A Fast and Efficient Procedure of Iron Species Determination Based on HPLC with a Short Column and Detection in High Resolution ICP OES
Abstract
:1. Introduction
2. Experimental
2.1. Gases and Reagents
2.2. Instrumentation
2.3. Sample Preparation
3. Results and Discussion
3.1. Optimization
3.1.1. Chromatographic Run
3.1.2. Spectrometric Detection
3.2. Analytical Figures of Merit
3.2.1. Detection Limits, Precision and Linear Calibration Range
3.2.2. Standard Addition Method
3.3. Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- De Mello Gabriel, G.V.; Pitombo, L.M.; Rosa, L.M.T.; Navarrete, A.A.; Botero, W.G.; Do Carmo, J.B.; De Oliveira, L.C. The Environmental Importance of Iron Speciation in Soils: Evaluation of Classic Methodologies. Environ. Monit. Assess. 2021, 193, 63. [Google Scholar] [CrossRef] [PubMed]
- Walna, B.; Spychalski, W.; Ibragimow, A. Fractionation of Iron and Manganese in the Horizons of a Nutrient-Poor Forest Soil Profile Using the Sequential Extraction Method. Pol. J. Environ. Stud. 2010, 19, 1029–1037. [Google Scholar]
- Miller, G.W.; Huang, I.J.; Welkie, G.W.; Pushnik, J.C. Function of Iron in Plants with Special Emphasis on Chloroplasts and Photosynthetic Activity. In Iron Nutrition in Soils and Plants; Abadía, J., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 19–28. ISBN 978-94-010-4224-6. [Google Scholar]
- Wu, L.; Ueda, Y.; Lai, S.; Frei, M. Shoot Tolerance Mechanisms to Iron Toxicity in Rice (Oryza sativa L.). Plant Cell Environ. 2017, 40, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Hoppler, M.; Egli, I.; Petry, N.; Gille, D.; Zeder, C.; Walczyk, T.; Blair, M.W.; Hurrell, R.F. Iron Speciation in Beans (Phaseolus vulgaris) Biofortified by Common Breeding. J. Food Sci. 2014, 79, C1–C6. [Google Scholar] [CrossRef] [PubMed]
- AlChoubassi, G.; Aszyk, J.; Pisarek, P.; Bierla, K.; Ouerdane, L.; Szpunar, J.; Lobinski, R. Advances in Mass Spectrometry for Iron Speciation in Plants. TrAC Trends Anal. Chem. 2018, 104, 77–86. [Google Scholar] [CrossRef]
- Nakai, I.; Taguchi, I.; Yamasaki, K. Chemical speciation of archaelogical objects by XRF/XANES analysis using synchroton radiation. Anal. Sci. 1991, 7, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Bardelli, F.; Barone, G.; Crupi, V.; Longo, F.; Maisano, G.; Majolino, D.; Mazzoleni, P.; Venuti, V. Iron Speciation in Ancient Attic Pottery Pigments: A Non-Destructive SR-XAS Investigation. J. Synchrotron Rad. 2012, 19, 782–788. [Google Scholar] [CrossRef]
- Orecchio, S. Speciation Studies of Iron in Ancient Pots from Sicily (Italy). Microchem. J. 2011, 99, 132–137. [Google Scholar] [CrossRef]
- Floresta, D.L.; Ardisson, J.D.; Fagundes, M.; Fabris, J.D.; Macedo, W.A.A. Oxidation States of Iron as an Indicator of the Techniques Used to Burn Clays and Handcraft Archaeological Tupiguarani Ceramics by Ancient Human Groups in Minas Gerais, Brazil. Hyperfine Interact. 2013, 224, 121–129. [Google Scholar] [CrossRef]
- Kozak, L.; Michałowski, A.; Proch, J.; Krueger, M.; Munteanu, O.; Niedzielski, P. Iron Forms Fe(II) and Fe(III) Determination in Pre-Roman Iron Age Archaeological Pottery as a New Tool in Archaeometry. Molecules 2021, 26, 5617. [Google Scholar] [CrossRef]
- Fortune, W.B.; Mellon, M.G. Speciation of Iron with o-Phenanthroline—A spectrophotometric study. Ind. Eng. Chem. 1938, 10, 60–64. [Google Scholar]
- Stookey, L.L. Ferrozine—A New Spectrophotometric Reagent for Iron. Anal. Chem. 1970, 42, 779–781. [Google Scholar] [CrossRef] [Green Version]
- Viollier, E.; Inglett, P.W.; Hunter, K.; Roychoudhury, A.N.; Van Cappellen, P. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Appl. Geochem. 2000, 15, 785–790. [Google Scholar] [CrossRef]
- Liu, K.; Wu, L.; Couture, R.-M.; Li, W.; Van Cappellen, P. Iron Isotope Fractionation in Sediments of an Oligotrophic Freshwater Lake. Earth Planet. Sci. Lett. 2015, 423, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Michaud, A.B.; Laufer, K.; Findlay, A.; Pellerin, A.; Antler, G.; Turchyn, A.V.; Røy, H.; Wehrmann, L.M.; Jørgensen, B.B. Glacial Influence on the Iron and Sulfur Cycles in Arctic Fjord Sediments (Svalbard). Geochim. Cosmochim. Acta 2020, 280, 423–440. [Google Scholar] [CrossRef]
- Laufer-Meiser, K.; Michaud, A.B.; Maisch, M.; Byrne, J.M.; Kappler, A.; Patterson, M.O.; Røy, H.; Jørgensen, B.B. Potentially Bioavailable Iron Produced through Benthic Cycling in Glaciated Arctic Fjords of Svalbard. Nat. Commun. 2021, 12, 1349. [Google Scholar] [CrossRef]
- Niedzielski, P.; Zielinska-Dawidziak, M.; Kozak, L.; Kowalewski, P.; Szlachetka, B.; Zalicka, S.; Wachowiak, W. Determination of Iron Species in Samples of Iron-Fortified Food. Food Anal. Methods 2014, 7, 2023–2032. [Google Scholar] [CrossRef] [Green Version]
- Kozak, L.; Niedzielski, P. The Long Term Tsunami Impact: Evolution of Iron Speciation and Major Elements Concentration in Tsunami Deposits from Thailand. Chemosphere 2017, 181, 37–43. [Google Scholar] [CrossRef]
- Niedzielski, P.; Kozak, L. Iron’s Fingerprint of Deposits—Iron Speciation as a Geochemical Marker. Environ. Sci. Pollut. Res. 2018, 25, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Yang, X.; Fan, F.; Li, Y. Factors Affecting the Determination of Iron Species in the Presence of Ferric Iron. Appl. Water Sci. 2018, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Braunschweig, J.; Bosch, J.; Heister, K.; Kuebeck, C.; Meckenstock, R.U. Reevaluation of Colorimetric Iron Determination Methods Commonly Used in Geomicrobiology. J. Microbiol. Methods 2012, 89, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Cardellicchio, N.; Cavalli, S.; Ragone, P.; Riviello, J.M. New Strategies for Determination of Transition Metals by Complexation Ion-Exchange Chromatography and Post Column Reaction. J. Chromatogr. A 1999, 847, 251–259. [Google Scholar] [CrossRef]
- Fredrikson, M.; Carlsson, N.-G.; Almgren, A.; Sandberg, A.-S. Simultaneous and Sensitive Analysis of Cu, Ni, Zn, Co, Mn, and Fe in Food and Biological Samples by Ion Chromatography. J. Agric. Food Chem. 2002, 50, 59–65. [Google Scholar] [CrossRef]
- Murgia, S.M.; Selvaggi, R.; Poletti, A. Determination of Trace Transition Metals in Environmental Matrices by Chelation Ion Chromatography. Environ. Monit. Assess. 2011, 174, 313–326. [Google Scholar] [CrossRef]
- Solovyev, N.; Vinceti, M.; Grill, P.; Mandrioli, J.; Michalke, B. Redox Speciation of Iron, Manganese, and Copper in Cerebrospinal Fluid by Strong Cation Exchange Chromatography—Sector Field Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta 2017, 973, 25–33. [Google Scholar] [CrossRef]
- Scott, S.; Housh, A.; Powell, G.; Anstaett, A.; Gerheart, A.; Benoit, M.; Wilder, S.; Schueller, M.; Ferrieri, R. Crop Yield, Ferritin and Fe(II) Boosted by Azospirillum Brasilense (HM053) in Corn. Agronomy 2020, 10, 394. [Google Scholar] [CrossRef] [Green Version]
- Ruth, K.A.; Shaw, R.W. Progress in Optimization of Transition Metal Cation Chromatography and Its Application to Analysis of Silicon. J. Chromatogr. A 1991, 546, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Divjak, B.; Franko, M.; Novič, M. Determination of Iron in Complex Matrices by Ion Chromatography with UV–Vis, Thermal Lens and Amperometric Detection Using Post-Column Reagents. J. Chromatogr. A 1998, 829, 167–174. [Google Scholar] [CrossRef]
- Atanassova, A.; Lam, R.; Zamble, D.B. A High-Performance Liquid Chromatography Method for Determining Transition Metal Content in Proteins. Anal. Biochem. 2004, 335, 103–111. [Google Scholar] [CrossRef]
- Kaasalainen, H.; Stefánsson, A.; Druschel, G.K. Determination of Fe(II), Fe(III) and Fe total in Thermal Water by Ion Chromatography Spectrophotometry (IC-Vis). Int. J. Environ. Anal. Chem. 2016, 96, 1074–1090. [Google Scholar] [CrossRef]
- Ashworth, C.; Weller, C.; Frisch, G. Quantifying Indium with Ion Chromatography in Hydro- and Biohydrometallurgical Leaching Solutions. J. Sep. Sci. 2019, 42, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Jian, Y.-L.; Chiu, K.-H.; Yak, H.-K. Simultaneous Speciation of Iron(II) and Iron(III) by Ion Chromatography with Chemiluminescence Detection. Anal. Sci. 2012, 28, 795–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernsebner, K.; Zorn, J.; Kanawati, B.; Walker, A.; Michalke, B. Manganese Leads to an Increase in Markers of Oxidative Stress as Well as to a Shift in the Ratio of Fe(Ii)/(Iii) in Rat Brain Tissue. Metallomics 2014, 6, 921–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proch, J.; Niedzielski, P. Iron Species Determination by High Performance Liquid Chromatography with Plasma Based Optical Emission Detectors: HPLC–MIP OES and HPLC–ICP OES. Talanta 2021, 231, 122403. [Google Scholar] [CrossRef]
- Hu, Q. Simultaneous Separation and Quantification of Iron and Transition Species Using LC-ICP-MS. Am. J. Anal. Chem. 2011, 2, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Michalke, B.; Willkommen, D.; Venkataramani, V. Iron Redox Speciation Analysis Using Capillary Electrophoresis Coupled to Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). Front. Chem. 2019, 7, 136. [Google Scholar] [CrossRef] [Green Version]
- Wolle, M.M.; Fahrenholz, T.; Rahman, G.M.M.; Pamuku, M.; ‘Skip’Kingston, H.M.; Browne, D. Method Development for the Redox Speciation Analysis of Iron by Ion Chromatography–Inductively Coupled Plasma Mass Spectrometry and Carryover Assessment Using Isotopically Labeled Analyte Analogues. J. Chromatogr. A 2014, 1347, 96–103. [Google Scholar] [CrossRef]
- Ajsuvakova, O.P.; Skalnaya, M.G.; Michalke, B.; Tinkov, A.A.; Serebryansky, E.P.; Karganov, M.Y.; Medvedeva, Y.S.; Skalny, A.V. Alteration of Iron (Fe), Copper (Cu), Zinc (Zn), and Manganese (Mn) Tissue Levels and Speciation in Rats with Desferioxamine-Induced Iron Deficiency. Biometals 2021, 34, 923–936. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Ragone, P.; Cavalli, S.; Riviello, J. Use of Ion Chromatography for the Determination of Transition Metals in the Control of Sewage-Treatment-Plant and Related Waters. J. Chromatogr. A 1997, 770, 185–193. [Google Scholar] [CrossRef]
- Salar Amoli, H.; Porgam, A.; Bashiri Sadr, Z.; Mohanazadeh, F. Analysis of Metal Ions in Crude Oil by Reversed-Phase High Performance Liquid Chromatography Using Short Column. J. Chromatogr. A 2006, 1118, 82–84. [Google Scholar] [CrossRef]
- Santiago-Rivas, S.; Moreda-Piñeiro, A.; Bermejo-Barrera, A.; Bermejo-Barrera, P. Fractionation Metallothionein-like Proteins in Mussels with on Line Metal Detection by High Performance Liquid Chromatography–Inductively Coupled Plasma-Optical Emission Spectrometry. Talanta 2007, 71, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Alcott, L.J.; Krause, A.J.; Hammarlund, E.U.; Bjerrum, C.J.; Scholz, F.; Xiong, Y.; Hobson, A.J.; Neve, L.; Mills, B.J.W.; März, C.; et al. Development of Iron Speciation Reference Materials for Palaeoredox Analysis. Geostand. Geoanal. Res. 2020, 44, 581–591. [Google Scholar] [CrossRef]
HPLC Conditions | |
---|---|
Pump | Varian ProStar 210 |
Columns | Dionex IonPac CG5A (50 mm × 4.0 mm, i.d.), Dionex IonPac CS5A (250 mm × 4.0 mm, i.d.) |
Mobile phases | 7.0 mmol L−1 PDCA, 66 mmol L−1 NaOH, 5.6 mmol L−1 Na2SO4, 74 mmol L−1 HCOOH |
Mobile phase flow rate (mL min−1) | 0.5 (CG5A), 2.0 (CS5A) |
Injection volume (µL) | 200 |
ICP hrOES conditions | |
Spectrometer | AnalytikJena PlasmaQuant PQ9000 Elite |
RF power (W) | 1200 |
Nebulizer gas flow rate (L min−1) | 0.7 |
Auxiliary gas flow rate (L min−1) | 1.0 |
Plasma gas flow rate (L min−1) | 12 |
Nebulizer/spray chamber type | OneNeb |
Torch view | Attenuated radial, attenuated axial |
Final analytical wavelength (nm) | Fe II 238.204 |
Species | RT (s) | Emission Line (nm) | Plasma View | Linear Calibration Range (mg kg−1) | R2 | Dilution Factor | DL (mg kg−1) | Precision (as RSD) (%) |
---|---|---|---|---|---|---|---|---|
Fe(III) | 123 ± 4 | 238.204 | Attenuated radial | DL–12,500 | 0.998 | 50 | 41 | - |
DL–25,000 | 100 | 82 | 4.5 | |||||
Attenuated axial | DL–3250 | 0.970 | 50 | 2.0 | - | |||
Fe(II) | 203 ± 7 | 238.204 | Attenuated radial | DL–10,000 | 0.981 | 50 | 50 | - |
DL–20,000 | 100 | 100 | 5.5 | |||||
Attenuated axial | DL–1500 | 0.988 | 50 | 12 | - |
ICP hrOES | Fe II 238.204 nm | |||
---|---|---|---|---|
Sample Solution (g kg−1) | Added (g kg−1) | Found (g kg−1) | Recovery (%) | |
A | ||||
Fe(III) | 11.2 ± 0.6 | 5.00 | 16.5 ± 0.9 | 97 ± 5 |
11.2 ± 0.6 | 10.0 | 22.4 ± 1.2 | 102 ± 5 | |
Fe(II) | 0.80 ± 0.05 | 5.00 | 6.91 ± 0.44 | 94 ± 6 |
0.80 ± 0.05 | 10.0 | 13.2 ± 0.8 | 95 ± 6 | |
B | ||||
Fe(III) | 3.11 ± 0.16 | 5.00 | 7.58 ± 0.39 | 81 ± 4 |
3.11 ± 0.16 | 10.0 | 15.0 ± 0.8 | 108 ± 6 | |
Fe(II) | 1.37 ± 0.09 | 5.00 | 7.94 ± 0.50 | 101 ± 6 |
1.37 ± 0.09 | 10.0 | 13.7 ± 0.9 | 95 ± 6 | |
C | ||||
Fe(III) | 13.2 ± 0.7 | 5.00 | 19.8 ± 1.0 | 120 ± 6 |
13.2 ± 0.7 | 10.0 | 25.6 ± 1.3 | 113 ± 6 | |
Fe(II) | 4.83 ± 0.31 | 5.00 | 11.6 ± 0.7 | 104 ± 7 |
4.83 ± 0.31 | 10.0 | 16.7 ± 1.1 | 92 ± 6 |
Methods | HPLC–ICP hrOES (g kg−1) | ICP hrOES (g kg−1) | ||||||
---|---|---|---|---|---|---|---|---|
Sample Matrix | Plasma View | DF | No. | Fe(III) | Fe(II) | Sum | Total Content | Sum as % of Total Content |
Sediments | Attenuated axial | 50 | A1 | 0.806 | 0.171 | 0.977 | 1.20 | 81 |
50 | A2 | 0.991 | 0.121 | 1.11 | 1.55 | 72 | ||
Attenuated radial | 50 | A3 | 6.86 | <DL | 6.86 | 9.64 | 71 | |
100 | A4 | 24.4 | 1.87 | 26.2 | 31.3 | 84 | ||
100 | A5 | 9.93 | 16.9 | 26.8 | 33.0 | 81 | ||
Soil | Attenuated radial | 50 | B1 | 2.33 | 1.13 | 3.45 | 3.59 | 96 |
50 | B2 | 4.04 | 3.18 | 7.21 | 8.42 | 86 | ||
50 | B3 | 2.45 | 3.43 | 5.88 | 6.34 | 93 | ||
50 | B4 | 0.814 | 0.823 | 1.64 | 2.07 | 79 | ||
100 | B5 | 2.38 | 1.34 | 3.72 | 3.84 | 97 | ||
Archaeological pottery | Attenuated radial | 50 | C1 | 13.9 | <DL | 13.9 | 16.6 | 84 |
50 | C2 | 13.1 | 0.151 | 13.2 | 15.9 | 83 | ||
100 | C3 | 16.0 | <DL | 16.0 | 18.7 | 85 | ||
100 | C4 | 15.5 | 2.44 | 17.9 | 18.2 | 98 | ||
100 | C5 | 11.6 | 2.42 | 14.0 | 16.4 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orłowska, A.; Proch, J.; Niedzielski, P. A Fast and Efficient Procedure of Iron Species Determination Based on HPLC with a Short Column and Detection in High Resolution ICP OES. Molecules 2023, 28, 4539. https://doi.org/10.3390/molecules28114539
Orłowska A, Proch J, Niedzielski P. A Fast and Efficient Procedure of Iron Species Determination Based on HPLC with a Short Column and Detection in High Resolution ICP OES. Molecules. 2023; 28(11):4539. https://doi.org/10.3390/molecules28114539
Chicago/Turabian StyleOrłowska, Aleksandra, Jędrzej Proch, and Przemysław Niedzielski. 2023. "A Fast and Efficient Procedure of Iron Species Determination Based on HPLC with a Short Column and Detection in High Resolution ICP OES" Molecules 28, no. 11: 4539. https://doi.org/10.3390/molecules28114539
APA StyleOrłowska, A., Proch, J., & Niedzielski, P. (2023). A Fast and Efficient Procedure of Iron Species Determination Based on HPLC with a Short Column and Detection in High Resolution ICP OES. Molecules, 28(11), 4539. https://doi.org/10.3390/molecules28114539