chromatogr. B 2019, 1105, 26–37. [Google Scholar] [CrossRef]
- Wei, Y.; Jasbi, P.; Shi, X.; Turner, C.; Hrovat, J.; Liu, L.; Rabena, Y.; Porter, P.; Gu, H. Early Breast Cancer Detection Using Untargeted and Targeted Metabolomics. J. Proteome Res. 2021, 20, 3124–3133. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Yu, H.; Wang, Y.; Lu, J.; Gao, Y.; Xie, X.; Zhang, J. Integrative analysis of plasma metabolomics and proteomics reveals the metabolic landscape of breast cancer. Cancer Metab. 2022, 10, 13. [Google Scholar] [CrossRef]
- Terkelsen, T.; Pernemalm, M.; Gromov, P.; Børresen-Dale, A.-L.; Krogh, A.; Haakensen, V.D.; Lethiö, J.; Papaleo, E.; Gromova, I. High-throughput proteomics of breast cancer interstitial fluid: Identification of tumor subtype-specific serologically relevant biomarkers. Mol. Oncol. 2021, 15, 429–461. [Google Scholar] [CrossRef]
- Silva, A.A.R.; Cardoso, M.R.; Rezende, L.M.; Lin, J.Q.; Guimaraes, F.; Silva, G.R.P.; Murgu, M.; Priolli, D.G.; Eberlin, M.N.; Tata, A.; et al. Multiplatform Investigation of Plasma and Tissue Lipid Signatures of Breast Cancer Using Mass Spectrometry Tools. Int. J. Mol. Sci. 2020, 21, 3611. [Google Scholar] [CrossRef]
- Gilson Sena, I.F.; Fernandes, L.L.; Lorandi, L.L.; Santana, T.V.; Cintra, L.; Lima, I.F.; Iwai, L.K.; Kramer, J.M.; Birbrair, A.; Heller, D. Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci. Rep. 2022, 12, 11544. [Google Scholar] [CrossRef] [PubMed]
- Krassenstein, R.; Sauter, E.; Dulaimi, E.; Battagli, C.; Ehya, H.; Klein-Szanto, A.; Cairns, P. Detection of Breast Cancer in Nipple Aspirate Fluid by CpG Island Hypermethylation. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 28–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.; Patel, S.; Patel, P.; Tanavde, V. Saliva Based Liquid Biopsies in Head and Neck Cancer: How Far Are We From the Clinic? Front. Oncol. 2022, 12, 828434. [Google Scholar] [CrossRef]
- Koopaie, M.; Kolahdooz, S.; Fatahzadeh, M.; Manifar, S. Salivary biomarkers in breast cancer diagnosis: A systematic review and diagnostic meta-analysis. Cancer Med. 2022, 11, 2644–2661. [Google Scholar] [CrossRef]
- Peng, M.; Chen, C.; Hulbert, A.; Brock, M.V.; Yu, F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017, 8, 69162–69173. [Google Scholar] [CrossRef] [Green Version]
- Meghnani, V.; Mohammed, N.; Giauque, C.; Nahire, R.; David, T. Performance Characterization and Validation of Saliva as an Alternative Specimen Source for Detecting Hereditary Breast Cancer Mutations by Next Generation Sequencing. Int. J. Genom. 2016, 2016, 2059041. [Google Scholar] [CrossRef] [Green Version]
- Giri, K.; Maity, S.; Ambatipudi, K. Targeted proteomics using parallel reaction monitoring confirms salivary proteins indicative of metastatic triple-negative breast cancer. J. Proteom. 2022, 267, 104701. [Google Scholar] [CrossRef] [PubMed]
- Xavier Assad, D.; Acevedo, A.C.; Cançado Porto Mascarenhas, E.; Costa Normando, A.G.; Pichon, V.; Chardin, H.; Neves Silva Guerra, E.; Combes, A. Using an Untargeted Metabolomics Approach to Identify Salivary Metabolites in Women with Breast Cancer. Metabolites 2020, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Bentata, M.; Morgenstern, G.; Nevo, Y.; Kay, G.; Granit Mizrahi, A.; Temper, M.; Maimon, O.; Monas, L.; Basheer, R.; Ben-Hur, A.; et al. Splicing Factor Transcript Abundance in Saliva as a Diagnostic Tool for Breast Cancer. Genes 2020, 11, 880. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Sarf, E.A.; Kosenok, V.K. Analysis of Saliva Lipids in Breast and Prostate Cancer by IR Spectroscopy. Diagnostics 2021, 11, 1325. [Google Scholar] [CrossRef]
- Shah, S. Salivaomics: The current scenario. J. Oral Maxillofac. Pathol. 2018, 22, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Koo, I.; Jung, B.H.; Chung, B.C.; Lee, D. Multivariate classification of urine metabolome profiles for breast cancer diagnosis. BMC Bioinform. 2010, 11, S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Guo, Z.; Gao, Y. Early biomarker discovery in urine of Walker 256 subcutaneous rat model. bioRxiv 2017. preprint. [Google Scholar] [CrossRef] [Green Version]
- Beretov, J.; Wasinger, V.C.; Millar, E.K.A.; Schwartz, P.; Graham, P.H.; Li, Y. Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach. PLoS ONE 2015, 10, e0141876. [Google Scholar] [CrossRef]
- Park, J.; Shin, Y.; Kim, T.H.; Kim, D.-H.; Lee, A. Urinary Metabolites as Biomarkers for Diagnosis of Breast Cancer: A Preliminary Study. J. Breast Dis. 2019, 7, 44–51. [Google Scholar] [CrossRef]
- Hirschfeld, M.; Rücker, G.; Weiß, D.; Berner, K.; Ritter, A.; Jäger, M.; Erbes, T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol. Diagn. Ther. 2020, 24, 215–232. [Google Scholar] [CrossRef]
- Murphy, J.; Sherman, M.E.; Browne, E.P.; Caballero, A.I.; Punska, E.C.; Pfeiffer, R.M.; Yang, H.P.; Lee, M.; Yang, H.; Gierach, G.L.; et al. Potential of breastmilk analysis to inform early events in breast carcinogenesis: Rationale and considerations. Breast Cancer Res. Treat. 2016, 157, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.; Aslebagh, R.; Wetie, A.; Sturgeon, S.; Darie, C.; Arcaro, K. Using Breast Milk to Assess Breast Cancer Risk: The Role of Mass Spectrometry-Based Proteomics. Adv. Exp. Med. Biol. 2014, 806, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Aslebagh, R.; Whitham, D.; Channaveerappa, D.; Mutsengi, P.; Pentecost, B.T.; Arcaro, K.F.; Darie, C.C. Mass Spectrometry-Based Proteomics of Human Milk to Identify Differentially Expressed Proteins in Women with Breast Cancer versus Controls. Proteomes 2022, 10, 36. [Google Scholar] [CrossRef]
- Aslebagh, R.; Channaveerappa, D.; Arcaro, K.F.; Darie, C.C. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018, 39, 653–665. [Google Scholar] [CrossRef]
- De Palma, F.D.E.; Salvatore, F.; Pol, J.G.; Kroemer, G.; Maiuri, M.C. Circular RNAs as Potential Biomarkers in Breast Cancer. Biomedicines 2022, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Huo, Q.; Yang, F.; Xie, N. Perspectives on the Role of Histone Modification in Breast Cancer Progression and the Advanced Technological Tools to Study Epigenetic Determinants of Metastasis. Front. Genet. 2020, 11, 603552. [Google Scholar] [CrossRef] [PubMed]
- Klinge, C.M. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018, 4, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Lyu, M.; Yang, S.; Zhang, J.; Yu, D. CircRNA expression profiles of breast cancer and construction of a circRNA-miRNA-mRNA network. Sci. Rep. 2022, 12, 17765. [Google Scholar] [CrossRef]
- Zhang, F.; Li, L.; Fan, Z. circRNAs and their relationship with breast cancer: A review. World J. Surg. Oncol. 2022, 20, 373. [Google Scholar] [CrossRef]
- Dvorská, D.; Braný, D.; Ňachajová, M.; Halašová, E.; Danková, Z. Breast Cancer and the Other Non-Coding RNAs. Int. J. Mol. Sci. 2021, 22, 3280. [Google Scholar] [CrossRef]
- Harold, C.M.; Buhagiar, A.F.; Cheng, Y.; Baserga, S.J. Ribosomal RNA Transcription Regulation in Breast Cancer. Genes 2021, 12, 502. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Q.; Sun, B.; Xiong, Z.-P.; Shu, Y.; Zhou, H.-H.; Zhang, W.; Xiong, J.; Li, Q. The dysregulation of tRNAs and tRNA derivatives in cancer. J. Exp. Clin. Cancer Res. 2018, 37, 101. [Google Scholar] [CrossRef]
- Gupta, T.; Malkin, M.G.; Huang, S. tRNA Function and Dysregulation in Cancer. Front. Cell Dev. Biol. 2022, 10, 1128. [Google Scholar] [CrossRef]
- Zhao, J.; Qin, B.; Nikolay, R.; Spahn, C.M.T.; Zhang, G. Translatomics: The Global View of Translation. Int. J. Mol. Sci. 2019, 20, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Zhou, L.; Huang, C.; Xie, K.; Nice, E.C. Interactomics: Toward protein function and regulation. Expert Rev. Proteom. 2015, 12, 37–60. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, A.; Tiwari, R.K. Application of microarray in breast cancer: An overview. J. Pharm. Bioallied Sci. 2012, 4, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Morais-Rodrigues, F.; Silv́erio-Machado, R.; Kato, R.B.; Rodrigues, D.L.N.; Valdez-Baez, J.; Fonseca, V.; San, E.J.; Gomes, L.G.R.; dos Santos, R.G.; Vinicius Canário Viana, M.; et al. Analysis of the microarray gene expression for breast cancer progression after the application modified logistic regression. Gene 2020, 726, 144168. [Google Scholar] [CrossRef]
- Leighton, J.; Hu, M.; Sei, E.; Meric-Bernstam, F.; Navin, N.E. Reconstructing mutational lineages in breast cancer by multi-patient-targeted single cell DNA sequencing. bioRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Mitas, M.; Mikhitarian, K.; Walters, C.; Baron, P.L.; Elliott, B.M.; Brothers, T.E.; Robison, J.G.; Metcalf, J.S.; Palesch, Y.Y.; Zhang, Z.; et al. Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel. Int. J. Cancer 2001, 93, 162–171. [Google Scholar] [CrossRef]
- Gal, S.; Fidler, C.; Lo, Y.M.D.; Taylor, M.; Han, C.; Moore, J.; Harris, A.L.; Wainscoat, J.S. Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR. Br. J. Cancer 2004, 90, 1211–1215. [Google Scholar] [CrossRef] [Green Version]
- Rossing, M.; Sørensen, C.S.; Ejlertsen, B.; Nielsen, F.C. Whole genome sequencing of breast cancer. APMIS 2019, 127, 303–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, R.; Chong, W.; Wei, Q.; Zhang, Z.; Wang, C.; Ye, Z.; Abu-Khalaf, M.M.; Silver, D.P.; Stapp, R.T.; Jiang, W.; et al. Whole-exome sequencing identifies somatic mutations and intratumor heterogeneity in inflammatory breast cancer. NPJ Breast Cancer 2021, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Hum, M.; Amali, A.A.; Lim, W.K.; Wong, M.; Myint, M.K.; Tay, R.J.; Ong, P.-Y.; Samol, J.; Lim, C.W.; et al. Whole-exome sequencing of BRCA-negative breast cancer patients and case–control analyses identify variants associated with breast cancer susceptibility. Hum. Genom. 2022, 16, 61. [Google Scholar] [CrossRef]
- Ahearn, T.U.; Zhang, H.; Michailidou, K.; Milne, R.L.; Bolla, M.K.; Dennis, J.; Dunning, A.M.; Lush, M.; Wang, Q.; Andrulis, I.L.; et al. Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Res. 2022, 24, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Qin, W.; Bradley, P.; Wessel, A.; Sauter, E. Mitochondrial DNA mutation in breast cancer and nipple aspirate fluid. Cancer Res. 2004, 64, 302. [Google Scholar]
- Pérez-Amado, C.J.; Tovar, H.; Gómez-Romero, L.; Beltrán-Anaya, F.O.; Bautista-Piña, V.; Dominguez-Reyes, C.; Villegas-Carlos, F.; Tenorio-Torres, A.; Alfaro-Ruíz, L.A.; Hidalgo-Miranda, A.; et al. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front. Oncol. 2020, 10, 572954. [Google Scholar] [CrossRef]
- Wu, S.Z.; Al-Eryani, G.; Roden, D.L.; Junankar, S.; Harvey, K.; Andersson, A.; Thennavan, A.; Wang, C.; Torpy, J.R.; Bartonicek, N.; et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 2021, 53, 1334–1347. [Google Scholar] [CrossRef]
- Ren, L.; Li, J.; Wang, C.; Lou, Z.; Gao, S.; Zhao, L.; Wang, S.; Chaulagain, A.; Zhang, M.; Li, X.; et al. Single cell RNA sequencing for breast cancer: Present and future. Cell Death Discov. 2021, 7, 104. [Google Scholar] [CrossRef]
- Borgan, E.; Sitter, B.; Lingjærde, O.; Johnsen, H.; Lundgren, S.; Bathen, T.; Sørlie, T.; Børresen-Dale, A.-L.; Gribbestad, I. Merging transcriptomics and metabolomics—advances in breast cancer profiling. BMC Cancer 2010, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Al-Wajeeh, A.S.; Salhimi, S.M.; Al-Mansoub, M.A.; Khalid, I.A.; Harvey, T.M.; Latiff, A.A.; Ismail, M.N. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PLoS ONE 2020, 15, e0227404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xiao, H.; Karlan, S.; Zhou, H.; Gross, J.; Elashoff, D.; Akin, D.; Yan, X.; Chia, D.; Karlan, B.; et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS ONE 2010, 5, e15573. [Google Scholar] [CrossRef]
- Claes, B.S.R.; Krestensen, K.K.; Yagnik, G.; Grgic, A.; Kuik, C.; Lim, M.J.; Rothschild, K.J.; Vandenbosch, M.; Heeren, R.M.A. MALDI-IHC-Guided In-Depth Spatial Proteomics: Targeted and Untargeted MSI Combined. Anal. Chem. 2023, 95, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Sauter, E.; Shan, S.; Hewett, J.; Speckman, P.; Bois, G. Proteomic analysis of nipple aspirate fluid using SELDl-TOF-MS. Int. J. Cancer. J. Int. Du Cancer 2005, 114, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Sauter, E.R.; Zhu, W.; Fan, X.J.; Wassell, R.P.; Chervoneva, I.; Du Bois, G.C. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br. J. Cancer 2002, 86, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Garza, K.Y.; Feider, C.L.; Klein, D.R.; Rosenberg, J.A.; Brodbelt, J.S.; Eberlin, L.S. Desorption Electrospray Ionization Mass Spectrometry Imaging of Proteins Directly from Biological Tissue Sections. Anal. Chem. 2018, 90, 7785–7789. [Google Scholar] [CrossRef]
- Asleh, K.; Negri, G.L.; Spencer Miko, S.E.; Colborne, S.; Hughes, C.S.; Wang, X.Q.; Gao, D.; Gilks, C.B.; Chia, S.K.L.; Nielsen, T.O.; et al. Proteomic analysis of archival breast cancer clinical specimens identifies biological subtypes with distinct survival outcomes. Nat. Commun. 2022, 13, 896. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.K.; Sharma, P.; Zia, A.; Siwan, D.; Nandave, D.; Nandave, M.; Gautam, R.K. Metabolomics and EMT Markers of Breast Cancer: A Crosstalk and Future Perspective. Pathophysiology 2022, 29, 200–222. [Google Scholar] [CrossRef] [PubMed]
- Garza, K.Y.; Zhang, J.; Lin, J.Q.; Carter, S.; Suliburk, J.; Nagi, C.; Eberlin, L.S. Abstract P1-20-04: Advanced development of the MasSpec Pen technology to aid in breast cancer surgical margin evaluation and diagnosis during surgery. Cancer Res. 2020, 80, P1-20-04. [Google Scholar] [CrossRef]
- Sonnenschein, C.; Soto, A.M. Somatic mutation theory of carcinogenesis: Why it should be dropped and replaced. Mol. Carcinog. 2000, 29, 205–211. [Google Scholar] [CrossRef]
- Hanselmann, R.G.; Welter, C. Origin of Cancer: Cell work is the Key to Understanding Cancer Initiation and Progression. Front. Cell Dev. Biol. 2022, 10, 313. [Google Scholar] [CrossRef]
- Berger, M.F.; Mardis, E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Gong, J.; Jiang, X. Novel applications of next-generation sequencing in breast cancer research. Genes Dis. 2017, 4, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-S.; Chang, C.-M.; Lin, C.-Y.; Chao, D.-S.; Huang, H.-Y.; Chang, J.-G. Pathway Mutations in Breast Cancer Using Whole-Exome Sequencing. Oncol. Res. 2020, 28, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Mathioudaki, A.; Ljungström, V.; Melin, M.; Arendt, M.L.; Nordin, J.; Karlsson, Å.; Murén, E.; Saksena, P.; Meadows, J.R.S.; Marinescu, V.D.; et al. Targeted sequencing reveals the somatic mutation landscape in a Swedish breast cancer cohort. Sci. Rep. 2020, 10, 19304. [Google Scholar] [CrossRef]
- Ibragimova, M.K.; Tsyganov, M.M.; Litviakov, N.V. Whole Transcriptome Analysis of Breast Cancer Tumors during Neoadjuvant Chemotherapy: Association with Hematogenous Metastasis. Int. J. Mol. Sci. 2022, 23, 13906. [Google Scholar] [CrossRef]
- Koi, Y.; Tsutani, Y.; Nishiyama, Y.; Ueda, D.; Ibuki, Y.; Sasada, S.; Akita, T.; Masumoto, N.; Kadoya, T.; Yamamoto, Y.; et al. Predicting the presence of breast cancer using circulating small RNAs, including those in the extracellular vesicles. Cancer Sci. 2020, 111, 2104–2115. [Google Scholar] [CrossRef]
- Kashyap, D.; Sharma, R.; Goel, N.; Buttar, H.S.; Garg, V.K.; Pal, D.; Rajab, K.; Shaikh, A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front. Genet. 2023, 13, 2104–2115. [Google Scholar] [CrossRef]
- Grosselin, K.; Durand, A.; Marsolier, J.; Poitou, A.; Marangoni, E.; Nemati, F.; Dahmani, A.; Lameiras, S.; Reyal, F.; Frenoy, O.; et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 2019, 51, 1060–1066. [Google Scholar] [CrossRef]
- Sigin, V.O.; Kalinkin, A.I.; Nikolaeva, A.F.; Ignatova, E.O.; Kuznetsova, E.B.; Chesnokova, G.G.; Litviakov, N.V.; Tsyganov, M.M.; Ibragimova, M.K.; Vinogradov, I.I.; et al. DNA Methylation and Prospects for Predicting the Therapeutic Effect of Neoadjuvant Chemotherapy for Triple-Negative and Luminal B Breast Cancer. Cancers 2023, 15, 1630. [Google Scholar] [CrossRef]
- Khakpour, G.; Noruzinia, M.; Izadi, P.; Karami, F.; Ahmadvand, M.; Heshmat, R.; Amoli, M.; Tavakkoly Bazzaz, J. Methylomics of breast cancer: Seeking epimarkers in peripheral blood of young subjects. Tumor Biol. 2017, 39, 101042831769504. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Liu, D.; Dong, S.; Zeng, L.; Wu, Z.; Zhao, P.; Zhang, L.; Chen, Z.-S.; Zou, C. Epitranscriptomics and epiproteomics in cancer drug resistance: Therapeutic implications. Signal Transduct. Target. Ther. 2020, 5, 193. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, H.; Sui, S.; Wang, Q.; Xu, S.; Pang, D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front. Cell Dev. Biol. 2021, 9, 736935. [Google Scholar] [CrossRef] [PubMed]
- Kartti, S.; Bendani, H.; Boumajdi, N.; Bouricha, E.M.; Zarrik, O.; EL Agouri, H.; Fokar, M.; Aghlallou, Y.; EL Jaoudi, R.; Belyamani, L.; et al. Metagenomics Analysis of Breast Microbiome Highlights the Abundance of Rothia Genus in Tumor Tissues. J. Pers. Med. 2023, 13, 450. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Chandra, D. Mitochondrial DNA mutations and breast tumorigenesis. Biochim. Biophys. Acta 2013, 1836, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Shiovitz, S.; Korde, L.A. Genetics of breast cancer: A topic in evolution. Ann. Oncol. 2015, 26, 1291–1299. [Google Scholar] [CrossRef]
- Buono, G.; Gerratana, L.; Bulfoni, M.; Provinciali, N.; Basile, D.; Giuliano, M.; Corvaja, C.; Arpino, G.; Del Mastro, L.; De Placido, S.; et al. Circulating tumor DNA analysis in breast cancer: Is it ready for prime-time? Cancer Treat. Rev. 2019, 73, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Hu, S.; Zhang, L.; Xin, J.; Sun, C.; Wang, L.; Ding, K.; Wang, B. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020, 10, 4544–4556. [Google Scholar] [CrossRef]
- Cardinali, B.; De Luca, G.; Tasso, R.; Coco, S.; Garuti, A.; Buzzatti, G.; Sciutto, A.; Arecco, L.; Villa, F.; Carli, F.; et al. Targeting PIK3CA Actionable Mutations in the Circulome: A Proof of Concept in Metastatic Breast Cancer. Int. J. Mol. Sci. 2022, 23, 6320. [Google Scholar] [CrossRef]
- Veyssière, H.; Bidet, Y.; Penault-Llorca, F.; Radosevic-Robin, N.; Durando, X. Circulating proteins as predictive and prognostic biomarkers in breast cancer. Clin. Proteom. 2022, 19, 25. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, H.; Wang, K.; He, J. Cell-free circulating tumor DNA analysis for breast cancer and its clinical utilization as a biomarker. Oncotarget 2017, 8, 75742–75755. [Google Scholar] [CrossRef] [Green Version]
- Arisi, M.F.; Dotan, E.; Fernandez, S.V. Circulating Tumor DNA in Precision Oncology and Its Applications in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 4441. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Li, H. Advances in the Detection Technologies and Clinical Applications of Circulating Tumor DNA in Metastatic Breast Cancer. Cancer Manag. Res. 2020, 12, 3547–3560. [Google Scholar] [CrossRef] [PubMed]
- Brincas, H.M.; Augusto, D.G.; Mathias, C.; Cavalli, I.J.; Lima, R.S.d.; Kuroda, F.; Urban, C.d.A.; Gradia, D.F.; de Oliveira, J.; de Almeida, R.C.; et al. A genetic variant in microRNA-146a is associated with sporadic breast cancer in a Southern Brazilian Population. Genet. Mol. Biol. 2020, 42, e20190278. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Rahim, A.; Naveed, A.K.; Ahmed, S.; Kiyani, M.M. Development of Cost-effective Tetra-primer Amplification Refractory Mutation System (T-ARMS) PCR for the Detection of miR-146a gene rs2910164 C/G Polymorphism in Breast Cancer. Biochem. Mol. Biol. J. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.; Fazaeli, A.; Ghavami, S.; Eskandari-Nasab, E.; Arbabi, F.; Mashhadi, M.A.; Taheri, M.; Chaabane, W.; Jain, M.V.; Łos, M.J. Functional polymorphisms of FAS and FASL gene and risk of breast cancer—pilot study of 134 cases. PLoS ONE 2013, 8, e53075. [Google Scholar] [CrossRef]
- Tantiwetrueangdet, A.; Panvichian, R.; Wongwaisayawan, S.; Sueangoen, N.; Lertsithichai, P. Droplet digital PCR using HER2/EIF2C1 ratio for detection of HER2 amplification in breast cancer tissues. Med. Oncol. 2018, 35, 149. [Google Scholar] [CrossRef] [Green Version]
- Gezer, U.; Bronkhorst, A.; Holdenrieder, S. The Clinical Utility of Droplet Digital PCR for Profiling Circulating Tumor DNA in Breast Cancer Patients. Diagnostics 2022, 12, 3042. [Google Scholar] [CrossRef]
- Klouch, K.Z.; Stern, M.-H.; Trabelsi-Grati, O.; Kiavue, N.; Cabel, L.; Silveira, A.B.; Hego, C.; Rampanou, A.; Popova, T.; Bataillon, G.; et al. Microsatellite instability detection in breast cancer using drop-off droplet digital PCR. Oncogene 2022, 41, 5289–5297. [Google Scholar] [CrossRef]
- Vidula, N.; Ellisen, L.W.; Bardia, A. Clinical application of liquid biopsies to detect somatic BRCA1/2 mutations and guide potential therapeutic intervention for patients with metastatic breast cancer. Oncotarget 2021, 12, 63–65. [Google Scholar] [CrossRef]
- Rylander-Rudqvist, T.; Haåkansson, N.; Tybring, G.; Wolk, A. Quality and Quantity of Saliva DNA Obtained from the Self-administrated Oragene Method—A Pilot Study on the Cohort of Swedish Men. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1742–1745. [Google Scholar] [CrossRef] [Green Version]
- Nonaka, T.; Wong, D.T.W. Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva. Enzymes 2017, 42, 125–151. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Wang, Y.; Sun, Q.; Wang, L.; Xie, F.; Yan, J.; Huang, H.; Liu, H. Utility of urinary ctDNA to monitoring minimal residual disease in early breast cancer patients. Cancer Biomark. 2020, 28, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Herzog, H.; Dogan, S.; Aktas, B.; Nel, I. Targeted Sequencing of Plasma-Derived vs. Urinary cfDNA from Patients with Triple-Negative Breast Cancer. Cancers 2022, 14, 4101. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, U.D. Chapter 20—Next generation sequencing and its applications. In Animal Biotechnology, 2nd ed.; Verma, A.S., Singh, A., Eds.; Academic Press: Boston, MA, USA, 2020; pp. 395–421. [Google Scholar] [CrossRef]
- Yoosuf, N.; Navarro, J.F.; Salmén, F.; Ståhl, P.L.; Daub, C.O. Identification and transfer of spatial transcriptomics signatures for cancer diagnosis. Breast Cancer Res. 2020, 22, 6. [Google Scholar] [CrossRef] [Green Version]
- Szabó, P.M.; Butz, H.; Igaz, P.; Rácz, K.; Hunyady, L.; Patócs, A. Minireview: MIRomics in Endocrinology: A Novel Approach for Modeling Endocrine Diseases. Mol. Endocrinol. 2013, 27, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, C.; Du, Y.; Li, Z.; Li, M.; Hou, P.; Shen, Z.; Chu, S.; Zheng, J.; Bai, J. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas. Mol. Cancer 2022, 21, 13. [Google Scholar] [CrossRef]
- Cook, D.J.; Kallus, J.; Jörnsten, R.; Nielsen, J. Molecular natural history of breast cancer: Leveraging transcriptomics to predict breast cancer progression and aggressiveness. Cancer Med. 2020, 9, 3551–3562. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Supplitt, S.; Karpinski, P.; Sasiadek, M.; Laczmanska, I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int. J. Mol. Sci. 2021, 22, 1422. [Google Scholar] [CrossRef]
- MotieGhader, H.; Masoudi-Sobhanzadeh, Y.; Ashtiani, S.H.; Masoudi-Nejad, A. mRNA and microRNA selection for breast cancer molecular subtype stratification using meta-heuristic based algorithms. Genomics 2020, 112, 3207–3217. [Google Scholar] [CrossRef]
- Lord, S.R.; Collins, J.M.; Cheng, W.-C.; Haider, S.; Wigfield, S.; Gaude, E.; Fielding, B.A.; Pinnick, K.E.; Harjes, U.; Segaran, A.; et al. Transcriptomic analysis of human primary breast cancer identifies fatty acid oxidation as a target for metformin. Br. J. Cancer 2020, 122, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöström, M.; Chang, S.L.; Fishbane, N.; Davicioni, E.; Hartman, L.; Holmberg, E.; Feng, F.Y.; Speers, C.W.; Pierce, L.J.; Malmström, P.; et al. Comprehensive Transcriptomic Profiling Identifies Breast Cancer Patients Who May Be Spared Adjuvant Systemic Therapy. Clin. Cancer Res. 2020, 26, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Kadash-Edmondson, K.; Wang, R.; Phillips, J.; Liu, S.; Ribas, A.; Aplenc, R.; Witte, O.; Xing, Y. RNA Dysregulation: An Expanding Source of Cancer Immunotherapy Targets. Trends Pharmacol. Sci. 2021, 42, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Wang, J.; Yang, M. Transcriptomic Profiling of Breast Cancer Cells Induced by Tumor-Associated Macrophages Generates a Robust Prognostic Gene Signature. Cancers 2022, 14, 5364. [Google Scholar] [CrossRef]
- Gasparri, M.L.; Casorelli, A.; Bardhi, E.; Besharat, A.; Savone, D.; Ruscito, I.; Farooqi, A.; Papadia, A.; Mueller, M.; Ferretti, E.; et al. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumor Biol. 2017, 39, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keklikoglou, I.; Koerner, C.; Schmidt, C.; Zhang, J.D.; Heckmann, D.; Shavinskaya, A.; Allgayer, H.; Gückel, B.; Fehm, T.; Schneeweiss, A.; et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 2012, 31, 4150–4163. [Google Scholar] [CrossRef] [PubMed]
- Shahi, A.; Bahrami, N.; Tabatabaei, R.; Kazempour- Dizaji, M.; Jamaati, H.; Mohamadnia, A. Analysis of Blood and Tissue miR-191, miR-22, and EGFR mRNA as Novel Biomarkers for Breast Cancer Diagnosis. Int. J. Cancer Manag. 2022, 15, e117612. [Google Scholar] [CrossRef]
- Singh, R.; Mo, Y.-Y. Role of microRNAs in breast cancer. Cancer Biol. Ther. 2013, 14, 201–212. [Google Scholar] [CrossRef]
- Van Schooneveld, E.; Wildiers, H.; Vergote, I.; Vermeulen, P.B.; Dirix, L.Y.; Van Laere, S.J. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015, 17, 21. [Google Scholar] [CrossRef] [Green Version]
- Loh, H.-Y.; Norman, B.P.; Lai, K.-S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The Regulatory Role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef] [Green Version]
- Hannafon, B.N.; Trigoso, Y.D.; Calloway, C.L.; Zhao, Y.D.; Lum, D.H.; Welm, A.L.; Zhao, Z.J.; Blick, K.E.; Dooley, W.C.; Ding, W.Q. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016, 18, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čelešnik, H.; Potočnik, U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers 2023, 15, 1087. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, E.N.; Sanidas, E.; Kafousi, M.; Mavroudis, D.; Askoxylakis, J.; Bozionelou, V.; Perraki, M.; Tsiftsis, D.; Georgoulias, V. Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann. Oncol. 2005, 16, 240–246. [Google Scholar] [CrossRef]
- Aristizábal-Pachón, A.F.; de Carvalho, T.I.; Carrara, H.H.A.; de Andrade, J.M.; Takahashi, C.S. Detection of human mammaglobin A mRNA in peripheral blood of breast cancer patients before treatment and association with metastasis. J. Egypt. Natl. Cancer Inst. 2015, 27, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Moazzezy, N.; Ebrahimi, F.; Mollapour Sisakht, M.; Yahyazadeh, H.; Bouzari, S.; Oloomi, M. Relationship between erb-B2 mRNA Expression in Blood and Tissue of Invasive Ductal Carcinoma Breast Cancer Patients and Clinicopathological Characteristics of the Tumors. Asian Pac. J. Cancer Prev. 2016, 17, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zhang, J.; Huang, L.; Chen, L.; Zhou, Y.; Tang, D.; Xie, Y.; Wang, H.; Huang, C. Detection of HER2-positive Circulating Tumor Cells Using the LiquidBiopsy System in Breast Cancer. Clin. Breast Cancer 2018, 19, e239–e246. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Ahn, S.; Kim, J.Y.; Kim, J.; Han, H.J.; Hwang, D.; Park, J.; Park, H.S.; Park, S.; Kim, G.M.; et al. Blood Test for Breast Cancer Screening through the Detection of Tumor-Associated Circulating Transcripts. Int. J. Mol. Sci. 2022, 23, 9140. [Google Scholar] [CrossRef]
- Lim, J.; Kang, B.; Son, H.Y.; Mun, B.; Huh, Y.-M.; Rho, H.W.; Kang, T.; Moon, J.; Lee, J.-J.; Seo, S.B.; et al. Microfluidic device for one-step detection of breast cancer-derived exosomal mRNA in blood using signal-amplifiable 3D nanostructure. Biosens. Bioelectron. 2022, 197, 113753. [Google Scholar] [CrossRef]
- Erbes, T.; Hirschfeld, M.; Rücker, G.; Jaeger, M.; Boas, J.; Iborra, S.; Mayer, S.; Gitsch, G.; Stickeler, E. Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer 2015, 15, 193. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.W.; Jimenez, C.R.; Boven, E. Breast cancer classification by proteomic technologies: Current state of knowledge. Cancer Treat. Rev. 2014, 40, 129–138. [Google Scholar] [CrossRef]
- Hynes, R.O.; Naba, A. Overview of the matrisome--an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 2012, 4, a004903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naba, A.; Clauser, K.R.; Ding, H.; Whittaker, C.A.; Carr, S.A.; Hynes, R.O. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol. 2016, 49, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Neagu, A.-N.; Whitham, D.; Seymour, L.; Haaker, N.; Pelkey, I.; Darie, C.C. Proteomics-Based Identification of Dysregulated Proteins and Biomarker Discovery in Invasive Ductal Carcinoma, the Most Common Breast Cancer Subtype. Proteomes 2023, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Tomko, L.A.; Hill, R.C.; Barrett, A.; Szulczewski, J.M.; Conklin, M.W.; Eliceiri, K.W.; Keely, P.J.; Hansen, K.C.; Ponik, S.M. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci. Rep. 2018, 8, 12941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, L.A.; Mikesh, L.; Moskulak, C.; Harvey, J.; Sherman, N.; Zigrino, P.; Mauch, C.; Fox, J.W. Host Response to Human Breast Invasive Ductal Carcinoma (IDC) as Observed by Changes in the Stromal Proteome. J. Proteome Res. 2014, 13, 4739–4751. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, M.; Parker, A.L.; Yam, M.; Filipe, E.C.; Wu, S.Z.; Chitty, J.L.; Wyllie, K.; Tran, E.; Mok, E.; Nadalini, A.; et al. Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nat. Commun. 2022, 13, 4587. [Google Scholar] [CrossRef]
- De la Torre Gomez, C.; Goreham, R.V.; Bech Serra, J.J.; Nann, T.; Kussmann, M. “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Front. Genet. 2018, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Risha, Y.; Minic, Z.; Ghobadloo, S.M.; Berezovski, M.V. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci. Rep. 2020, 10, 13572. [Google Scholar] [CrossRef]
- Lee, Y.; Ni, J.; Beretov, J.; Wasinger, V.C.; Graham, P.; Li, Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol. Cancer 2023, 22, 33. [Google Scholar] [CrossRef]
- Tutanov, O.; Proskura, K.; Kamyshinsky, R.; Shtam, T.; Tsentalovich, Y.; Tamkovich, S. Proteomic Profiling of Plasma and Total Blood Exosomes in Breast Cancer: A Potential Role in Tumor Progression, Diagnosis, and Prognosis. Front. Oncol. 2020, 10, 580891. [Google Scholar] [CrossRef]
- Tjalsma, H.; Bolhuis, A.; Jongbloed, J.D.; Bron, S.; van Dijl, J.M. Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 2000, 64, 515–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, A.G.; Cibrão, J.R.; Silva, N.A.; Monteiro, S.; Salgado, A.J. Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals 2020, 13, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poschmann, G.; Bahr, J.; Schrader, J.; Stejerean-Todoran, I.; Bogeski, I.; Stühler, K. Secretomics—A Key to a Comprehensive Picture of Unconventional Protein Secretion. Front. Cell Dev. Biol. 2022, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- McHenry, P.R.; Prosperi, J.R. Proteins Found in the Triple-Negative Breast Cancer Secretome and Their Therapeutic Potential. Int. J. Mol. Sci. 2023, 24, 2100. [Google Scholar] [CrossRef]
- Vyse, S.; Desmond, H.; Huang, P.H. Advances in mass spectrometry based strategies to study receptor tyrosine kinases. IUCrJ 2017, 4, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Dussaq, A.; Kennell, T.; Eustace, N.; Anderson, J.; Almeida, J.; Willey, C. Kinomics toolbox—A web platform for analysis and viewing of kinomic peptide array data. PLoS ONE 2018, 13, e0202139. [Google Scholar] [CrossRef] [Green Version]
- Midland, A.A.; Whittle, M.C.; Duncan, J.S.; Abell, A.N.; Nakamura, K.; Zawistowski, J.S.; Carey, L.A.; Earp, H.S., 3rd; Graves, L.M.; Gomez, S.M.; et al. Defining the expressed breast cancer kinome. Cell Res. 2012, 22, 620–623. [Google Scholar] [CrossRef]
- Miller, S.; Goulet, D.; Johnson, G. Targeting the breast cancer kinome: Targeting the Breast Cancer Kinome. J. Cell. Physiol. 2016, 232, 53–60. [Google Scholar] [CrossRef]
- García-Aranda, M.; Redondo, M. Protein Kinase Targets in Breast Cancer. Int. J. Mol. Sci. 2017, 18, 2543. [Google Scholar] [CrossRef] [Green Version]
- Zagorac, I.; Fernandez-Gaitero, S.; Penning, R.; Post, H.; Bueno, M.J.; Mouron, S.; Manso, L.; Morente, M.M.; Alonso, S.; Serra, V.; et al. In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer. Nat. Commun. 2018, 9, 3501. [Google Scholar] [CrossRef]
- Miricescu, D.; Diaconu, C.; Stefani, C.; Stănescu, A.; Totan, A.; Rusu, I.; Bratu, O.; Spinu, D.; Greabu, M. The Serine/Threonine Protein Kinase (Akt)/Protein Kinase B (PkB) Signaling Pathway in Breast Cancer. J. Mind Med. Sci. 2020, 7, 34–39. [Google Scholar] [CrossRef]
- Narumi, R.; Murakami, T.; Kuga, T.; Adachi, J.; Shiromizu, T.; Muraoka, S.; Kume, H.; Kodera, Y.; Matsumoto, M.; Nakayama, K.; et al. A Strategy for Large-Scale Phosphoproteomics and SRM-Based Validation of Human Breast Cancer Tissue Samples. J. Proteome Res. 2012, 11, 5311–5322. [Google Scholar] [CrossRef] [PubMed]
- Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges. Mol. Cancer 2018, 17, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundt, F.; Rajput, S.; Li, S.; Ruggles, K.V.; Mooradian, A.D.; Mertins, P.; Gillette, M.A.; Krug, K.; Guo, Z.; Hoog, J.; et al. Mass Spectrometry–Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res. 2018, 78, 2732–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, H.-Y.; Lee, E.; Liu, Y.-T.; Lee, D.; Ideker, T. Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 2007, 3, 140. [Google Scholar] [CrossRef] [PubMed]
- Buhagiar-Labarchède, G.; Onclercq-Delic, R.; Vacher, S.; Berger, F.; Bièche, I.; Stoppa-Lyonnet, D.; Amor-Guéret, M. Cytidine deaminase activity increases in the blood of breast cancer patients. Sci. Rep. 2022, 12, 14062. [Google Scholar] [CrossRef]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef]
- Neagu, A.-N.; Jayathirtha, M.; Whitham, D.; Mutsengi, P.; Sullivan, I.; Petre, B.A.; Darie, C.C. Proteomics-Based Identification of Dysregulated Proteins in Breast Cancer. Proteomes 2022, 10, 35. [Google Scholar] [CrossRef]
- Streckfus, C.; Bigler, L.; Tucci, M.; Thigpen, J.T. A Preliminary Study of CA15-3, c-erbB-2, Epidermal Growth Factor Receptor, Cathepsin-D, and p53 in Saliva Among Women with Breast Carcinoma. Cancer Investig. 2000, 18, 101–109. [Google Scholar] [CrossRef]
- Streckfus, C. Salivary Biomarkers to Assess Breast Cancer Diagnosis and Progression: Are We There Yet; Intechopen: London, UK, 2019; p. 1. [Google Scholar] [CrossRef] [Green Version]
- Streckfus, C.F.; Mayorga-Wark, O.; Arreola, D.; Edwards, C.; Bigler, L.; Dubinsky, W.P. Breast Cancer Related Proteins Are Present in Saliva and Are Modulated Secondary to Ductal Carcinoma In Situ of the Breast. Cancer Investig. 2008, 26, 159–167. [Google Scholar] [CrossRef]
- Streckfus, C.F.; Storthz, K.A.; Bigler, L.; Dubinsky, W.P. A Comparison of the Proteomic Expression in Pooled Saliva Specimens from Individuals Diagnosed with Ductal Carcinoma of the Breast with and without Lymph Node Involvement. J. Oncol. 2009, 2009, 737619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streckfus, C.F.; Arreola, D.; Edwards, C.; Bigler, L. Salivary Protein Profiles among HER2/neu-Receptor-Positive and -Negative Breast Cancer Patients: Support for Using Salivary Protein Profiles for Modeling Breast Cancer Progression. J. Oncol. 2012, 2012, 413256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, I.; Fogle, R.L.; Gulfidan, G.; Stanley, A.E.; Walter, V.; Hollenbeak, C.S.; Arga, K.Y.; Sinha, R. Potential Early Markers for Breast Cancer: A Proteomic Approach Comparing Saliva and Serum Samples in a Pilot Study. Int. J. Mol. Sci. 2023, 24, 4164. [Google Scholar] [CrossRef] [PubMed]
- Tkacikova, S.; Talian, I.; Sabo, J. Optimisation of urine sample preparation for shotgun proteomics. Open Chem. 2020, 18, 850–856. [Google Scholar] [CrossRef]
- Gajbhiye, A.; Dabhi, R.; Taunk, K.; Vannuruswamy, G.; RoyChoudhury, S.; Adhav, R.; Seal, S.; Mane, A.; Bayatigeri, S.; Santra, M.K.; et al. Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics. Proteomics 2016, 16, 2403–2418. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, W.; Yang, J.; Zhan, X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front. Endocrinol. 2022, 13, 970489. [Google Scholar] [CrossRef]
- Liu, X.; Yu, H.; Qiao, Y.; Yang, J.; Shu, J.; Zhang, J.; Zhang, Z.; He, J.; Li, Z. Salivary Glycopatterns as Potential Biomarkers for Screening of Early-Stage Breast Cancer. EBioMedicine 2018, 28, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Tu, C.-F.; Li, F.-A.; Li, L.-H.; Yang, R.-B. Quantitative glycoproteomics analysis identifies novel FUT8 targets and signaling networks critical for breast cancer cell invasiveness. Breast Cancer Res. 2022, 24, 21. [Google Scholar] [CrossRef]
- Bouchal, P.; Schubert, O.T.; Faktor, J.; Capkova, L.; Imrichova, H.; Zoufalova, K.; Paralova, V.; Hrstka, R.; Liu, Y.; Ebhardt, H.A.; et al. Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep. 2019, 28, 832–843.e837. [Google Scholar] [CrossRef]
- Aslebagh, R.; Channaveerappa, D.; Pentecost, B.T.; Arcaro, K.F.; Darie, C.C. Combinatorial Electrophoresis and Mass Spectrometry-Based Proteomics in Breast Milk for Breast Cancer Biomarker Discovery. In Advancements of Mass Spectrometry in Biomedical Research; Woods, A.G., Darie, C.C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 451–467. [Google Scholar] [CrossRef]
- George, A.L.; Shaheed, S.U.; Sutton, C.W. High-Throughput Proteomic Profiling of Nipple Aspirate Fluid from Breast Cancer Patients Compared with Non-Cancer Controls: A Step Closer to Clinical Feasibility. J. Clin. Med. 2021, 10, 2243. [Google Scholar] [CrossRef]
- Murata, T.; Yanagisawa, T.; Kurihara, T.; Kaneko, M.; Ota, S.; Enomoto, A.; Tomita, M.; Sugimoto, M.; Sunamura, M.; Hayashida, T.; et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res. Treat. 2019, 177, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahran, F.; Rashed, R.; Omran, M.; Darwish, H.; Belal, A. Study on Urinary Candidate Metabolome for the Early Detection of Breast Cancer. Indian J. Clin. Biochem. 2021, 36, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Chung, B.C.; Kim, Y.; Lee, K.Y.; Lee, D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics 2009, 25, 3151–3157. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.V.; Anderson, S.M.; Sartorius, C.A. Advances in Analyzing the Breast Cancer Lipidome and Its Relevance to Disease Progression and Treatment. J. Mammary Gland. Biol. Neoplasia 2021, 26, 399–417. [Google Scholar] [CrossRef]
- Taware, R.; More, T.H.; Bagadi, M.; Taunk, K.; Mane, A.; Rapole, S. Lipidomics investigations into the tissue phospholipidomic landscape of invasive ductal carcinoma of the breast. RSC Adv. 2021, 11, 397–407. [Google Scholar] [CrossRef]
- Eiriksson, F.F.; Nøhr, M.K.; Costa, M.; Bödvarsdottir, S.K.; Ögmundsdottir, H.M.; Thorsteinsdottir, M. Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLoS ONE 2020, 15, e0231289. [Google Scholar] [CrossRef] [Green Version]
- Min, H.K.; Kong, G.; Moon, M.H. Quantitative analysis of urinary phospholipids found in patients with breast cancer by nanoflow liquid chromatography–tandem mass spectrometry: II. Negative ion mode analysis of four phospholipid classes. Anal. Bioanal. Chem. 2010, 396, 1273–1280. [Google Scholar] [CrossRef]
- Santoro, A.; Drummond, R.; Silva, I.; Ferreira, S.; Juliano, L.; Vendramini, P.H.; Lemos, M.; Eberlin, M.; Andrade, V. In Situ DESI-MSI Lipidomic Profiles of Breast Cancer Molecular Subtypes and Precursor Lesions. Cancer Res. 2020, 80, 1246–1257. [Google Scholar] [CrossRef] [Green Version]
- Mijatović, S.; Savić-Radojević, A.; Plješa-Ercegovac, M.; Simić, T.; Nicoletti, F.; Maksimović-Ivanić, D. The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants 2020, 9, 374. [Google Scholar] [CrossRef]
- Tafuri, S.; Cocchia, N.; Landolfi, F.; Iorio, E.; Ciani, F. Redoxomics and Oxidative Stress: From the Basic Research to the Clinical Practice. In Free Radicals and Diseases; IntechOpen: London, UK, 2016; pp. 149–169. [Google Scholar] [CrossRef] [Green Version]
- Kundaktepe, B.P.; Sozer, V.; Durmus, S.; Kocael, P.C.; Kundaktepe, F.O.; Papila, C.; Gelisgen, R.; Uzun, H. The evaluation of oxidative stress parameters in breast and colon cancer. Medicine 2021, 100, e25104. [Google Scholar] [CrossRef]
- Calaf, G.M.; Urzua, U.; Termini, L.; Aguayo, F. Oxidative stress in female cancers. Oncotarget 2018, 9, 23824–23842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.D.; Cai, Q.; Shu, X.O.; Nechuta, S.J. The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk and Prognosis: A Systematic Review of the Epidemiologic Literature. J. Womens Health 2017, 26, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento-Salinas, F.L.; Delgado-Magallón, A.; Montes-Alvarado, J.B.; Ramírez-Ramírez, D.; Flores-Alonso, J.C.; Cortés-Hernández, P.; Reyes-Leyva, J.; Herrera-Camacho, I.; Anaya-Ruiz, M.; Pelayo, R.; et al. Breast Cancer Subtypes Present a Differential Production of Reactive Oxygen Species (ROS) and Susceptibility to Antioxidant Treatment. Front. Oncol. 2019, 9, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, G.; Vergilio, G.; Paladino, L.; Barone, R.; Cappello, F.; Conway de Macario, E.; Macario, A.J.L.; Bucchieri, F.; Rappa, F. The Chaperone System in Breast Cancer: Roles and Therapeutic Prospects of the Molecular Chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int. J. Mol. Sci. 2022, 23, 7792. [Google Scholar] [CrossRef]
- Xu, Y.; Su, G.-H.; Ma, D.; Xiao, Y.; Shao, Z.-M.; Jiang, Y.-Z. Technological advances in cancer immunity: From immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct. Target. Ther. 2021, 6, 312. [Google Scholar] [CrossRef]
- Kumar, P.S. Microbiomics: Were we all wrong before? Periodontology 2000 2021, 85, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Eslami-S, Z.; Majidzadeh-A, K.; Halvaei, S.; Babapirali, F.; Esmaeili, R. Microbiome and Breast Cancer: New Role for an Ancient Population. Front. Oncol. 2020, 10, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viswanathan, S.; Parida, S.; Lingipilli, B.T.; Krishnan, R.; Podipireddy, D.R.; Muniraj, N. Role of Gut Microbiota in Breast Cancer and Drug Resistance. Pathogens 2023, 12, 468. [Google Scholar] [CrossRef]
- Zhu, J.; Yao, Z.; Liang, W.; Li, Q.; Liu, J.; Yang, H.; Ji, Y.; Wei, W.; Tan, A.; Liang, S.; et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 2018, 6, 136. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.; Pannaraj, P.S.; Rautava, S.; Rodríguez, J.M. The Microbiota of the Human Mammary Ecosystem. Front. Cell. Infect. Microbiol. 2020, 10, 586667. [Google Scholar] [CrossRef] [PubMed]
- Lynn, H.; Ward, D.; Burton, D.; Day, J.; Craig, A.; Parnell, M.; Dimmer, C. Breast Cancer: An Environmental Disease. The Case for Primary Prevention. 2005. Available online: https://www.researchgate.net/publication/275209371_Breast_Cancer_an_environmental_disease_The_case_for_primary_prevention (accessed on 11 June 2023).
- Hiatt, R.A.; Brody, J.G. Environmental Determinants of Breast Cancer. Annu. Rev. Public Health 2018, 39, 113–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, B.A.; Oli, M.W.; Oli, M.K. Eco-oncology: Applying ecological principles to understand and manage cancer. Ecol. Evol. 2020, 10, 8538–8553. [Google Scholar] [CrossRef] [PubMed]
- Vrijheid, M. The exposome: A new paradigm to study the impact of environment on health. Thorax 2014, 69, 876–878. [Google Scholar] [CrossRef] [Green Version]
- Bessonneau, V.; Rudel, R.A. Mapping the Human Exposome to Uncover the Causes of Breast Cancer. Int. J. Environ. Res. Public Health 2019, 17, 189. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.A.; Goyal, A.; Terry, M.B. Alcohol Intake and Breast Cancer Risk: Weighing the Overall Evidence. Curr. Breast Cancer Rep. 2013, 5, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, M.; Ke, Z.; Luo, J. Cellular and Molecular Mechanism Underlying Alcohol-induced Aggressiveness of Breast Cancer. Pharmacol. Res. 2017, 115, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Vopham, T.; Bertrand, K.; Jones, R.; Deziel, N.; DuPré, N.; James, P.; Liu, Y.; Vieira, V.; Tamimi, R.; Hart, J.; et al. Dioxin exposure and breast cancer risk in a prospective cohort study. Environ. Res. 2020, 186, 109516. [Google Scholar] [CrossRef]
- Lee, P.M.Y.; Chan, W.C.; Kwok, C.C.-H.; Wu, C.; Law, S.-H.; Tsang, K.-H.; Yu, W.-C.; Yeung, Y.-C.; Chang, L.D.J.; Wong, C.K.M.; et al. Associations between Coffee Products and Breast Cancer Risk: A Case-Control study in Hong Kong Chinese Women. Sci. Rep. 2019, 9, 12684. [Google Scholar] [CrossRef] [Green Version]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [Green Version]
- Lo, J.; Park, Y.-M.; Sinha, R.; Sandler, D. Association between meat consumption and risk of breast cancer: Findings from the Sister Study. Int. J. Cancer 2019, 146, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Chazelas, E.; Srour, B.; Desmetz, E.; Kesse-Guyot, E.; Julia, C.; Deschamps, V.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Sugary drink consumption and risk of cancer: Results from NutriNet-Santé prospective cohort. BMJ 2019, 366, l2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gera, R.; Mokbel, R.; Igor, I.; Mokbel, K. Does the Use of Hair Dyes Increase the Risk of Developing Breast Cancer? A Meta-analysis and Review of the Literature. Anticancer Res. 2018, 38, 707–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eve, L.; Fervers, B.; Le Romancer, M.; Etienne-Selloum, N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int. J. Mol. Sci. 2020, 21, 9139. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017, 19, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, D.; Huang, J.; Le, L.T.T.; Liu, D.; Liu, C.; Pham, K.; Wang, H. Electronic cigarettes promotes the lung colonization of human breast cancer in NOD-SCID-Gamma mice. Int. J. Clin. Exp. Pathol. 2020, 13, 2075–2081. [Google Scholar]
- Shih, Y.-W.; O’Brien, A.P.; Hung, C.-S.; Chen, K.-H.; Hou, W.-H.; Tsai, H.-T. Exposure to radiofrequency radiation increases the risk of breast cancer: A systematic review and meta-analysis. Exp. Ther. Med. 2021, 21, 23. [Google Scholar] [CrossRef]
- West, J.G.; Kapoor, N.S.; Liao, S.-Y.; Chen, J.W.; Bailey, L.; Nagourney, R.A. Multifocal Breast Cancer in Young Women with Prolonged Contact between Their Breasts and Their Cellular Phones. Case Rep. Med. 2013, 2013, 354682. [Google Scholar] [CrossRef]
- Mortazavi, A.R.; Mortazavi, S.M.J. Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets and laptops at night. IJBMS 2018, 21, 112–115. [Google Scholar] [CrossRef]
- Vinogradova, Y.; Coupland, C.; Hippisley-Cox, J. Use of hormone replacement therapy and risk of breast cancer: Nested case-control studies using the QResearch and CPRD databases. BMJ 2020, 371, m3873. [Google Scholar] [CrossRef]
- De Blok, C.J.M.; Wiepjes, C.M.; Nota, N.M.; van Engelen, K.; Adank, M.A.; Dreijerink, K.M.A.; Barbé, E.; Konings, I.R.H.M.; den Heijer, M. Breast cancer risk in transgender people receiving hormone treatment: Nationwide cohort study in the Netherlands. BMJ 2019, 365, l1652. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, M.; Poulsen, A.H.; Kroman, N.; Hvidtfeldt, U.A.; Thacher, J.D.; Roswall, N.; Brandt, J.; Frohn, L.M.; Jensen, S.S.; Levin, G.; et al. Road and railway noise and risk for breast cancer: A nationwide study covering Denmark. Environ. Res. 2021, 195, 110739. [Google Scholar] [CrossRef]
- Andersen, Z.; Jørgensen, J.; Elsborg, L.; Lophaven, S.; Backalarz, C.; Laursen, J.; Holm Pedersen, T.; Simonsen, M.; Bräuner, E.; Lynge, E. Long-term exposure to road traffic noise and incidence of breast cancer: A cohort study. Breast Cancer Res. 2018, 20, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, P.; Wang, K.; Bi, J.; Li, M.; He, R.-W.; Cui, D.; Ma, L.Q. Organic extract of indoor dust induces estrogen-like effects in human breast cancer cells. Sci. Total Environ. 2020, 726, 138505. [Google Scholar] [CrossRef] [PubMed]
- Gannon, O.M.; Antonsson, A.; Bennett, I.C.; Saunders, N.A. Viral infections and breast cancer—A current perspective. Cancer Lett. 2018, 420, 182–189. [Google Scholar] [CrossRef]
- Ekenga, C.C.; Parks, C.G.; D’Aloisio, A.A.; DeRoo, L.A.; Sandler, D.P. Breast Cancer Risk after Occupational Solvent Exposure: The Influence of Timing and Setting. Cancer Res. 2014, 74, 3076–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Liao, Y.; Hopper, J.L.; Goldberg, M.; Santella, R.M.; Terry, M.B. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: An illustration with polycyclic aromatic hydrocarbons and breast cancer. Br. J. Cancer 2017, 116, 1229–1233. [Google Scholar] [CrossRef] [Green Version]
- Keren, Y.; Magnezi, R.; Carmon, M.; Amitai, Y. Investigation of the Association between Drinking Water Habits and the Occurrence of Women Breast Cancer. Int. J. Environ. Res. Public Health 2020, 17, 7692. [Google Scholar] [CrossRef]
- Hiller, T.W.R.; O’Sullivan, D.E.; Brenner, D.R.; Peters, C.E.; King, W.D. Solar Ultraviolet Radiation and Breast Cancer Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2020, 128, 16002. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, F.; Bordoni, A. Foodomics: A new comprehensive approach to food and nutrition. Genes Nutr. 2013, 8, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Regal, P.; Fente, C.A.; Cepeda, A.; Silva, E.G. Food and omics: Unraveling the role of food in breast cancer development. Curr. Opin. Food Sci. 2021, 39, 197–207. [Google Scholar] [CrossRef]
- Sellami, M.; Bragazzi, N.L. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020, 12, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvakumar, P.; Badgeley, A.; Murphy, P.; Anwar, H.; Sharma, U.; Lawrence, K.; Lakshmikuttyamma, A. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients 2020, 12, 761. [Google Scholar] [CrossRef] [Green Version]
- Rahal, O.M.; Simmen, R.C.M. PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis 2010, 31, 1491–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fustier, P.; Le Corre, L.; Chalabi, N.; Vissac-Sabatier, C.; Communal, Y.; Bignon, Y.J.; Bernard-Gallon, D.J. Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines. Br. J. Cancer 2003, 89, 168–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papoutsis, A.J.; Lamore, S.D.; Wondrak, G.T.; Selmin, O.I.; Romagnolo, D.F. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J. Nutr. 2010, 140, 1607–1614. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-J.; Wang, K.-L.; Chen, H.-Y.; Chiang, Y.-F.; Hsia, S.-M. Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers. Biomolecules 2020, 10, 1481. [Google Scholar] [CrossRef]
- Zhong, S.; Ye, W.-P.; Feng, E.; Lin, S.-H.; Liu, J.-Y.; Leong, J.; Ma, C.; Lin, Y.C. Serum Derived from Zeranol-implanted ACI Rats Promotes the Growth of Human Breast Cancer Cells In Vitro. Anticancer Res. 2011, 31, 481–486. [Google Scholar]
- Wang, J.; Heng, Y.J.; Eliassen, A.H.; Tamimi, R.M.; Hazra, A.; Carey, V.J.; Ambrosone, C.B.; de Andrade, V.P.; Brufsky, A.; Couch, F.J.; et al. Alcohol consumption and breast tumor gene expression. Breast Cancer Res. 2017, 19, 108. [Google Scholar] [CrossRef] [Green Version]
- Sturgeon, S.; Sibeko, L.; Balasubramanian, R.; Arcaro, K. New Moms Wellness Study: The randomized controlled trial study protocol for an intervention study to increase fruit and vegetable intake and lower breast cancer risk through weekly counseling and supplemental fruit and vegetable box delivery in breastfeeding women. BMC Women’s Health 2022, 22, 389. [Google Scholar] [CrossRef]
- Gullo, G.; Giuliani, A.; Harrath, A.H.; Alwasel, S.; Tartaglia, F.; Cucina, A.; Bizzarri, M.; Bizzarri, M. An association of boswellia, betaine and myo-inositol (Eumastós®) in the treatment of mammographic breast density: A randomized, double-blind study. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4419–4426. [Google Scholar]
- Zaami, S.; Melcarne, R.; Patrone, R.; Gullo, G.; Negro, F.; Napoletano, G.; Monti, M.; Aceti, V.; Panarese, A.; Borcea, M.C.; et al. Oncofertility and Reproductive Counseling in Patients with Breast Cancer: A Retrospective Study. J. Clin. Med. 2022, 11, 1311. [Google Scholar] [CrossRef]
- Zaami, S.; Stark, M.; Signore, F.; Gullo, G.; Marinelli, E. Fertility preservation in female cancer sufferers: (only) a moral obligation? Eur. J. Contracept. Reprod. Health Care 2022, 27, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Richard, V.; Davey, M.G.; Annuk, H.; Miller, N.; Dwyer, R.M.; Lowery, A.; Kerin, M.J. MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors. Cancers 2021, 13, 5332. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Tse, G. Immunohistochemical Surrogates for Molecular Classification of Breast Carcinoma: A 2015 Update. Arch. Pathol. Lab. Med. 2016, 140, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [Green Version]
- Picornell, A.C.; Echavarria, I.; Alvarez, E.; López-Tarruella, S.; Jerez, Y.; Hoadley, K.; Parker, J.S.; del Monte-Millán, M.; Ramos-Medina, R.; Gayarre, J.; et al. Breast cancer PAM50 signature: Correlation and concordance between RNA-Seq and digital multiplexed gene expression technologies in a triple negative breast cancer series. BMC Genom. 2019, 20, 452. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Fan, C.; Oh, D.; Marron, J.; He, X.; Qaqish, B.; Livasy, C.; Carey, L.; Reynolds, E.; Dressler, L.; et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom. 2006, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.S.; Mullins, M.; Cheang, M.C.U.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 1160–1167. [Google Scholar] [CrossRef]
- Mathews, J.C.; Nadeem, S.; Levine, A.J.; Pouryahya, M.; Deasy, J.O.; Tannenbaum, A. Robust and interpretable PAM50 reclassification exhibits survival advantage for myoepithelial and immune phenotypes. NPJ Breast Cancer 2019, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallett, R.M.; Hassell, J.A. Estrogen independent gene expression defines clinically relevant subgroups of estrogen receptor positive breast cancer. BMC Cancer 2014, 14, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.-Y.; Tang, Y.; Liu, L.; Xie, N.; Tian, C.; Liu, B.; Zou, L.; Zhou, W.; Wang, Y.; Xia, X.; et al. Subtyping of metastatic breast cancer based on plasma circulating tumor DNA alterations: An observational, multicentre platform study. EClinicalMedicine 2022, 51, 101567. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.; Shah, S.; Chin, S.-F.; Turashvili, G.; Rueda, O.; Dunning, M.; Speed, D.; Lynch, A.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Ripoll, C.; Roldan, M.; Ruedas-Rama, M.J.; Orte, A.; Martin, M. Breast Cancer Cell Subtypes Display Different Metabolic Phenotypes That Correlate with Their Clinical Classification. Biology 2021, 10, 1267. [Google Scholar] [CrossRef]
- Haukaas, T.H.; Euceda, L.R.; Giskeødegård, G.F.; Lamichhane, S.; Krohn, M.; Jernström, S.; Aure, M.R.; Lingjærde, O.C.; Schlichting, E.; Garred, Ø.; et al. Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes. Cancer Metab. 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Deng, N.; Minoche, A.; Harvey, K.; Li, M.; Winkler, J.; Goga, A.; Swarbrick, A. Deep whole genome sequencing identifies recurrent genomic alterations in commonly used breast cancer cell lines and patient-derived xenograft models. Breast Cancer Res. 2022, 24, 63. [Google Scholar] [CrossRef]
- Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J. Cancer 2017, 8, 3131–3141. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Zhang, S.; Yazdanparast, A.; Li, M.; Pawar, A.V.; Liu, Y.; Inavolu, S.M.; Cheng, L. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer. BMC Genom. 2016, 17, 525. [Google Scholar] [CrossRef] [Green Version]
- Ethier, S.P.; Guest, S.T.; Garrett-Mayer, E.; Armeson, K.; Wilson, R.C.; Duchinski, K.; Couch, D.; Gray, J.W.; Kappler, C. Development and implementation of the SUM breast cancer cell line functional genomics knowledge base. NPJ Breast Cancer 2020, 6, 30. [Google Scholar] [CrossRef]
- Liu, K.; Newbury, P.A.; Glicksberg, B.S.; Zeng, W.Z.D.; Paithankar, S.; Andrechek, E.R.; Chen, B. Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat. Commun. 2019, 10, 2138. [Google Scholar] [CrossRef] [Green Version]
- Kulasingam, V.; Diamandis, E.P. Proteomics Analysis of Conditioned Media from Three Breast Cancer Cell Lines: A Mine for Biomarkers and Therapeutic Targets*. Mol. Cell. Proteom. 2007, 6, 1997–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayathirtha, M.; Neagu, A.-N.; Whitham, D.; Alwine, S.; Darie, C. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am. J. Cancer Res. 2022, 12, 1784–1823. [Google Scholar] [PubMed]
- Jayathirtha, M.; Neagu, A.-N.; Whitham, D.; Alwine, S.; Darie, C.C. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am. J. Cancer Res. 2022, 12, 4373–4398. [Google Scholar]
- Jayathirtha, M.; Whitham, D.; Alwine, S.; Donnelly, M.; Neagu, A.-N.; Darie, C.C. Investigating the Function of Human Jumping Translocation Breakpoint Protein (hJTB) and Its Interacting Partners through In-Solution Proteomics of MCF7 Cells. Molecules 2022, 27, 8301. [Google Scholar] [CrossRef]
- Minic, Z.; Hüttmann, N.; Poolsup, S.; Li, Y.; Susevski, V.; Zaripov, E.; Berezovski, M.V. Phosphoproteomic Analysis of Breast Cancer-Derived Small Extracellular Vesicles Reveals Disease-Specific Phosphorylated Enzymes. Biomedicines 2022, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, J.; Bouhaddou, M.; Kim, K.; Rojc, A.; Modak, M.; Soucheray, M.; McGregor, M.J.; O’Leary, P.; Wolf, D.; et al. A protein interaction landscape of breast cancer. Science 2021, 374, eabf3066. [Google Scholar] [CrossRef] [PubMed]
- Hozhabri, H.; Dehkohneh, R.; Razavi, S.M.; Razavi, S.; Salarian, F.; Rasouli, A.; Azami, J.; Ghasemi Shiran, M.; Kardan, Z.; Farrokhzad, N.; et al. Comparative analysis of protein-protein interaction networks in metastatic breast cancer. PLoS ONE 2022, 17, e0260584. [Google Scholar] [CrossRef]
- Kenny, P.A.; Lee, G.Y.; Myers, C.A.; Neve, R.M.; Semeiks, J.R.; Spellman, P.T.; Lorenz, K.; Lee, E.H.; Barcellos-Hoff, M.H.; Petersen, O.W.; et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 2007, 1, 84–96. [Google Scholar] [CrossRef]
- Gambardella, G.; Viscido, G.; Tumaini, B.; Isacchi, A.; Bosotti, R.; di Bernardo, D. A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response. Nat. Commun. 2022, 13, 1714. [Google Scholar] [CrossRef]
- Krishnan, K.; Steptoe, A.L.; Martin, H.C.; Pattabiraman, D.R.; Nones, K.; Waddell, N.; Mariasegaram, M.; Simpson, P.T.; Lakhani, S.R.; Vlassov, A.; et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA 2013, 19, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willmann, L.; Schlimpert, M.; Halbach, S.; Erbes, T.; Stickeler, E.; Kammerer, B. Metabolic profiling of breast cancer: Differences in central metabolism between subtypes of breast cancer cell lines. J. Chromatogr. B 2015, 1000, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Nittoli, A.C.; Costantini, S.; Sorice, A.; Capone, F.; Ciarcia, R.; Marzocco, S.; Budillon, A.; Severino, L. Effects of α-zearalenol on the metabolome of two breast cancer cell lines by 1H-NMR approach. Metabolomics 2018, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Pérez, A.R.; Bakalara, N.; García-Vázquez, J.B.; Rosales-Hernández, M.C.; Fernández-Pomares, C.; Correa-Basurto, J. LC-MS Based Lipidomics Depict Phosphatidylethanolamine as Biomarkers of TNBC MDA-MB-231 over nTNBC MCF-7 Cells. Int. J. Mol. Sci. 2022, 23, 12074. [Google Scholar] [CrossRef]
- Joruiz, S.M.; Bourdon, J.-C. p53 Isoforms: Key Regulators of the Cell Fate Decision. Cold Spring Harb. Perspect. Med. 2016, 6, a026039. [Google Scholar] [CrossRef] [Green Version]
- Gill, R.P.K.; Vasudeva, K.; Kumar, R.; Munshi, A. Role of p53 Gene in Breast Cancer: Focus on Mutation Spectrum and Therapeutic Strategies. Curr. Pharm. Des. 2018, 24, 3566–3575. [Google Scholar] [CrossRef]
- Chasov, V.; Mirgayazova, R.; Zmievskaya, E.; Khadiullina, R.; Valiullina, A.; Stephenson Clarke, J.; Rizvanov, A.; Baud, M.G.J.; Bulatov, E. Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Front. Oncol. 2020, 10, 1460. [Google Scholar] [CrossRef]
- Eischen, C.M. Genome Stability Requires p53. Cold Spring Harb. Perspect. Med. 2016, 6, a026096. [Google Scholar] [CrossRef]
- Schon, K.; Tischkowitz, M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res. Treat. 2018, 167, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Shen, R.; Richard, S.; Liu, Y.; Jalalirad, M.; Cleary, M.P.; D’Assoro, A.B.; Gradilone, S.A.; Yang, D.-Q. Inhibition of triple-negative breast cancer proliferation and motility by reactivating p53 and inhibiting overactivated Akt. Oncol. Rep. 2022, 47, 41. [Google Scholar] [CrossRef]
- Fusée, L.T.S.; Marín, M.; Fåhraeus, R.; López, I. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Cancers 2020, 12, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avery-Kiejda, K.; Morten, B.; Wong, M.; Mathe, A.; Scott, R. The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. Carcinogenesis 2013, 35, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Multiomics kaleidoscope to visualize cancer hallmarks. Genome Biol. 2020, 21, 264. [Google Scholar] [CrossRef]
Proteomics-Based and Proteomics-Derived Investigation of BC | Samples | Omics-Based Techniques | Studies Relevance | References |
---|---|---|---|---|
proteomics | FFPE | SP3-CTP; LC-MS/MS | high sensitive MS-based methodology for capturing biological features in FFPE tumor samples; characterization of BC heterogeneity in a clinically-applicable manner, biomarkers and therapeutic targets discovery, clinical BC classification | [128] |
FF | SWATH-MS (LC-MS/MS) | highly multiplexed mode of targeted proteomics that generated large-scale quantitative proteomics profiles of BC tissues; BC classification into proteotype-based subtypes with different treatment strategies | [233] | |
blood/serum/ plasma | LC-ESI-MS/MS | comparison between peptides and proteins specific to BC plasma and ovarian cancer and matched controls | [70] | |
tumor interstitial fluid | LC-MS/MS | high-throughput proteomics for identification of tumor subtype-specific relevant biomarkers | [75] | |
saliva and serum samples | iTRAQ LC-ToF-MS/MS | identification of protein biomarkers for early detection of BC; platform for investigating the responsive proteomic profile in benign and malignant breast tissue using saliva and serum from the same women | [227] | |
urine | label free LC-MS/MS | identification of protein biomarkers for early screening detection and monitoring invasive BC progression | [90] | |
colostrum and milk | nLC-MS/MS | BC biomarkers discovery | [234] | |
NAF; NAF spots on Guthrie cards | SELDI-ToF-MS; 1D-LC-MS/MS | identification of differential proteomic profile between women with/without BC; BC biomarkers identification; identification of NAF proteome associated with BC development | [125,126,235] | |
salivaomics: transcriptomics and proteomics | saliva of BC patients vs. matched controls | proteomics: 2D-DIGE, MALDI-ToF MS; transcriptomics: Affymetrix HG-U133-Plus-2.0 Array, RT-qPCR | mRNA biomarkers and one protein biomarker were pre-validated on the preclinical validation sample set for BC detection | [123] |
phosphoproteomics | FF | Fe-IMAC, iTRAQ SCX LC-ESI-MS/MS SID-SRM-MS for validation | large-scale phosphoproteome quantification in high- and low-risk recurrence groups as powerful tool for biomarker discovery using clinical samples | [215] |
FFPE, TNBC cell lines, mouse models (PDXs) | nano-LC-MS/MS | high-throughput phosphoproteomics for target-based clinical classification system for TNBC | [213] | |
kinomics, phosphoproteomics, proteomics, transcriptomics | PDX models of TNBC | RPPA, LC-MS/MS; MS-based kinome profiling | integrative phosphoproteogenomic analysis for identification of intrinsic resistance mechanisms of TNBC to PI3K inhibition | [217] |
exosomics | plasma and total blood | MALDI-ToF/ToF MS | proteomic analysis of exosomes for BC diagnostic/prognostic biomarkers or novel therapeutic targets | [203] |
breast cell line derived exosomes | nanoLC-MS/MS | proteomic profile of cancerous and non-tumorigenic breast cell lines for BC diagnostic/prognostic biomarker discovery | [201] | |
secretomics, matrisomics | human breast samples (normal and IDC) | LC-SRM, LC-MS/MS, TPM, SHG, two-photon fluorescence imaging | targeted matrisome analysis for compositional change in matrisome proteins according to collagen re-organization during BC progression; candidate proteins involved in collagen alignment | [197] |
LC-MS/MS, MALDI-FT-ICR MS, MALDI-ToF MS, MALDI-MS/MS | proteomic remodeling of TME; review of significant dysregulated proteins involved in TME remodelling in IDC | [196] | ||
phosphoproteomics and exosomics | plasma samples | LC-MS/MS | phosphoproteomic profile of EVs of patients and healthy controls for potential biomarkers to differentiate BC patients from healthy controls | [27] |
interactomics | serum and saliva | network biology approach | PPI networks for proteins in serum and saliva for potential biomarkers in BC diagnosis and prognosis | [227] |
Omics | Year of Publication | Samples | Techniques | BC Subtypes | Studies Relevance | References |
---|---|---|---|---|---|---|
Transcriptomics | 2000 | surgical specimens and cultured cell lines | cDNA microarrays | basal epithelial-like, ERBB2-overexpressing, normal breast-like, luminal epithelial/ER+ | “molecular portrait of human breast tumors” | [303] |
2001 | FF tissue samples | basal epithelial-like, ERBB2-overexpressing, normal breast-like, luminal A, luminal B, luminal C | “breast tumor intrinsic” subtypes classification; poor prognosis for basal-like subtype, and significant difference in outcome for two ER+ groups | [304] | ||
2006 | FF breast tumor samples | Agilent oligo microarrays | LumA, LumB, basal-like, HER2+/ER−, normal breast-like | validation of “breast tumor intrinsic” subtype classification | [306] | |
2009 | FFPE, FF | qRT-PCR, microarray | LumA, LumB, HER2-enriched, basal-like, normal-like | BC intrinsic molecular subtypes defined by mRNA expression of 50 genes (PAM50 risk assessment tool) | [307] | |
miRomics | 2021 | TCGA, METABRIC, PAM50 mRNA, GTEx datasets | Basal, Basal-HER2, Basal-LumB, Basal-LumA, HER2, HER2-LumB, HER2-LumA, LumA-LumB, LumA, LumB | categorization of breast tumor samples based on miRNA expression profiling | [301] | |
Genomics | 2020 | 861 breast tumors | cancer genome atlas (TCGA) database | primary, progressive proliferous perilous | discovery of the molecular subtypes of BC using somatic mutation profiles of tumors | [40] |
2022 | 223 patients with MBC | NGS for ctDNA | subtype 1: extracellular function (ECF), subtype 2: cell proliferation (CP), subtype 3: nucleus function (NF), subtype 4: cascade signaling pathway (CSP) | HR/HER2 subtyping of MBC based on 70 plasma ctDNA alterations | [310] | |
Genomics and transcriptomics | 2012, 2013 | 2000 breast tumors | germline variants (CNVs and SNPs) and somatic aberrations (CNSAs) associated with alteration in gene expression | 10 novel molecular subgroups | novel molecular classification of the BC population based on the impact of somatic CNAs on the transcriptome | [38,311] |
Proteomics and transcriptomics | 2019 | FF tissue samples | SWATH-MS (LC-MS/MS) | five proteotypes-based BC subtypes | SWATH proteotype pattern largely recapitulate the conventional BC subtypes; TNBC are most heterogeneous in protein expression | [233] |
Proteomics | 2022 | archival FFPE tumor samples | SP3-CTP-MS (LC-MS/MS) | BL-BC subtypes: basal-immune hot and basal-immune cold; TNBC subtypes: basal-immune hot, basal-immune cold, mesenchymal, and luminal; HER2-enriched groups differing by ECM, lipid metabolism, and immune-response | potential biomarkers for existing chemotherapies or emerging immunotherapies | [128] |
Metabolomics | 2021 | BC cell lines | LC-MS | three BC metabolophenotypes (1, 2, and 3): metabolophenotype 1: glycolytic flux dependency specific for HR-positive cell lines (MCF7 and ZR751); metabolophenotype 2: TCA cycle and mitochondrial oxidative metabolism dependency specific for TNBC cell lines (MDA-MB-231 and MDA-MB-468); metabolophenotype 3: specific for HER2-positive cell line SKBR3 with mixed response | BC cell types display different metabolophenotypes correlated with the current clinical classifications | [312] |
Metabolomics and transcriptomics | 2010 | BC tissue samples (IDC, ER+, luminal A) | HR MAS MRS, gene expression microarrays | three types of luminal A BC (A1, A2, and A3); A2 subgroup, a more aggressive BC: higher glycolytic activity/higher Warburg effect, cell cycle, and DNA repair | transcriptional and metabolic subtyping based on high-dimensional data | [121] |
Metabolomics, genomics, and proteomics | 2016 | primary breast carcinoma FF samples | HR MAS MRS, RPPA, mRNA expression profiling, integrated pathway analysis | three metabolic clusters (Mc1, Mc2, and Mc3); Mc1: highest levels of GPC and PCho, downregulation of genes related to collagens and ECM; Mc2: highest levels of glucose, overexpression of genes related to collagens and ECM; Mc3: highest levels of lactate and alanine, overexpression of genes related to collagens and ECM | information about the heterogeneity of BCs, susceptibility to different metabolically targeted drugs | [313] |
Salivaomics | 2022 | saliva | biochemical analysis/ biochemical indicators | BL-BC was defined of the maximum number of indicators; HER2+/HER2- and ER+ BC differ from the control group; ER/PR+ BC group has more favorable ratio of biochemical indicators compared to ER/PR—BC | 12 biochemical indicators | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, A.-N.; Whitham, D.; Bruno, P.; Morrissiey, H.; Darie, C.A.; Darie, C.C. Omics-Based Investigations of Breast Cancer. Molecules 2023, 28, 4768. https://doi.org/10.3390/molecules28124768
Neagu A-N, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules. 2023; 28(12):4768. https://doi.org/10.3390/molecules28124768
Chicago/Turabian StyleNeagu, Anca-Narcisa, Danielle Whitham, Pathea Bruno, Hailey Morrissiey, Celeste A. Darie, and Costel C. Darie. 2023. "Omics-Based Investigations of Breast Cancer" Molecules 28, no. 12: 4768. https://doi.org/10.3390/molecules28124768
APA StyleNeagu, A. -N., Whitham, D., Bruno, P., Morrissiey, H., Darie, C. A., & Darie, C. C. (2023). Omics-Based Investigations of Breast Cancer. Molecules, 28(12), 4768. https://doi.org/10.3390/molecules28124768