Monomer and Oligomer Transition of Zinc Phthalocyanine Is Key for Photobleaching in Photodynamic Therapy
Abstract
:1. Introduction
2. Results
2.1. Photosensitizer Aggregate Possessed Neither Photobleaching nor Photodynamic Effect
2.2. Monomeric Photosensitizer Is Photodynamically Active but Can Be Photobleached
2.3. Aggregated PS in Bacterial Suspension Showed Highly Photodynamic Efficacy
2.4. Membrane Surface Triggered the Disassembly of PS Aggregate to Release PS Monomer
2.5. LED Light Facilitated the Disassembly of PS Aggregation and the Generation of More PS Monomers
2.6. Mechanistic Studies–PS Aggregate Reached Fast Saturated Binding to Membrane Surface in Only 3–6 min
2.7. Mechanistic Studies–Partition of PS Aggregate between Bacterial Plasma Membrane and Bacterial Wall
2.8. Mechanistic Studies–Cell Membrane Integrity
2.9. Mechanistic Studies–PS Aggregate Released Its Monomer to Induce Altered Expression Profiles of Related Genes
3. Discussion
4. Materials and Methods
4.1. Light Source
4.2. Bacterial Cell Preparation
4.3. Spheroplast Preparation
4.4. Synthesis of ZnPc(Lys)5
4.5. Residual PS Aggregation Measurements
4.6. Bacterial Uptake of PS Aggregation by Bacteria
4.7. Photostability Measurements
4.8. Binding Kinetics of PS Aggregation onto Bacteria
4.9. Antibacterial Activity Test
4.10. Fractions of PS Aggregation on Bacterial Surface
4.11. Fraction of Bound PS Aggregation under Illumination
4.12. Measurement of Spheroplasts Yield
4.13. The Optimal Time for Adding PS Aggregation to Spheroplasts Suspension
4.14. Bacterial Uptake of PS Aggregation by Bacteria
4.15. Measurement of Dark Toxicity of PS Aggregation to Bacteria
4.16. The Observation of Bacterial Growth Curve
4.17. Outer-Membrane Disruption Assay
4.18. Bacterial Membrane Permeability
4.19. RT-qPCR Analyses of Related Gene Expression
4.20. Hydrophobicity Measurement
4.21. Zeta Potential Measurements
4.22. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wilson, R.; Kinloch, E.; Makaroff, L.E.; Bailey-Bearfield, A.; Stephens, R.; Rawlinson, J.; Oliver, K. A major conditions strategy cannot replace a national cancer plan—Patient advocates voice their concerns. Lancet Oncol. 2023, 24, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A. Improving access to global cancer services. Lancet 2023, 401, 1338–1339. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Thomson, C.A.; Sullivan, K.R.; Howe, C.L.; Kushi, L.H.; Caan, B.J.; Neuhouser, M.L.; Bandera, E.V.; Wang, Y.; Robien, K.; et al. American Cancer Society nutrition and physical activity guideline for cancer survivors. CA Cancer J. Clin. 2022, 72, 230–262. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 8. [Google Scholar] [CrossRef]
- Alzeibak, R.; Mishchenko, T.A.; Shilyagina, N.Y.; Balalaeva, I.V.; Vedunova, M.V.; Krysko, D.V. Targeting immunogenic cancer cell death by photodynamic therapy: Past, present and future. J. ImmunoTherapy Cancer 2021, 9, 22. [Google Scholar] [CrossRef]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef]
- Georgakoudi, I.; Foste, T.H. Effects of the Subcellular Redistribution of Two Nile Blue Derivatives on Photodynamic Oxygen Consumption. Photochem. Photobiol. 1998, 68, 8. [Google Scholar] [CrossRef]
- Dysart, J.S.; Patterson, M.S.; Farrell, T.J.; Singh, G. Relationship Between mTHPC Fluorescence Photobleaching and Cell Viability During In Vitro Photodynamic Treatment of DP16 Cells. Photochem. Photobiol. 2002, 75, 7. [Google Scholar] [CrossRef]
- Coutier, S.P.; Mitra, S.; Bezdetnaya, L.N.; Foster, T.H.; Guillemin, F.O. Effects of Fluence Rate on Cell Survival and Photobleaching in MetaTetra-(hydroxyphenyl)chlorin–photosensitized Colo 26 Multicell Tumor Spheroids. Photochem. Photobiol. 2001, 73, 7. [Google Scholar] [CrossRef]
- Atif, M.; Zellweger, M.; Wagnières, G. Review of the role played by the photosensitizer’s photobleaching during photodynamic therapy. J. Optoelectron. Adv. Mater. 2016, 18, 13. [Google Scholar]
- Atif, M.; Stringer, M.R.; Cruse-Sawyer, J.E.; Dyer, P.E.; Brown, S.B. The influence of intracellular mTHPC concentration upon photobleaching dynamics. Photodiagnosis Photodyn. Ther. 2005, 2, 235–238. [Google Scholar] [CrossRef]
- Wainwright, M.; Maisch, T.; Nonell, S.; Plaetzer, K.; Almeida, A.; Tegos, G.P.; Hamblin, M.R. Photoantimicrobials—Are we afraid of the light? Lancet Infect. Dis. 2017, 17, e49–e55. [Google Scholar] [CrossRef]
- Liu, D.; Li, L.; Chen, J.; Chen, Z.; Jiang, L.; Yuan, C.; Huang, M. Dissociation of zinc phthalocyanine aggregation on bacterial surface is key for photodynamic antimicrobial effect. J. Porphyr. Phthalocyanines 2018, 22, 925–934. [Google Scholar] [CrossRef]
- Li, L.; Luo, Z.; Chen, Z.; Chen, J.; Zhou, S.; Xu, P.; Hu, P.; Wang, J.; Chen, N.; Huang, J.; et al. Enhanced photodynamic efficacy of zinc phthalocyanine by conjugating to heptalysine. Bioconjug. Chem. 2012, 23, 2168–2172. [Google Scholar] [CrossRef]
- Chen, J.; Chen, N.; Huang, J.; Wang, J.; Huang, M. Derivatizable phthalocyanine with single carboxyl group: Synthesis and purification. Inorg. Chem. Commun. 2006, 9, 313–315. [Google Scholar] [CrossRef]
- Jia, Y.; Li, J.; Chen, J.; Hu, P.; Jiang, L.; Chen, X.; Huang, M.; Chen, Z.; Xu, P. Smart Photosensitizer: Tumor-Triggered Oncotherapy by Self-Assembly Photodynamic Nanodots. ACS Appl. Mater. Interfaces 2018, 10, 15369–15380. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, K.; Chen, Z.; Chen, J.; Hu, P.; Cai, L.; Iqbal, Z.; Huang, M. Rapid killing of bacteria by a new type of photosensitizer. Appl. Microbiol. Biotechnol. 2017, 101, 4691–4700. [Google Scholar] [CrossRef]
- Kawai, S.; Hashimoto, W.; Murata, K. Transformation of Saccharomyces cerevisiae and other fungi: Methods and possible underlying mechanism. Bioeng. Bugs 2010, 1, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Sun, T.L.; Huang, H.W. Physical properties of Escherichia coli spheroplast membranes. Biophys. J. 2014, 107, 2082–2090. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Sun, T.L.; Huang, H.W. Mode of Action of Antimicrobial Peptides on E. coli Spheroplasts. Biophys. J. 2016, 111, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; LaBouyer, M.A.; Darling, L.E.; Elmore, D.E. Bacterial Spheroplasts as a Model for Visualizing Membrane Translocation of Antimicrobial Peptides. Antimicrob. Agents Chemother. 2016, 60, 6350–6352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Lei, W.; Jiang, G.; Hou, Y.; Zhang, B.; Zhou, Q.; Wang, X. Selective photodynamic inactivation of bacterial cells over mammalian cells by new triarylmethanes. Langmuir 2014, 30, 14573–14580. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, Q.; Liu, L.; Lv, F.; Li, S.; Yang, G.; Wang, S. Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv. Mater. 2011, 23, 4805–4810. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhou, S.; Chen, J.; Deng, Y.; Luo, Z.; Chen, H.; Hamblin, M.R.; Huang, M. Pentalysine beta-carbonylphthalocyanine zinc: An effective tumor-targeting photosensitizer for photodynamic therapy. ChemMedChem 2010, 5, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.C.; Chang, S.C.; Ge, M.C.; Liu, T.P.; Lu, J.J. Novel single-nucleotide variations associated with vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Infect. Drug Resist. 2018, 11, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.W.; Fisher, J.F.; Mobashery, S. Bacterial cell-wall recycling. Ann. N. Y. Acad. Sci. 2013, 1277, 54–75. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.; Dunsmore, C.J.; Leeds, J.A.; Patching, S.G.; Sachdeva, M.; Blake, K.L.; Stubbings, W.J.; Simmons, K.J.; Henderson, P.J.; De Los Angeles, J.; et al. Benzothioxalone derivatives as novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferases (MurA and MurZ). J. Antimicrob. Chemother. 2010, 65, 2566–2573. [Google Scholar] [CrossRef]
- Dunsmore, C.J.; Miller, K.; Blake, K.L.; Patching, S.G.; Henderson, P.J.; Garnett, J.A.; Stubbings, W.J.; Phillips, S.E.; Palestrant, D.J.; De Los Angeles, L.; et al. 2-Aminotetralones: Novel inhibitors of MurA and MurZ. Bioorg. Med. Chem. Lett. 2008, 18, 1730–1734. [Google Scholar] [CrossRef]
- Baltz, R.H. Daptomycin: Mechanisms of action and resistance, and biosynthetic engineering. Curr. Opin. Chem. Biol. 2009, 13, 144–151. [Google Scholar] [CrossRef]
- Oku, Y.; Kurokawa, K.; Ichihashi, N.; Sekimizu, K. Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 2004, 150 Pt 1, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Staubitz, P.; Neumann, H.; Schneider, T.; Wiedemann, I.; Peschel, A. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol. Lett. 2004, 231, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [Green Version]
- Ye, R.; Xu, H.; Wan, C.; Peng, S.; Wang, L.; Xu, H.; Aguilar, Z.P.; Xiong, Y.; Zeng, Z.; Wei, H. Antibacterial activity and mechanism of action of epsilon-poly-L-lysine. Biochem. Biophys. Res. Commun. 2013, 439, 148–153. [Google Scholar] [CrossRef]
- Song, Y.; Rubio, A.; Jayaswal, R.K.; Silverman, J.A.; Wilkinson, B.J. Additional routes to Staphylococcus aureus daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies. PLoS ONE 2013, 8, e58469. [Google Scholar] [CrossRef]
- Salehi, T.Z.; Tonelli, A.; Mazza, A.; Staji, H.; Badagliacca, P.; Tamai, I.A.; Jamshidi, R.; Harel, J.; Lelli, R.; Masson, L. Genetic characterization of Escherichia coli O157:H7 strains isolated from the one-humped camel (Camelus dromedarius) by using microarray DNA technology. Mol. Biotechnol. 2012, 51, 283–288. [Google Scholar] [CrossRef]
- Adikesavan, A.K.; Katsonis, P.; Marciano, D.C.; Lua, R.; Herman, C.; Lichtarge, O. Separation of Recombination and SOS Response in Escherichia coliRecA Suggests LexA Interaction Sites. PLoS Genet. 2011, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H. Detection of Cytolethal Distending Toxin and Other Virulence Characteristics of Enteropathogenic Escherichia coli Isolates from Diarrheal Patients in Republic of Korea. J. Microbiol. Biotechnol. 2009, 19, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B Biol. 1997, 39, 18. [Google Scholar] [CrossRef]
- Angotti, M.; Maunit, B.; Muller, J.-F.; Bezdetnaya, L.; Guillemin, F. Matrix-assisted laser desorption/Ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry: A method to characterize temoporpfin photoproducts. Rapid Commun. Mass Spectrom. 1999, 13, 7. [Google Scholar] [CrossRef]
- Kasselouri, A.; Bourdon, O.; Demore, D.; Blais, J.C.; Prognon, P.; Bourg-Heckly, G.; Blais, J. Fluorescence and mass spectrometry studies of meta-tetra(hydroxyphenyl)chlorin photoproducts. Photochem. Photobiol. 1999, 70, 275–279. [Google Scholar] [CrossRef]
- Yushchenko, D.A.; Shvadchak, V.V.; Klymchenko, A.S.; Duportail, G.; Mélyb, Y.; Pivovarenko, V.G. 2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer. New J. Chem. 2006, 30, 7. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Li, G.; Xiao, H.; Lei, Y.; Huang, X.; Chen, J.; Wu, H.; Ding, J.; Cheng, Y. Aggregation-Induced Fluorescence Emission Properties of Dicyanomethylene-1,4-dihydropyridine Derivatives. J. Phys. Chem. C 2015, 119, 6737–6748. [Google Scholar] [CrossRef]
- Gümüştaş, M.K.; Sesalan, B.S.; Atukeren, P.; Yavuz, B.; Gül, A. The photodegradation of a zinc phthalocyanine. J. Coord. Chem. 2010, 63, 4319–4331. [Google Scholar] [CrossRef]
- Kuznetsova, N.A.; Kaliya, O.L. Oxidative photobleaching of phthalocyanines in solution. J. Porphyr. Phthalocyanines 2012, 16, 705–712. [Google Scholar] [CrossRef]
- Dysart, J.S.; Patterson, M.S. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys. Med. Biol. 2005, 50, 50. [Google Scholar] [CrossRef]
- ThermoFisher. Molecular Probes Handbook—A Guide to Fluorescent Probes and Labeling Technologies; ThermoFisher Scientific: Waltham, MA, USA, 2010; Volume 2010, p. 973. [Google Scholar]
- Kornguth, S.E.; Kalinke, T.; Robins, H.I.; Cohen, J.D.; Turski, P. Preferential Binding of Radiolabeled Poly-L-lysines to C6 and U87 MG Glioblastomas Compared with Endothelial Cells in Vitro. Cancer Res. 1989, 49, 7. [Google Scholar]
- Maguire, R.J. Occurrence and persistence of dyes in a Canadian river. Water Sci. Technol. 1992, 25, 270. [Google Scholar] [CrossRef]
- Ramsay, J.A.; Nguyen, T. Decoloration of textile dyes by Trametes versicolor and its effect on dye toxicity. Biotechnol. Lett. 2002, 24, 6. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Wang, D.; Li, L.; Zhou, S.; Huang, J.H.; Chen, J.; Hu, P.; Huang, M. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection. J. Biomed. Opt. 2016, 21, 18001. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Yan, S.; Chen, Z.; Deng, Y.; Xu, P.; Chen, J.; Liu, W.; Hu, P.; Huang, M.; et al. An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection. J. Porphyr. Phthalocyanines 2017, 21, 205–210. [Google Scholar] [CrossRef]
- Vettiger, A.; Winter, J.; Lin, L.; Basler, M. The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nat. Commun. 2017, 8, 16088. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.; O’Driscoll, N.H.; Lamb, A.J. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell. Mol. Life Sci. 2016, 73, 4471–4492. [Google Scholar] [CrossRef]
- Damodaran, S. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries—A hypothesis. Adv. Colloid Interface Sci. 2015, 221, 22–33. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Zheng, Y.; Zhou, S.; Wang, J.; Chen, N.; Huang, J.; Yan, F.; Huang, M. Substituted zinc phthalocyanine as an antimicrobial photosensitizer for periodontitis treatment. J. Porphyr. Phthalocyanines 2011, 15, 293–299. [Google Scholar] [CrossRef]
- Song, L.; Hennink, E.J.; Young, T.; Tanke, H.J. Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy. Biophys. J. 1995, 68, 13. [Google Scholar] [CrossRef]
- Benson, D.M.; Bryan, J.; Plant, A.L.; Gotto, A.M., Jr.; Smtih, L.C. Digital imaging fluorescence microscopy: Spatial heterogeneity of photobleaching rate constants in individual cells. J. Cell Biol. 1985, 100, 15. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.H.; Chiou, C.H.; Chang, C.K.; Juang, R.S. Photocatalytic degradation of phenol on different phases of TiO(2) particles in aqueous suspensions under UV irradiation. J. Environ. Manag. 2011, 92, 3098–3104. [Google Scholar] [CrossRef]
- Wang, W.-D.; Xu, S.-Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate. J. Food Eng. 2007, 82, 271–275. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, Y.; Meng, S.; Yang, B.; Pang, L.; Wang, C.; Liu, T. Mechanism and In Vivo Evaluation: Photodynamic Antibacterial Chemotherapy of Lysine-Porphyrin Conjugate. Front. Microbiol. 2016, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Depan, D.; Misra, R.D. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 34, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.-L.; Capjakb, I.; Vrček, I.V.; Bondarenko, O.M.; Imbi Kurveta, H.V.; Ivask, A.; Kasemets, K.; Kahru, A. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids Surf. B Biointerfaces 2018, 170, 10. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Al-Nazawi, M.; Alderson, G. Permeabilising effects of sub-inhibitory concentrations of microcystin on the growth ofEscherichia coli. FEMS Microbiol. Lett. 2004, 230, 167–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Dang, Q.; Liu, C.; Yan, J.; Wang, T.; Fan, B.; Cha, D.; Li, X.; Liang, S.; Zhang, Z. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism. Carbohydr. Polym. 2016, 149, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Thennarasu, S.; Tan, A.; Penumatchu, R.; Shelburne, C.E.; Heyl, D.L.; Ramamoorthy, A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys. J. 2010, 98, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Misra, R.; Morrison, K.D.; Cho, H.J.; Khuu, T. Importance of Real-Time Assays to Distinguish Multidrug Efflux Pump-Inhibiting and Outer Membrane-Destabilizing Activities in Escherichia coli. J. Bacteriol. 2015, 197, 2479–2488. [Google Scholar] [CrossRef] [Green Version]
- Shang, D.; Sun, Y.; Wang, C.; Wei, S.; Ma, L.; Sun, L. Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis. Appl. Microb. Cell Physiol. 2012, 96, 10. [Google Scholar] [CrossRef]
- Wong, M.L.; Medrano, J.F. Real-time PCR for mRNA quantitation. BioTechniques 2005, 39, 11. [Google Scholar] [CrossRef]
- Chen, F.J.; Lauderdale, T.L.; Lee, C.H.; Hsu, Y.C.; Huang, I.W.; Hsu, P.C.; Yang, C.S. Effect of a Point Mutation in mprF on Susceptibility to Daptomycin, Vancomycin, and Oxacillin in an MRSA Clinical Strain. Front. Microbiol. 2018, 9, 1086. [Google Scholar] [CrossRef]
- Liang, S.; Dang, Q.; Liu, C.; Zhang, Y.; Wang, Y.; Zhu, W.; Chang, G.; Sun, H.; Cha, D.; Fan, B. Characterization and antibacterial mechanism of poly(aminoethyl) modified chitin synthesized via a facile one-step pathway. Carbohydr. Polym. 2018, 195, 275–287. [Google Scholar] [CrossRef]
- Re, B.D.; Sgorbati, B.; Miglioli, M.; Palenzona, D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 2000, 31, 5. [Google Scholar]
- Fang, Y.; Liu, T.; Zou, Q.; Zhao, Y.; Wu, F. Water-soluble benzylidene cyclopentanone based photosensitizers for in vitro and in vivo antimicrobial photodynamic therapy. Sci. Rep. 2016, 6, 28357. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, W.; Sun, L.; Ma, L.; Shang, D. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Biomaterials 2015, 37, 299–311. [Google Scholar] [CrossRef]
Bacterial Strains | Incubation Time | |
---|---|---|
MIC | MBC | |
E. coli | 1.6 | 3.2 |
S. aureus | 0.8 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Jiang, L.; Chen, J.; Chen, Z.; Yuan, C.; Lin, D.; Huang, M. Monomer and Oligomer Transition of Zinc Phthalocyanine Is Key for Photobleaching in Photodynamic Therapy. Molecules 2023, 28, 4639. https://doi.org/10.3390/molecules28124639
Liu D, Jiang L, Chen J, Chen Z, Yuan C, Lin D, Huang M. Monomer and Oligomer Transition of Zinc Phthalocyanine Is Key for Photobleaching in Photodynamic Therapy. Molecules. 2023; 28(12):4639. https://doi.org/10.3390/molecules28124639
Chicago/Turabian StyleLiu, Dafeng, Longguang Jiang, Jincan Chen, Zhuo Chen, Cai Yuan, Donghai Lin, and Mingdong Huang. 2023. "Monomer and Oligomer Transition of Zinc Phthalocyanine Is Key for Photobleaching in Photodynamic Therapy" Molecules 28, no. 12: 4639. https://doi.org/10.3390/molecules28124639
APA StyleLiu, D., Jiang, L., Chen, J., Chen, Z., Yuan, C., Lin, D., & Huang, M. (2023). Monomer and Oligomer Transition of Zinc Phthalocyanine Is Key for Photobleaching in Photodynamic Therapy. Molecules, 28(12), 4639. https://doi.org/10.3390/molecules28124639