Isomerization and Stabilization of Amygdalin from Peach Kernels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Factors Affecting Amygdalin Isomerization
2.1.1. Temperature, pH, Ethanol Concentration, Heating Time, and Container Material
2.1.2. Anion Type and Concentration in Solvent
2.1.3. Interactions between Factors
2.2. The Effect of Amygdalin Isomerization on Cell Viability
2.2.1. Cell Viability and IC50
2.2.2. Cell Morphology
2.2.3. Hydrolysis Rate of β-Glucosidase
2.3. Preparation of Peach Kernel Amygdalin with a Low Isomer Ratio
2.3.1. Solid to Liquid, Ethanol Concentration, Ultrasonic Power, and Temperature
2.3.2. Comparison of the Optimized vs. Common Extraction Process of Amygdalin
2.4. Stabilization and Vitro Release of D-Amygdalin
2.4.1. Encapsulation Efficiency and Drug Loading Rate
2.4.2. Thermal Stability
2.4.3. FTIR Analysis
2.4.4. Swelling Behavior and Release In Vitro Digestion
3. Materials and Methods
3.1. Materials and Reagents
3.2. Analysis of Isomerization Factors
3.2.1. Single Temperatures, Incubation Times, pH, and Ethanol Concentration
3.2.2. Container Material
3.2.3. The Combined Effect of Container Material, pH, and Temperature
3.2.4. Determination of Isomerization Ratios
3.3. Analysis of the Cytotoxic Activity of Amygdalin
3.4. Hydrolysis of L/D Amygdalin
3.5. Extraction of Amygdalin from Peach Kernels
3.5.1. Single Factor Extraction Experiment
3.5.2. Determination of Encapsulation Efficiency and Drug Loading Rate
3.5.3. Orthogonal Experiments
3.6. Encapsulation of Amygdalin
3.6.1. Preparation of Alginate–Amygdalin Hydrogel Beads
3.6.2. FTIR Determination
3.6.3. Thermal Stability of Amygdalin
3.6.4. Swelling Percentage
3.6.5. Release In Vitro Digestion
3.7. Statistic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chassagne, D.; Crouzet, J.C.; Bayonove, C.L.; Baumes, R.L. Identification and quantification of passion fruit cyanogenic glycosides. J. Agric. Food Chem. 1996, 44, 3817–3820. [Google Scholar] [CrossRef]
- Sohail, R.; Abbas, S.R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int. J. Biol. Macromol. 2020, 153, 36–45. [Google Scholar] [CrossRef]
- He, X.; Wu, L.; Wang, W.; Xie, P.; Chen, Y.; Wang, F. Amygdalin—A pharmacological and toxicological review. J. Ethnopharmacol. 2020, 254, 112717. [Google Scholar] [CrossRef]
- Lee, H.M.; Moon, A. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells. Biomol. Ther. 2016, 24, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ma, J.; Wang, F.; Hu, J.; Cui, A.; Wei, C.; Yang, Q.; Li, F. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. Immunopharmacol. Immunotoxicol. 2013, 35, 43–51. [Google Scholar] [CrossRef]
- Seong, H.; Hyunsook, J.; Namshin, K. Micellar electrokinetic chromatography for the analysis of D-amygdalin and its epimer in apricot kerne. J. Chromatogr. A 2000, 866, 253–255. [Google Scholar]
- Nahrstedt, A. Die Isomerisierung von Amygdalin und Homologen. Arch. Pharm. 1975, 308, 903–910. [Google Scholar] [CrossRef]
- Çapan, İ.; Servi, S.; Aysal, A.İ.; Sabır, P.R. Isolation of amygdalin epimer at high diastereomeric purity and its structural characterization by spectroscopic and Q-TOF LC-MS methods. J. Chem. Metrol. 2021, 15, 172–185. [Google Scholar] [CrossRef]
- Song, S.; Ma, Q.; Tang, Q.; Chen, F.; Xing, X.; Guo, Y.; Guo, S.; Tan, X.; Luo, J. Stereoselective metabolism of amygdalin-based study of detoxification of Semen Armeniacae Amarum in the Herba Ephedrae-Semen Armeniacae Amarum herb pair. J. Ethnopharmacol. 2016, 179, 356–366. [Google Scholar] [CrossRef]
- Krieble, V.K. The amygdalins and their inter-reactions with emulsin. J. Am. Chem. Soc. 1912, 34, 716–735. [Google Scholar] [CrossRef] [Green Version]
- Wahab, M.F.; Breitbach, Z.S.; Armstrong, D.W.; Strattan, R.; Berthod, A. Problems and Pitfalls in the Analysis of Amygdalin and Its Epimer. J. Agric. Food Chem. 2015, 63, 8966–8973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.A.; Yao, L.J. State-of-the-art on the processing and comprehensive utilization of the apricot kernels. Sci. Agric. Sin. 2019, 52, 3430–3447. [Google Scholar]
- Mirzaei, H.; Rezaei, K. Amygdalin contents of oil and meal from wild almond: Effect of different heat pretreatment and extraction methods. J. Am. Oil Chem. Soc. 2019, 96, 1163–1171. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Q.A.; Wei, C.X. Aqueous two-phase system for the extraction of amygdalin from the debitterized water of apricot kernels. CyTA J. Food 2019, 17, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT 2019, 105, 182–189. [Google Scholar] [CrossRef]
- Lee, S.; Oh, A.; Shin, S. Amygdalin contents in peaches at different fruit development stages. Prev. Nutr. Food Sci. 2017, 22, 237–240. [Google Scholar]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.X.; Chen, B.; Shen, Y.H. Optimization extracting procrss of amygdalin from amygdalus pedunculatus pall by response surface analysis. Technol. Food Ind. 2014, 35, 270–273. [Google Scholar]
- Uchiyama, N.; Kim, I.H.; Kikura-Hanajiri, R.; Kawahara, N.; Konishi, T.; Goda, Y. HPLC separation of naringin, neohesperidin and their C-2 epimers in commercial samples and herbal medicines. J. Pharm. Biomed. Anal. 2008, 46, 864–869. [Google Scholar] [CrossRef]
- Turczan, J.W.; Medwick, T. Nuclear Magnetic Resonance Studies of Cyanogenetic Glycosides: Spectra of Amygdalin and Neoamygdalin in DMSO-d6 and D2O; Epimerization Studies; Predicted Laetrile Spectrum. J. Assoc. Off. Anal. Chem. 1979, 62, 190–196. [Google Scholar] [CrossRef]
- Del Cueto, J.; Møller, B.L.; Dicenta, F.; Sánchez-Pérez, R. β-Glucosidase activity in almond seeds. Plant Physiol. Biochem. 2018, 126, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ye, H.; Zheng, L. Determination of the epimerization rate constant of amygdalin by microemulsion electrokinetic chromatography. Electrophoresis 2011, 32, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Han, M.Y.; Liang, X.X.; Guan, B.; Li, P.; Wang, L. Hydrogen-Bond-Assisted Sequential Reaction of Silyl Glyoxylates: Stereoselective Synthesis of Silyl Enol Ethers. Org. Lett. 2021, 23, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Qian, L.; Ma, H.; Yu, X.; Zhang, Y.; Qu, W.; Zhang, X.; Xia, W. Enhancement of amygdalin activated with beta-D-glucosidase on HepG2 cells proliferation and apoptosis. Carbohydr. Polym. 2012, 90, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Makarević, J.; Rutz, J.; Juengel, E.; Kaulfuss, S.; Tsaur, I.; Nelson, K.; Pfitzenmaier, J.; Haferkamp, A.; Blaheta, R.A.J.P.O. Amygdalin influences bladder cancer cell adhesion and invasion in vitro. PLoS ONE 2014, 9, e110244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, A.A.; Salama, A.F.; Eldiasty, J.G.; Mosallam, S.A.E.-R.; El-Naggar, S.A.; El-Magd, M.A.; Nasser, H.M.; Elmetwalli, A.J.S.R. Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich ascites carcinoma and ameliorates the associated liver damage. Sci. Rep. 2022, 12, 6494. [Google Scholar] [CrossRef]
- Go, M.R.; Kim, H.J.; Yu, J.; Choi, S.J. Toxicity and Toxicokinetics of Amygdalin in Maesil (Prunus mume) Syrup: Protective Effect of Maesil against Amygdalin Toxicity. J. Agric. Food Chem. 2018, 66, 11432–11440. [Google Scholar] [CrossRef]
- Gunata, Y.Z.; Bayonove, C.L.; Tapiero, C.; Cordonnier, R.E. Hydrolysis of grape monoterpenyl. beta.-D-glucosides by various.beta.-glucosidases. J. Agric. Food Chem. 1990, 38, 1232–1236. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.-P.; Ji, H.-H.; Sun, N.-X.; Feng, Y.-Y. A cold-water soluble polysaccharide isolated from Grifola frondosa induces the apoptosis of HepG2 cells through mitochondrial passway. Int. J. Biol. Macromol. 2019, 125, 1232–1241. [Google Scholar] [CrossRef]
- Haisman, D.; Knight, D. The enzymic hydrolysis of amygdalin. Biochem. J. 1967, 103, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Azhar, A.N.H.; Amran, N.A.; Yusup, S.; Mohd Yusoff, M.H.J.M. Ultrasonic extraction of 2-acetyl-1-pyrroline (2AP) from Pandanus amaryllifolius Roxb. using ethanol as solvent. Molecules 2022, 27, 4906. [Google Scholar] [CrossRef]
- Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Ind. Crops Prod. 2019, 131, 106–116. [Google Scholar] [CrossRef]
- Gouda, M.; El-Din Bekhit, A.; Tang, Y.; Huang, Y.; Huang, L.; He, Y.; Li, X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. Ultrason. Sonochem. 2021, 73, 105538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, Q.A.; Yao, J.L. Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing. Ultrason. Sonochem. 2019, 58, 104614. [Google Scholar] [CrossRef]
- Duan, S.; Li, B. Research progress in structure of amygdalin and its degradation process. Food Sci. Technol. 2020, 45, 233–237. [Google Scholar]
- Cecarini, V.; Selmi, S.; Cuccioloni, M.; Gong, C.; Bonfili, L.; Zheng, Y.; Cortese, M.; Angeletti, M.; Kilani, S.; Eleuteri, A.M. Targeting Proteolysis with Cyanogenic Glycoside Amygdalin Induces Apoptosis in Breast Cancer Cells. Molecules 2022, 27, 7591. [Google Scholar] [CrossRef]
- Sampaio, G.L.; Pacheco, S.; Ribeiro, A.P.O.; Galdeano, M.C.; Gomes, F.S.; Tonon, R.V. Encapsulation of a lycopene-rich watermelon concentrate in alginate and pectin beads: Characterization and stability. LWT 2019, 116, 108589. [Google Scholar] [CrossRef]
- Kumar, R.S.S.; Vishwanath, K.; Singh, S.A.; Rao, A.A. Entrapment of α-amylase in alginate beads: Single step protocol for purification and thermal stabilization. Process Biochem. 2006, 41, 2282–2288. [Google Scholar] [CrossRef]
- Supramaniam, J.; Adnan, R.; Kaus, N.H.M.; Bushra, R. Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int. J. Biol. Macromol. 2018, 118, 640–648. [Google Scholar] [CrossRef]
- Yang, H.; Wang, W.; Zhang, J.; Wang, A. Preparation, characterization, and drug-release behaviors of a pH-sensitive composite hydrogel bead based on guar gum, attapulgite, and sodium alginate. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 369–376. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Camacho, D.H.; Uy, S.J.Y.; Cabrera, M.J.F.; Lobregas, M.O.S.; Fajardo, T.J.M.C. Encapsulation of folic acid in copper-alginate hydrogels and it’s slow in vitro release in physiological pH condition. Food Res. Int. 2019, 119, 15–22. [Google Scholar] [CrossRef] [PubMed]
Alginate/% | Encapsulation Efficiency/% | Drug Loading Rate/% | Water Content/% |
---|---|---|---|
1.0 | 36.08 ± 2.09 c | 17.16 ± 0.20 c | 98.00 ± 0.17 a |
1.5 | 62.27 ± 3.09 b | 18.63 ± 0.18 b | 97.40 ± 0.09 b |
2.0 | 85.93 ± 2.05 a | 19.21 ± 0.10 a | 97.03 ± 0.10 c |
2.5 | 87.49 ± 0.99 a | 17.27 ± 0.06 c | 96.84 ± 0.08 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Ye, J.; Song, Y.; Wei, Y.; Jiang, S.; Chen, Y.; Shao, X. Isomerization and Stabilization of Amygdalin from Peach Kernels. Molecules 2023, 28, 4550. https://doi.org/10.3390/molecules28114550
Zhang D, Ye J, Song Y, Wei Y, Jiang S, Chen Y, Shao X. Isomerization and Stabilization of Amygdalin from Peach Kernels. Molecules. 2023; 28(11):4550. https://doi.org/10.3390/molecules28114550
Chicago/Turabian StyleZhang, Decai, Jianfen Ye, Yu Song, Yingying Wei, Shu Jiang, Yi Chen, and Xingfeng Shao. 2023. "Isomerization and Stabilization of Amygdalin from Peach Kernels" Molecules 28, no. 11: 4550. https://doi.org/10.3390/molecules28114550
APA StyleZhang, D., Ye, J., Song, Y., Wei, Y., Jiang, S., Chen, Y., & Shao, X. (2023). Isomerization and Stabilization of Amygdalin from Peach Kernels. Molecules, 28(11), 4550. https://doi.org/10.3390/molecules28114550