Reflectance Spectroscopy as a Novel Tool for Thickness Measurements of Paint Layers
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of the Acrylic Paints with LIBS and Micro-Raman Spectroscopy
2.2. Thickness Measurements with OCT
2.3. Thickness Measurements with Reflectance Spectroscopy
3. Materials and Methods
3.1. The Painting Mock-Up
3.2. Micro-Raman Spectroscopy
3.3. Laser-Induced Breakdown Spectroscopy (LIBS)
3.4. Spectral-Domain Optical Coherence Tomography (Sd-OCT)
3.5. Fibre Optics Reflectance Spectroscopy (FORS)
3.6. Reflectance Imaging Spectroscopy (RIS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Iwanicka, M.; Moretti, P.; van Oudheusden, S.; Sylwestrzak, M.; Cartechini, L.; van den Berg, K.J.; Targowski, P.; Miliani, C. Complementary use of Optical Coherence Tomography (OCT) and Reflection FTIR spectroscopy for in-situ non-invasive monitoring of varnish removal from easel paintings. Microchem. J. 2018, 138, 7–18. [Google Scholar] [CrossRef]
- Targowski, P.; Iwanicka, M. Optical Coherence Tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A 2012, 106, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Targowski, P.; Góra, M.; Wojtkowski, M. Optical Coherence Tomography for Artwork Diagnostics. Laser Chem. 2006, 2006, 35373–35383. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Cid, M.G.; Cucu, R.G.; Dobre, G.M.; Podoleanu, A.; Pedro, J.; Saunders, D. En-face optical coherence tomography—A novel application of non-invasive imaging to art conservation. Opt. Express 2005, 13, 6133–6144. [Google Scholar] [CrossRef] [PubMed]
- Fontana, R.; Dal Fovo, A.; Striova, J.; Pezzati, L.; Pampaloni, E.; Raffaelli, M.; Barucci, M. Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes. Appl. Phys. A 2015, 121, 957–966. [Google Scholar] [CrossRef]
- Abraham, E.; Fukunaga, K. Terahertz imaging applied to the examination of artistic objects. Stud. Conserv. 2015, 60, 343–352. [Google Scholar] [CrossRef]
- Borg, B.; Dunn, M.; Ang, A.; Villis, C. The application of state-of-the-art technologies to support artwork conservation: Literature review. J. Cult. Herit. 2020, 44, 239–259. [Google Scholar] [CrossRef]
- Rehorn, C.; Blümich, B. Cultural Heritage Studies with Mobile NMR. Angew. Chem. Int. Ed. 2018, 57, 7304–7312. [Google Scholar] [CrossRef]
- Di Tullio, V.; Sciutto, G.; Proietti, N.; Prati, S.; Mazzeo, R.; Colombo, C.; Cantisani, E.; Romè, V.; Rigaglia, D.; Capitani, D. 1H NMR depth profiles combined with portable and micro-analytical techniques for evaluating cleaning methods and identifying original, non-original, and degraded materials of a 16th century Italian wall painting. Microchem. J. 2018, 141, 40–50. [Google Scholar] [CrossRef]
- Brizi, L.; Bortolotti, V.; Marmotti, G.; Camaiti, M. Identification of complex structures of paintings on canvas by NMR: Correlation between NMR profile and stratigraphy. Magn. Reson. Chem. 2020, 58, 889–901. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Castillejo, M.; Fontana, R. Nonlinear optical microscopy for artworks physics. La Riv. Del Nuovo Cim. 2021, 44, 453–498. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Sanz, M.; Oujja, M.; Fontana, R.; Mattana, S.; Cicchi, R.; Targowski, P.; Sylwestrzak, M.; Romani, A.; Grazia, C.; et al. In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy. Sustainability 2020, 12, 3831. [Google Scholar] [CrossRef]
- Mari, M.; Filippidis, G. Non-Linear Microscopy: A Well-Established Technique for Biological Applications towards Serving as a Diagnostic Tool for in situ Cultural Heritage Studies. Sustainability 2020, 12, 1409. [Google Scholar] [CrossRef] [Green Version]
- Dal Fovo, A.; Tserevelakis, G.J.; Papanikolaou, A.; Zacharakis, G.; Fontana, R. Combined photoacoustic imaging to delineate the internal structure of paintings. Opt. Lett. 2019, 44, 919–922. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Tsafas, V.; Melessanaki, K.; Zacharakis, G.; Filippidis, G. Combined multiphoton fluorescence microscopy and photoacoustic imaging for stratigraphic analysis of paintings. Opt. Lett. 2019, 44, 1154–1157. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Tserevelakis, G.J.; Klironomou, E.; Zacharakis, G.; Fontana, R. First combined application of photoacoustic and optical techniques to the study of an historical oil painting. Eur. Phys. J. Plus 2021, 136, 757. [Google Scholar] [CrossRef]
- Striova, J.; Dal Fovo, A.; Fontana, R. Reflectance imaging spectroscopy in heritage science. La Riv. Nuovo Cim. 2020, 43, 515–566. [Google Scholar] [CrossRef]
- Delaney, J.K.; Dooley, K.A. Visible and Infrared Reflectance Imaging Spectroscopy of Paintings and Works on Paper. In Analytical Chemistry for the Study of Paintings and the Detection of Forgeries; Springer: Cham, Switzerland, 2022; pp. 115–132. [Google Scholar]
- Kubelka, P. Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of paint). Z. Fur Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Cavaleri, T.; Giovagnoli, A.; Nervo, M. Pigments and Mixtures Identification by Visible Reflectance Spectroscopy. Procedia Chem. 2013, 8, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Bacci, M.; Fabbri, M.; Picollo, M.; Porcinai, S. Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers: Identification of materials by means of principal component analysis and Mahalanobis distance. Anal. Chim. Acta 2001, 446, 15–21. [Google Scholar] [CrossRef]
- Pouyet, E.; Miteva, T.; Rohani, N.; de Viguerie, L. Artificial Intelligence for Pigment Classification Task in the Short-Wave Infrared Range. Sensors 2021, 21, 6150. [Google Scholar] [CrossRef] [PubMed]
- Pottier, F.; Gerardin, M.; Michelin, A.; Hébert, M.; Andraud, C. Simulating the composition and structuration of coloring layers in historical painting from non-invasive spectral reflectance measurements. C. R. Phys. 2018, 19, 599–611. [Google Scholar] [CrossRef]
- Sessa, C.; Bagán, H.; García, J.F.; Navarro, H.B. Influence of composition and roughness on the pigment mapping of paintings using mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) and multivariate calibration. Anal. Bioanal. Chem. 2014, 406, 6735–6747. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Botteon, A.; Colombo, C.; Pinna, D.; Realini, M.; Matousek, P. Advances in Raman spectroscopy for the non-destructive subsurface analysis of artworks: Micro-SORS. J. Cult. Herit. 2020, 43, 319–328. [Google Scholar] [CrossRef]
- Kaszewska, E.A.; Sylwestrzak, M.; Marczak, J.; Skrzeczanowski, W.; Iwanicka, M.; Szmit-Naud, E.; Anglos, D.; Targowski, P. Depth-Resolved Multilayer Pigment Identification in Paintings: Combined Use of Laser-Induced Breakdown Spectroscopy (LIBS) and Optical Coherence Tomography (OCT). Appl. Spectrosc. 2013, 67, 960–972. [Google Scholar] [CrossRef]
- Pagnin, L. Characterization and Quantification of Modern Painting Materials by IR and Raman Spectroscopies; Università Ca’Foscari Venezia: Venezia, Italy, 2017; Available online: http://hdl.handle.net/10579/11666 (accessed on 10 March 2023).
- Aguayo, T.; Clavijo, E.; Villagrán, A.; Espinosa, F.; Sagüés, F.E.; Campos-Vallette, M. Raman vibrational study of pigments with patrimonial interest for the Chilean cultural heritage. J. Chil. Chem. Soc. 2010, 55, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Bell, I.M.; Clark, R.J.; Gibbs, P.J. Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 2159–2179. [Google Scholar] [CrossRef]
- Barni, D.; Raimondo, L.; Galli, A.; Yivlialin, R.; Caglio, S.; Martini, M.; Sassella, A. Chemical separation of acrylic color components enabling the identification of the pigment spectroscopic response. Eur. Phys. J. Plus 2021, 136, 254. [Google Scholar] [CrossRef]
- López-Ramírez, M.R.; Navas, N.; Rodríguez-Simón, L.R.; Otero, J.C.; Manzano, E. Study of modern artistic materials using combined spectroscopic and chromatographic techniques. Case study: Painting with the signature “Picasso”. Anal. Methods 2015, 7, 1499–1508. [Google Scholar] [CrossRef]
- Corden, C.; Matousek, P.; Conti, C.; Notingher, I. Sub-Surface Molecular Analysis and Imaging in Turbid Media Using Time-Gated Raman Spectral Multiplexing. Appl. Spectrosc. 2021, 75, 156–167. [Google Scholar] [CrossRef]
- NIST. Atomic Spectra Database [Online]. Available online: http://physics.nist.gov/asd (accessed on 30 March 2023).
- Infrared and Raman Users Group (IRUG). Spectral Database Index, (s. f.). Available online: http://www.irug.org/search-spectral-database/spectra-index?sortHeader=data_type_raman (accessed on 29 March 2023).
- Dal Fovo, A.; Oujja, M.; Sanz, M.; Martínez-Hernández, A.; Cañamares, M.V.; Castillejo, M.; Fontana, R. Multianalytical non-invasive characterization of phthalocyanine acrylic paints through spectroscopic and non-linear optical techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 208, 262–270. [Google Scholar] [CrossRef]
- Striova, J.; Ruberto, C.; Barucci, M.; Blažek, J.; Kunzelman, D.; Dal Fovo, A.; Pampaloni, E.; Fontana, R. Spectral Imaging and Archival Data in Analysing Madonna of the Rabbit Paintings by Manet and Titian. Angew. Chem. 2018, 130, 7530–7534. [Google Scholar] [CrossRef]
- Geldof, F.; Dashtbozorg, B.; Hendriks, B.H.; Sterenborg, H.J.; Ruers, T.J. Layer thickness prediction and tissue classification in two-layered tissue structures using diffuse reflectance spectroscopy. Sci. Rep. 2022, 12, 1698. [Google Scholar] [CrossRef]
Paint | Identified Elemental Components by LIBS | Identified Raman Bands [cm−1] and Relative Intensities *. In Brackets the Excitation Wavelength |
---|---|---|
CB | Mg, Si, Co, Al, CN, Ca, Sr, C2, Na | 198 m, 408 w, 512 m, 609 w, 750 w, 1007 m, 1150–1200 w, 2411 s, 2800–3100 s (λexc = 532 nm) |
CR | Mg, Si, Cd, Al, CN, Ca, Sr, CH, C2, Ba, Na | 136 s, 200 s, 269 s, 488 w, 587 s, 841 w, 985 w, 1007 w, 1150–1200 w, 1305 w, 1452 m (λexc = 632 nm) |
CY | Mg, Si, Cd, Al, CN, Ca, Sr, CH, C2, Ba, Na | 212 s, 309 s, 353 w, 600 s, 841 w, 985 w, 1007 s, 1150–1200 w, 1305 m, 1449 s, 1728 w (λexc = 632 nm) |
PBC | Mg, Si, Al, Cu, CN, Ca, Ti, CH, C2, Na | 231 w, 255 w, 482 w, 590 m, 680 m, 747 w, 837 w, 841 w, 951 w, 1007 w, 1037 w, 1106 w, 1143 w, 1150–1200 w, 1305 m, 1341 w, 1451 m, 1527 s, 1595 w, 2672 w, 2870 w, 2976 w, 3056 w (λexc = 532 nm) |
PBL | Mg, Si, Al, Cu, CN, Ca, Ti, Sr, C2, Na | 142 w, 231 m, 255 m, 433 s, 482 w, 590 s, 609 s, 680 s, 747 w, 831 w, 841, 951 w, 1007 w, 1037 w, 1143 m, 1150–1200 w, 1200 w, 1341 s, 1451 s, 1527 s, 1595 w, 2870 w, 3056 w (λexc = 532 nm) |
PGL | Mg, Si, Cd, Al, Cu, CN, Ca, Sr, CH, C2, Ba, Na | 162 w, 505 w, 620 w, 685 s, 818 m, 978 w, 985 w, 1007 w, 1080 m, 1150–1200 m, 1200 m, 1284 s, 1340 m, 1388 s, 1503 s, 1536 s (λexc = 532 nm) |
PRM | Mg, Si, Al, CN, Ca, CH, C2, Na | 841 m, 1007 w, 1150–1200, 1240 m, 1316 s, 1570 s, 1592 s, 1645 s (λexc = 632 nm) |
PI | Mg, Si, Al, Ti, CN, Ca, C2, Na | 186 m, 223 w, 261 w, 318 w, 360 w, 401 w, 525 w, 600 w, 623 w, 646 w, 802 m, 922 w, 1066 w, 1090 m, 1162 m, 1150–1200 m, 1171 m, 1266 s, 1326 s, 1351 s, 1402 s, 1489 s, 1513 s, 1500 m, 1593 s, 1667 w (λexc = 532 nm) |
TW | Mg, Si, Ti, CN, Ca, C2, Na | 138 m, 230 m, 445 s, 609 s, 841 w, 1007 w, 1452 w, 2900–3100 s (λexc = 532 nm) |
ZW | Mg, Zn, CN, Ca, CH, C2, Na | 330 w, 381 w, 435 s, 620 m, 841 m, 1007 s, 1075 w, 1150 m, 1150–1200 m, 1449 m, 1452 s, 1728 m, 2800–3100 s (λexc = 532 nm) |
Paint with Acronym | Chemical Composition and Commercial Code (Maimeri Brera™) |
---|---|
Cobalt Blue (CB) | Cobalt(II) Aluminate [CoAl2O4], PB28—77346 |
Cadmium Red Medium (CR) | Cadmium Selenide Sulphide [Cd2SSe], PR108—77202 |
Cadmium Yellow Medium (CY) | Cadmium Sulphide [CdS], PY35—77205 |
Primary Blue Cyan (PBC) | Copper Phthalocyanine β [C32H16CuN8], PB15:3—74160 |
Permanent Blue Light (PBL) | Titanium Dioxide [TiO2] PW6—77891, Chlorinated Phthalocyanine [C32HCl15CuN], PG7—74260, Copper Phthalocyanine β [C32H16CuN8], PB15:3—74160 |
Permanent Green Light (PGL) | Arylide yellow, PY97—11767, Titanium Dioxide [TiO2], PW6—77891, Chlorinated Phthalocyanine [C32HCl15CuN], PG7—74260 |
Primary Red Magenta (PRM) | Quinacridone [C20H12N2O2], PV19—73900 |
Primary Yellow (PI) | Arylide Yellow, PY97—11767 |
Titanium White (TW) | Titanium Dioxide [TiO2], PW6—77891 |
Zinc White (ZW) | Zinc Oxide [ZnO], PW4—77947 |
Paint | Background | Spectral Feature and Range [nm] | Technique | Fitting Parameters | Adjusted R2 | ||
---|---|---|---|---|---|---|---|
CB | w | max @808–811 | FORS | 75.29 | 23.78 | −7 × | 0.98 |
Scanner | 71.46 | 23.13 | −5 × | ||||
b | max @710–760 | FORS | 70.1 | −74.28 | −9 × | 0.99 | |
Scanner | 64.16 | −79.75 | −11 × | ||||
CR | w | n.a. | FORS | n.a. | n.a. | n.a. | n.a. |
Scanner | n.a. | n.a. | n.a. | ||||
b | flex @1400 | FORS | 94.19 | −36.15 | −9 × | 0.98 | |
Scanner | 87.7 | −36.6 | −10 × | ||||
CY | w | n.a. | FORS | n.a. | n.a. | n.a. | n.a. |
Scanner | n.a. | n.a. | n.a. | ||||
b | flex @1705 | FORS | 65.93 | 154.23 | −25 × | 0.99 | |
Scanner | 69.01 | −97.52 | −19 × | ||||
PBC | w | max @950 | FORS | 33.03 | 66.86 | −6 × | 0.99 |
Scanner | 36.52 | 53.01 | −8 × | ||||
b | max @925–950 | FORS | 38.46 | −37.28 | −8 × | 0.99 | |
Scanner | 37.21 | −34.98 | −7 × | ||||
PBL | w | n.a. | FORS | n.a. | n.a. | n.a. | n.a. |
Scanner | n.a. | n.a. | n.a. | ||||
b | max @1230 | FORS | 91.73 | −127.65 | −24 × | 0.99 | |
Scanner | 86.42 | −78.84 | −18 × | ||||
PGL | w | max @1050 | FORS | 69.17 | 22.57 | −8 × | 0.99 |
Scanner | 64.72 | 22.90 | −8 × | ||||
b | n.a. | FORS | n.a. | n.a. | n.a. | n.a. | |
Scanner | n.a. | n.a. | n.a. | ||||
PRM | w | flex @610 | FORS | 45.97 | −7.06 | −4 × | 0.97 |
Scanner | 43.76 | −3.72 | −5 × | ||||
b | flex @610 | FORS | 29.93 | −20.94 | −6 × | 0.99 | |
Scanner | 29.34 | −23.34 | −10 × | ||||
PY | w | max @2010 | FORS | 32.97 | 29.38 | −6 × | 0.99 |
Scanner | 33.13 | 24.45 | −6 × | ||||
b | max @550–570 | FORS | 91.12 | −45.4 | −6 × | 0.99 | |
Scanner | 80.9 | −42.05 | −9 × | ||||
TW | w | n.a. | FORS | n.a. | n.a. | n.a. | n.a. |
Scanner | n.a. | n.a. | n.a. | ||||
b | max @1230 | FORS | 100.86 | −72.65 | −17 × | 0.99 | |
Scanner | 89.51 | −60.77 | −19 × | ||||
ZW | w | n.a. | FORS | n.a. | n.a. | n.a. | n.a. |
Scanner | n.a. | n.a. | n.a. | ||||
b | max @420–520 | FORS | 101.20 | −50.74 | −14 × | 0.99 | |
Scanner | 98.77 | −46.81 | −14 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Fovo, A.; Martínez-Weinbaum, M.; Oujja, M.; Castillejo, M.; Fontana, R. Reflectance Spectroscopy as a Novel Tool for Thickness Measurements of Paint Layers. Molecules 2023, 28, 4683. https://doi.org/10.3390/molecules28124683
Dal Fovo A, Martínez-Weinbaum M, Oujja M, Castillejo M, Fontana R. Reflectance Spectroscopy as a Novel Tool for Thickness Measurements of Paint Layers. Molecules. 2023; 28(12):4683. https://doi.org/10.3390/molecules28124683
Chicago/Turabian StyleDal Fovo, Alice, Marina Martínez-Weinbaum, Mohamed Oujja, Marta Castillejo, and Raffaella Fontana. 2023. "Reflectance Spectroscopy as a Novel Tool for Thickness Measurements of Paint Layers" Molecules 28, no. 12: 4683. https://doi.org/10.3390/molecules28124683
APA StyleDal Fovo, A., Martínez-Weinbaum, M., Oujja, M., Castillejo, M., & Fontana, R. (2023). Reflectance Spectroscopy as a Novel Tool for Thickness Measurements of Paint Layers. Molecules, 28(12), 4683. https://doi.org/10.3390/molecules28124683