Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells
Abstract
:1. Introduction
2. Anticancer Peptides (ACPs)
2.1. Classification and Mechanism of Action of ACPs
2.2. Effect of Peptides on Lung Cancer Cells
3. Compounds of Bacterial Origin, Including Peptides, against Lung Cancer Cells
Anti-NSCLC Agent | Type of Substance | Source | Anticancer Action | Citation |
---|---|---|---|---|
Cinerubin B | anthracycline antibiotic | Streptomyces sp. CMAA 1527 | to be studied | [32] |
Actinomycin V | antibiotic | Streptomyces sp. CMAA 1653 | cytotoxicity, induction of apoptosis, and EMT transition blockade | [32,33,34] |
Enterocin 12a | bacteriocin | Enterococcus faecium 12a | inhibition of cancer cell growth | [35] |
Colicin N | bacteriocin | Escherichia coli | cytotoxicity and induction of apoptosis | [36,37] |
Nisin ZP | peptide | Lactococcus lactis | inhibition of proliferation and induction of apoptosis | [38] |
Laterosporulin10 | bacteriocin/peptide | Brevibacillus sp. strain SKDU10 | cytotoxicity, apoptosis induction, and necrotic death induction | [39] |
BaCf3 | bacteriocin/peptide | Bacillus amyloliquefaciens | proliferation inhibition | [40] |
Azurin | protein | Pseudomonas aeruginosa | pro-apoptotic properties | [41,42] |
p28 | peptide | Azurin from Pseudomonas aeruginosa | pro-apoptotic properties | [41] |
CT-p26 | peptide | Azurin from Pseudomonas aeruginosa | cytotoxic activity, decrease in cell viability, pro-apoptotic properties | [41] |
Fengicin | lipopeptide | Bacillus subtilis | proliferation and tumor growth inhibition, and induction of apoptosis | [44] |
Polymeric lipopeptides formed by cyclic lipopolypeptides | lipopeptides | Bacillus atrophaeus AKLSR | induction of apoptosis, cell cycle arrest, ROS accumulation, nuclear fragmentation, and cell death | [46] |
4. Secondary Metabolites Synthesized by Endophytes and Marine-Derived Fungi with Lung Cancer Treatment Potential
Fungal Strains | Compounds | IC50 Values (µM) | Lung Cancer Cell Lines | References |
---|---|---|---|---|
Alternaria sp. LV52 | Alternarior 9-methyl ether | 2.26 | A549 | [75] |
Altertoxin II | 1.15 | |||
Aspergillus versicolor HDN1009 | Versixantone G | 17.80 | [62] | |
Versixantone H | 19.20 | |||
Versixantone L | 1.60 | |||
Versixantone M | 11.70 | |||
Aspergillus candidatus LDJ-5 | Asperterphenyllin G | 0.40 | [92] | |
Prenylcandidusin E | 19.10 | [93] | ||
Prenylcandidusin G | 2.80 | |||
Prenylterphenyllin F | 10.20 | |||
Prenylterphenyllin G | 16.30 | |||
Prenylterphenyllin H | 0.40 | |||
Prenylterphenyllin I | 14.80 | |||
Prenylterphenyllin J | 7.60 | |||
Aspergillus clavatus L | Aspergillusone C | 41.90 | [81] | |
Aspergillusone D | 0.20 | |||
Aspergillus micronesiensis MH938722 | Cyschalasin B | 16.79 | [94] | |
Aspergillus oryzae KM999948 | Oryzaein B | 4.20 | [95] | |
Oryzaein A | 6.50 | |||
Oryzaein C | 6.80 | |||
Aspergillus tamarii FR02 | Malformin E | 2.42 | [76] | |
Aspergillus ustus 094102 | 21-epi-ophiobolin O | 0.60 | [77] | |
Ophiobolin O | 2.40 | |||
21-deoxyophiobolin K | 15.10 | |||
Ophiobolin Q | 33.80 | |||
Ophiobolin X; 21,21-O-dihydro6-epi-ophiobolin G | >50 | |||
Aspergillus sp. SCSIO41407 | Flavoglaucin | 22.20 | [96] | |
Aspergillus fumigates 2011041507–5 | Alkaloids fumiquinazoline J | 26.90 | [97] | |
Fumiquinazoline C | 33.40 | |||
Trypacidin | 31.00 | |||
Aspergillus versicolor F210 | Proversilin C | 15.00 | [98] | |
Proversilin E | 28.40 | |||
Proversilin A | >40 | |||
Proversilin B | >40 | |||
Proversilin D | >40 | |||
Cordyceps taii | Deacetylcytochalasin C | 13.62 | [99] | |
Zygosporin D | 16.72 | |||
Cytochalasins 2 | 17.13 | |||
Cytochalasins 3 | 19.92 | |||
Cytochalasins 1 | 32.28 | |||
Chaetomium globosum kz-19 | Penochalasin J | 14.90 | [70] | |
Phychaetoglobin C | 22.30 | |||
Phychaetoglobin D | 13.70 | |||
Chaetoglobosin C | 7.60 | |||
Chaetoglobosin E | 12.30 | |||
Chaetoglobosin G | 7.30 | |||
Chaetoglobosin V | 11.00 | |||
Chaetoglobosin J | 13.40 | |||
Chaetomium sp. M336 | 6-Formamide Chetomin | 0.027 | [78] | |
Chaetosphaeronema hispidulum | Hispidulone B | 2.71 | [83] | |
Emericella sp. TJ29 | Emeridone D | 11.33 | [100] | |
Pestalotiopsis palmarum | Sinopestalotiollide D | 2.14 | [82] | |
Sinopestalotiollide A | 31.29 | |||
Sinopestalotiollide C | 36.13 | |||
Sinopestalotiollide B | 44.89 | |||
2H-pyran-2-one | 47.82 | |||
Phoma sp. SYSU-SK-7 | Colletotric A | 37.73 | [101] | |
Colletotric A | 20.75 | |||
Hypocrea lixii R-18 | Cajanol | 20.50–32.80 | [102] | |
Eupenicillium sp. HJ002 | Penicilindole A | 5.50 | [72] | |
Penicilindole B | 18.60 | |||
Fusarium sp. 2ST2 | Fusarisetins E | 8.70 | [103] | |
Fusarisetins F | 4.30 | |||
Fusarium oxysporum GU250648 | Beauvericin | 10.40 | [104] | |
Lasiodiplodia theobromae ZJ-HQ1 | Chloropreussomerin A | 8.50 | [68] | |
Chloropreussomerin B | 8.90 | |||
Preussomerin A | 40.20 | |||
Preussomerin D | 6.60 | |||
Preussomerin F | 7.70 | |||
Preussomerin G | 6.20 | |||
Preussomerin H | 9.40 | |||
Preussomerin K | 5.40 | |||
Preussomerin M | 36.10 | |||
Myrothecium roridum E-1069 | 12′-hydroxyroridin E | 2.08 | [105] | |
Myrotoxin A | 3.56 | |||
Mytoxin C | 33.00 | |||
2′,3′-epoxymyrothecine A | 36.45 | |||
Vertisporin | 47.00 | |||
14′-hydroxymytoxin B | 49.00 | |||
13′,14′-hydroxymytoxin B | 53.00 | |||
Roridin E | 55.00 | |||
Myrothecine A | 95.00 | |||
Penicillium chrysogenum V11 | Penochalasin I | 16.13 | [67] | |
Penochalasin J | 35.93 | |||
Penochalasin K | 8.73 | [106] | ||
Chaetoglobosin A | 6.56 | [67] | ||
Chaetoglobosin C | 17.82 | |||
Chaetoglobosin E | 36.63 | |||
Chaetoglobosin F | 27.72 | |||
Penicillium chrysogenum AD-1540 | Chryxanthone A | 41.70 | [107] | |
Chryxanthone B | 20.40 | |||
Penicillium chrysogenum CCTCC M 2020019 | Xanthocillins X | 0.38 | [80] | |
Xanthocillins Y1 | 5.04 | |||
2-aminophenoxazin-3-one | 25.60 | |||
Chrysomamide; N-[2-trans-(4-hydroxyphenyl)ethenyl]formamide; | 42.87 | |||
N-acetylquestiomycin A | 52.61 | |||
Penicillium chrysogenum | Penichryfurans A | >100 | [108] | |
Penichryfurans B | 87.90 | |||
Penicillium polonicum TY12 | Polonidine A | 15.00 * | [109] | |
Penicillium sp. sh18 | Isopenicin A | 37.06 | [110] | |
Isopenicin B | >40 | |||
Isopenicin C | >40 | |||
Preussia similis | Preussilide C | 22.90 | [111] | |
Preussilide E | 41.20 | |||
Preussilide D | 47.90 | |||
Preussilide A | 60.30 | |||
Preussilide B | 70.30 | |||
Rhizopycnis vagum Nitaf22 | Rhizopycnin C | 25.50 | [112] | |
Trichoderma citrinoviride | Bislongiquinolide | 11.00 | [113] | |
Dihydrotrichodimerol | 33.00 | |||
Trichoderma reesei HN-2016-018 | 24-hydroxy-trichodimerol | 5.10 | [114] | |
Mucor irregularis QEN-189 | Penitrem A | 8.40 | [115] | |
Penitrem C | 8.00 | |||
Penitrem F | 8.20 | |||
Rhizovarin A | 11.50 | |||
Rhizovarin B | 6.30 | |||
Rhizovarin E | 9.20 | |||
3b-hydroxy-4b-desoxypaxilline | 4.60 | |||
Dichotomomyces sp. L-8 | (3R,6R)-bassiatin | 14.54 | Calu-3 | [60] |
Pestalotiopsis m. EF01 | Paclitaxel (=taxol) | 0.50 | HL251 | [116] |
Alternaria sp. A744 | Alterperylenol | 5.47 | H460 | [117] |
Altertoxin II | 9.67 | |||
6-epi-stemphytriol | 43.31 | |||
Isobenzofuranone A; Indandione B; Isosclerone; 2,4,8-trihydroxy-1-tetralone; 3,4-dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone; 6-hydroxyisosclerone; cis-4-hydroxyscytalone; alternariol-4-methyl ether; Dihydroalterperylenol; alterperylenol | >100 | |||
Alternaria sp. AST0039 | (−)-(10E,15S)-4,6-dichloro-10(11)-dehydrocurvularin | 1.45 | [84] | |
(−)-(10E,15S)-6-chloro-10(11)-dehydrocurvularin | 3.57 | |||
Aspergillus sp. HN15-15D | Aspergisocoumrin A | 21.53 | [71] | |
Aspergillus oryzea | Paclitaxel (=taxol) | 50.00 * | [118] | |
Aspergillus fumigates 2011041507–5 | Alkaloids pyripyropene A | 38.30 | [97] | |
Trypacidin | 33.80 | |||
Bipolaris sorokiniana A606 | Cochlioquinone H | 15.40 | [119] | |
Cochlioquinone G | 26.90 | |||
Isocochlioquinone E | 31.10 | |||
Isocochlioquinone D | 42.60 | |||
Cerrena sp. A593 | Cerrenin D | 29.67 | [120] | |
Chaunopycnis sp. CMB-MF028 | Chaunolidone A | 0.09 | [61] | |
Chaetomium globosum | Globosumone A | 6.50 | [121] | |
Globosumone B | 24.80 | |||
Cytospora rhizophorae A761 | Cytorhizin B | 32.80 | [122] | |
Cytorhizin C | 54.70 | |||
Didymella sp. CYSK-4 | Ascomylactam A | 4.40 | [123] | |
Ascomylactam B | 13.00 | |||
Ascomylactam C | 4.40 | |||
Phomapyrrolidone C | 12.00 | |||
Pyrrolidone A | 28.00 | |||
Fusarium oxysporum EPH2RAA | Beauvericin | 1.41 | [85] | |
Fusarium oxysporum CECIS | Bikaverin | 0.43 | ||
Libertella blepharis F2644 | 3-epi-Waol A | 1.00 | [86] | |
Myrthecim roridum A553 | Epiroridin E | 0.003 | [79] | |
Mytoxin B | 0.007 | |||
Epiroridine acid | 0.36 | |||
Mycoleptodiscus spp. F0194 | Mycoleptodiscin B | 0.66 | [87] | |
Penicillium brocae MA-231 | Brocazines F | 0.89 | [88] | |
Pestalotiopsis flavidula | 2′-aminodechlorogeodoxin | 16.47 | [124] | |
2′-aminodechloromaldoxin | 18.63 | |||
Phyllosticta spinarum | Tauranin | 4.30 | [125] | |
strain PM0651480 | Ergoflavin | 4.00 | [126] | |
Xylaria spp. NC1214 | Cytochalasin C | 0.22 | [89] | |
Cytochalasin D | 1.06 | |||
Cytochalasin Q | 1.51 | |||
Cladosporium sp. OUCMDZ-302 | 7-O-αD-ribosyl-5-hydroxy-2-propylchromone | 10.00 | HCI-H1975 | [73] |
Aspergillus versicolor HDN1009 | Versixantone G | 9.80 | [62] | |
Versixantone H | 5.30 | |||
Versixantone M | 3.50 | |||
Versixantone N | 8.80 | [69] | ||
Versixantone O | 8.50 | |||
Rhytidhysteron rufulum AS21B | Rhytidenone H | 0.25 | [74] | |
Rhytidenone F | 1.17 | |||
Rhytidenone G | 7.30 | |||
Rhytidenone E | 10.24 | |||
Deoxypreussomerin B; Palmarumycin CP17; 1-oxo-1,4-dihydronapthalene-4-spiro-20-naptho[400-hydroxy-100,800-de] [10,30]-dioxin; Preussomerin EG4; CJ-12,371; 4-O-methyl-CJ-12,371; Palmarumycin C5; Rhytidone A | >100.00 | |||
Pleosporales sp. Sigrf05 | Pleospyrone E | 6.26 | HCI-H1650 | [127] |
Pleospyrone A | 15.10 | |||
Pleospyrone D | 29.60 | |||
Rhizopycnis v. Nitaf22 | TMC-264 | 3.20 | [112] | |
Chaetomium globosum 7s-1 | Xanthoquinodin B9 | 0.98 | HCI-H187 | [91] |
Eutypella sp. BCC 13199 | ent-4(15)-eudesmen-11-ol-1-one | 11.00 | [128] | |
Eutypellin A | 12.00 | |||
strain KLAR 5 Hypocreales | Brefeldin A | 0.11 | [90] | |
8-deoxy-trichothecin | 1.48 | |||
7-hydroxytrichodermol | 1.73 | |||
Trichothecolone | 11.31 | |||
7-hydroxyscirpene | 27.76 | |||
Phomopsis spp. BCC 9789 | Oblongolide Z | 32.00 | [129] | |
Xylaria spp. BCC 21097 | Eremophilanolide 1 | 7.20 | [130] | |
Eremophilanolide 2 | 3.80 | |||
Eremophilanolide 3 | 5.80 | |||
Xylaria cf. c. PK108 | Cytochalasin D | 5.95 | [131] | |
Ergosterol peroxide | 5.81 | |||
Mycoleptodiscus spp. F0194 | Mycoleptodiscin B | 0.63 | H522-T1 | [87] |
Cordyceps taii | Deacetylcytochalasin C | 3.67 | 95-D | [99] |
Zygosporin D | 4.04 | |||
Cytochalasins 3 | 20.69 | |||
Cytochalasins 1 | 23.67 | |||
Cytochalasins 2 | 26.03 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cancer (IARC). T.I.A. for R. on Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 29 December 2022).
- Croteau, R.; Ketchum, R.E.B.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol Biosynthesis and Molecular Genetics. Phytochem. Rev. Proc. Phytochem. Soc. Eur. 2006, 5, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Alqathama, A. BRAF in Malignant Melanoma Progression and Metastasis: Potentials and Challenges. Am. J. Cancer Res. 2020, 10, 1103–1114. [Google Scholar] [PubMed]
- Harrison, P.T.; Vyse, S.; Huang, P.H. Rare Epidermal Growth Factor Receptor (EGFR) Mutations in Non-Small Cell Lung Cancer. Semin. Cancer Biol. 2020, 61, 167–179. [Google Scholar] [CrossRef]
- Gendarme, S.; Bylicki, O.; Chouaid, C.; Guisier, F. ROS-1 Fusions in Non-Small-Cell Lung Cancer: Evidence to Date. Curr. Oncol. 2022, 29, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Grenda, A.; Jarosz, B.; Krawczyk, P.; Kucharczyk, T.; Wojas-Krawczyk, K.; Reszka, K.; Krukowska, K.; Nicoś, M.; Pankowski, J.; Bryl, M.; et al. Discrepancies between ALK Protein Disruption and Occurrence of ALK Gene Rearrangement in Polish NSCLC Patients. J. Thorac. Dis. 2018, 10, 4994–5009. [Google Scholar] [CrossRef]
- Seligson, N.D.; Knepper, T.C.; Ragg, S.; Walko, C.M. Developing Drugs for Tissue-Agnostic Indications: A Paradigm Shift in Leveraging Cancer Biology for Precision Medicine. Clin. Pharmacol. Ther. 2021, 109, 334–342. [Google Scholar] [CrossRef]
- Kennedy, L.B.; Salama, A.K.S. A Review of Cancer Immunotherapy Toxicity. CA Cancer J. Clin. 2020, 70, 86–104. [Google Scholar] [CrossRef]
- Pan, C.; Liu, H.; Robins, E.; Song, W.; Liu, D.; Li, Z.; Zheng, L. Next-Generation Immuno-Oncology Agents: Current Momentum Shifts in Cancer Immunotherapy. J. Hematol. Oncol. 2020, 13, 29. [Google Scholar] [CrossRef]
- Frisone, D.; Friedlaender, A.; Addeo, A.; Tsantoulis, P. The Landscape of Immunotherapy Resistance in NSCLC. Front. Oncol. 2022, 12, 817548. [Google Scholar] [CrossRef]
- Haslam, A.; Prasad, V. Estimation of the Percentage of US Patients with Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef]
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; et al. Targeting Cancer Signaling Pathways by Natural Products: Exploring Promising Anti-Cancer Agents. Biomed. Pharmacother. 2022, 150, 113054. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, N.; Wang, T.-M.; Di, L. Natural Products with Activity against Lung Cancer: A Review Focusing on the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 10827. [Google Scholar] [CrossRef] [PubMed]
- Chanvorachote, P.; Chamni, S.; Ninsontia, C.; Phiboonchaiyanan, P.P. Potential Anti-Metastasis Natural Compounds for Lung Cancer. Anticancer Res. 2016, 36, 5707–5717. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, D.; Yang, Y. Anti-Cancer Peptides: Classification, Mechanism of Action, Reconstruction and Modification. Open Biol. 2020, 10, 200004. [Google Scholar] [CrossRef]
- Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer Peptide: Physicochemical Property, Functional Aspect and Trend in Clinical Application (Review). Int. J. Oncol. 2020, 57, 678–696. [Google Scholar] [CrossRef] [PubMed]
- Karami Fath, M.; Babakhaniyan, K.; Zokaei, M.; Yaghoubian, A.; Akbari, S.; Khorsandi, M.; Soofi, A.; Nabi-Afjadi, M.; Zalpoor, H.; Jalalifar, F.; et al. Anti-Cancer Peptide-Based Therapeutic Strategies in Solid Tumors. Cell. Mol. Biol. Lett. 2022, 27, 33. [Google Scholar] [CrossRef]
- Droin, N.; Hendra, J.-B.; Ducoroy, P.; Solary, E. Human Defensins as Cancer Biomarkers and Antitumour Molecules. J. Proteom. 2009, 72, 918–927. [Google Scholar] [CrossRef]
- Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the Selectivity and Efficacy of Defense Peptides with Respect to Cancer Cells. Med. Res. Rev. 2013, 33, 190–234. [Google Scholar] [CrossRef]
- Li, G.; Huang, Y.; Feng, Q.; Chen, Y. Tryptophan as a Probe to Study the Anticancer Mechanism of Action and Specificity of α-Helical Anticancer Peptides. Molecules 2014, 19, 12224–12241. [Google Scholar] [CrossRef]
- Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Molecules 2019, 24, 1973. [Google Scholar] [CrossRef]
- Ray, T.; Kar, D.; Pal, A.; Mukherjee, S.; Das, C.; Pal, A. Molecular Targeting of Breast and Colon Cancer Cells by PAR1 Mediated Apoptosis through a Novel Pro-Apoptotic Peptide. Apoptosis Int. J. Program. Cell Death 2018, 23, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Böhmová, E.; Machová, D.; Pechar, M.; Pola, R.; Venclíková, K.; Janoušková, O.; Etrych, T. Cell-Penetrating Peptides: A Useful Tool for the Delivery of Various Cargoes into Cells. Physiol. Res. 2018, 67, S267–S279. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Mechkarska, M.; Prajeep, M.; Arafat, K.; Zaric, M.; Lukic, M.L.; Attoub, S. Transformation of the Naturally Occurring Frog Skin Peptide, Alyteserin-2a into a Potent, Non-Toxic Anti-Cancer Agent. Amino Acids 2013, 44, 715–723. [Google Scholar] [CrossRef]
- Fan, X.; Bai, L.; Mao, X.; Zhang, X. Novel Peptides with Anti-Proliferation Activity from the Porphyra Haitanesis Hydrolysate. Process Biochem. 2017, 60, 98–107. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X. Inhibitory Effects of Small Molecular Peptides from Spirulina (Arthrospira) Platensis on Cancer Cell Growth. Food Funct. 2016, 7, 781–788. [Google Scholar] [CrossRef]
- Patil, S.M.; Kunda, N.K. Anticancer Activity of D-LAK-120A, an Antimicrobial Peptide, in Non-Small Cell Lung Cancer (NSCLC). Biochimie 2022, 201, 7–17. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.J.; Devapatla, B.; Yaddanapudi, K.; Davis, K.R. The Soybean-Derived Peptide Lunasin Inhibits Non-Small Cell Lung Cancer Cell Proliferation by Suppressing Phosphorylation of the Retinoblastoma Protein. Oncotarget 2014, 6, 4649–4662. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Dong, L.; Yan, Q.; Dong, Y.; Wang, L.; Wang, F. Preparation and Characterization of an Anticancer Peptide from Oriental Tonic Food Enteromorpha Prolifera. Foods 2022, 11, 3507. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Okbazghi, S.Z.; Alfaleh, M.A.; Abdulaal, W.H.; Bakhaidar, R.B.; Alselami, M.O.; Zahrani, M.A.; Alqarni, H.M.; Alghaith, A.F.; Alshehri, S.; et al. Wasp Venom Peptide Improves the Proapoptotic Activity of Alendronate Sodium in A549 Lung Cancer Cells. PLoS ONE 2022, 17, e0264093. [Google Scholar] [CrossRef]
- Khine, H.E.E.; Ecoy, G.A.U.; Roytrakul, S.; Phaonakrop, N.; Pornputtapong, N.; Prompetchara, E.; Chanvorachote, P.; Chaotham, C. Chemosensitizing Activity of Peptide from Lentinus squarrosulus (Mont.) on Cisplatin-Induced Apoptosis in Human Lung Cancer Cells. Sci. Rep. 2021, 11, 4060. [Google Scholar] [CrossRef]
- Silva, L.J.; Crevelin, E.J.; Souza, D.T.; Lacerda-Júnior, G.V.; de Oliveira, V.M.; Ruiz, A.L.T.G.; Rosa, L.H.; Moraes, L.A.B.; Melo, I.S. Actinobacteria from Antarctica as a Source for Anticancer Discovery. Sci. Rep. 2020, 10, 13870. [Google Scholar] [CrossRef]
- Lin, S.; Jia, F.; Zhang, C.; Liu, F.; Ma, J.; Han, Z.; Xie, W.; Li, X. Actinomycin V Suppresses Human Non-Small-Cell Lung Carcinoma A549 Cells by Inducing G2/M Phase Arrest and Apoptosis via the P53-Dependent Pathway. Mar. Drugs 2019, 17, 572. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, C.; Liu, F.; Ma, J.; Jia, F.; Han, Z.; Xie, W.; Li, X. Actinomycin V Inhibits Migration and Invasion via Suppressing Snail/Slug-Mediated Epithelial-Mesenchymal Transition Progression in Human Breast Cancer MDA-MB-231 Cells In Vitro. Mar. Drugs 2019, 17, 305. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kaur, S.; Chadha, B.S.; Kaur, R.; Kaur, M.; Kaur, S. Anticancer and Antimicrobial Potential of Enterocin 12a from Enterococcus Faecium. BMC Microbiol. 2021, 21, 39. [Google Scholar] [CrossRef] [PubMed]
- Arunmanee, W.; Ecoy, G.A.U.; Khine, H.E.E.; Duangkaew, M.; Prompetchara, E.; Chanvorachote, P.; Chaotham, C. Colicin N Mediates Apoptosis and Suppresses Integrin-Modulated Survival in Human Lung Cancer Cells. Molecules 2020, 25, 816. [Google Scholar] [CrossRef]
- Arunmanee, W.; Duangkaew, M.; Taweecheep, P.; Aphicho, K.; Lerdvorasap, P.; Pitchayakorn, J.; Intasuk, C.; Jiraratmetacon, R.; Syamsidi, A.; Chanvorachote, P.; et al. Resurfacing Receptor Binding Domain of Colicin N to Enhance Its Cytotoxic Effect on Human Lung Cancer Cells. Comput. Struct. Biotechnol. J. 2021, 19, 5225–5234. [Google Scholar] [CrossRef]
- Patil, S.M.; Kunda, N.K. Nisin ZP, an Antimicrobial Peptide, Induces Cell Death and Inhibits Non-Small Cell Lung Cancer (NSCLC) Progression in Vitro in 2D and 3D Cell Culture. Pharm. Res. 2022, 39, 2859–2870. [Google Scholar] [CrossRef]
- Baindara, P.; Gautam, A.; Raghava, G.P.S.; Korpole, S. Anticancer Properties of a Defensin like Class IId Bacteriocin Laterosporulin10. Sci. Rep. 2017, 7, 46541. [Google Scholar] [CrossRef]
- Saidumohamed, B.E.; Johny, T.K.; Raveendran, A.T.; Sheela, U.B.; Sreeranganathan, M.; Sasidharan, R.S.; Bhat, S.G. 3D Structure Elucidation and Appraisal of Mode of Action of a Bacteriocin BaCf3 with Anticancer Potential Produced by Marine Bacillus Amyloliquefaciens BTSS3. ReGEN Open 2022, 2, 45–56. [Google Scholar] [CrossRef]
- Huang, F.; Shu, Q.; Qin, Z.; Tian, J.; Su, Z.; Huang, Y.; Gao, M. Anticancer Actions of Azurin and Its Derived Peptide P28. Protein J. 2020, 39, 182–189. [Google Scholar] [CrossRef]
- Garizo, A.R.; Coelho, L.F.; Pinto, S.; Dias, T.P.; Fernandes, F.; Bernardes, N.; Fialho, A.M. The Azurin-Derived Peptide CT-P19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death. Biomedicines 2021, 9, 1194. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Guo, C.; Wang, Y.; Liu, D.; Lv, Y.; Lv, F.; Lu, Z. Fengycin Inhibits the Growth of the Human Lung Cancer Cell Line 95D through Reactive Oxygen Species Production and Mitochondria-Dependent Apoptosis. Anticancer. Drugs 2013, 24, 587–598. [Google Scholar] [CrossRef]
- Dan, A.K.; Manna, A.; Ghosh, S.; Sikdar, S.; Sahu, R.; Parhi, P.K.; Parida, S. Molecular Mechanisms of the Lipopeptides from Bacillus Subtilis in the Apoptosis of Cancer Cells—A Review on Its Current Status in Different Cancer Cell Lines. Adv. Cancer Biol. Metastasis 2021, 3, 100019. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, X.; Qiu, X.; Niu, L.; Ma, Z. Isolation and Purification of a New Bacillus Subtilis Strain from Deer Dung with Anti-Microbial and Anti-Cancer Activities. Curr. Med. Sci. 2021, 41, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Routhu, S.R.; Chary, R.N.; Shaik, A.B.; Prabhakar, S.; Kumar, C.G.; Kamal, A. Induction of Apoptosis in Lung Carcinoma Cells by Antiproliferative Cyclic Lipopeptides from Marine Algicolous Isolate Bacillus Atrophaeus Strain AKLSR1. Process Biochem. 2019, 79, 142–154. [Google Scholar] [CrossRef]
- Song, F.; Liu, Y.; Kong, X.; Chang, W.; Song, G. MINI-REVIEW Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus. Asian Pac. J. Cancer Prev. 2013, 14, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Szychowski, K.A.; Rybczyńska-Tkaczyk, K.; Tobiasz, J.; Yelnytska-Stawasz, V.; Pomianek, T.; Gmiński, J. Biological and Anticancer Properties of Inonotus Obliquus Extracts. Process Biochem. 2018, 73, 180–187. [Google Scholar] [CrossRef]
- Sairi, A.M.M.; Ismail, S.I.; Sukor, A.; Rashid, N.M.N.; Saad, N.; Jamian, S.; Abdullah, S. Cytotoxicity and Anticancer Activity of Donkioporiella mellea on MRC5 (Normal Human Lung) and A549 (Human Lung Carcinoma) Cells Lines. Evid.-Based Complement. Altern. Med. 2020, 2020, 7415672. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Kornienko, A.; Cimmino, A.; Andolfi, A.; Lefranc, F.; Methieu, V.; Kiss, R. Fungal Metabolites with Anticancer Activity. Nat. Prod. Rep. 2014, 31, 617–627. [Google Scholar] [CrossRef]
- Yuan, S.; Gopal, J.V.; Ren, S.; Chen, L.; Liu, L.; Gao, Z. Anticancer Fungal Natural Products: Mechanisms of Action and Biosynthesis. Eur. J. Med. Chem. 2020, 202, 112502. [Google Scholar] [CrossRef]
- Kousar, R.; Naeem, M.; Jamaludin, M.I.; Arshad, A.; Shamsuri, A.N.; Ansari, N.; Akhtar, S.; Hazafa, A.; Uddin, J.; Khan, A.; et al. Exploring the Anticancer Activities of Novel Bioactive Compounds Derived from Endophytic Fungi: Mechanisms of Action, Current Challenges and Future Perspectives. Am. J. Cancer Res. 2022, 12, 2897–2919. [Google Scholar] [PubMed]
- Conrado, R.; Gomes, T.C.; Roque, G.S.C.; De Souza, A.O. Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds. Antibiotics 2022, 11, 1604. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Luo, X.; Zhang, T.; Li, S.; Liu, S.; Ma, Y.; Wang, Z.; Jin, X.; Liu, J.; Wang, X. Anti-Tumor Secondary Metabolites Originating from Fungi in the South China Sea’s Mangrove Ecosystem. Bioengineering 2022, 9, 776. [Google Scholar] [CrossRef]
- Shevkar, C.; Pradhan, P.; Armarkar, A.; Pandey, K.; Kalia, K.; Paranagama, P.; Kate, A.S. Exploration of Potent Cytotoxic Molecules from Fungi in Recent Past to Discover Plausible Anticancer Scaffolds. Chem. Biodivers. 2022, 19, e202100976. [Google Scholar] [CrossRef]
- Prajapati, J.; Goswami, D.; Rawal, R.M. Endophytic Fungi: A Treasure Trove of Novel Anticancer Compounds. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100050. [Google Scholar] [CrossRef] [PubMed]
- El-Hawary, S.S.; Moawad, A.S.; Bahr, H.S.; Abdelmohsen, U.R.; Mohammed, R. Natural Product Diversity from the Endophytic Fungi of the GenusAspergillus. RSC Adv. 2020, 10, 22058–22079. [Google Scholar] [CrossRef]
- Hridoy, M.; Gorapi, M.Z.H.; Noor, S.; Chowdhury, N.S.; Rahman, M.M.; Muscari, I.; Masia, F.; Adorisio, S.; Delfino, D.V.; Mazid, M.A. Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules 2022, 27, 296. [Google Scholar] [CrossRef]
- Noman, E.; Al-Shaibani, M.M.; Bakhrebah, M.A.; Almoheer, R.; Al-Sahari, M.; Al-Gheethi, A.; Radin Mohamed, R.M.S.; Almulaiky, Y.Q.; Abdulaal, W.H. Potential of Anti-Cancer Activity of Secondary Metabolic Products from Marine Fungi. J. Fungi 2021, 7, 436. [Google Scholar] [CrossRef]
- Huang, L.H.; Chen, Y.X.; Yu, J.C.; Yuan, J.; Li, H.J.; Ma, W.Z.; Watanapokasin, R.; Hu, K.C.; Niaz, S.I.; Yang, D.P.; et al. Secondary Metabolites from the Marine-Derived Fungus Dichotomomyces sp. L-8 and Their Cytotoxic Activity. Molecules 2017, 22, 444. [Google Scholar] [CrossRef]
- Shang, Z.; Li, L.; Espósito, B.P.; Salim, A.A.; Khalil, Z.G.; Quezada, M.; Bernhardt, P.V.; Capon, R.J. New PKS-NRPS Tetramic Acids and Pyridinone from an Australian Marine-Derived Fungus, Chaunopycnis sp. Org. Biomol. Chem. 2015, 13, 7795–7802. [Google Scholar] [CrossRef]
- Wu, G.; Qi, X.; Mo, X.; Yu, G.; Wang, Q.; Zhu, T.; Gu, Q.; Liu, M.; Li, J.; Li, D. Structure-Based Discovery of Cytotoxic Dimeric Tetrahydroxanthones as Potential Topoisomerase I Inhibitors from a Marine-Derived Fungus. Eur. J. Med. Chem. 2018, 148, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A Compressive Review about Taxol®: History and Future Challenges. Molecules 2020, 25, 5986. [Google Scholar] [CrossRef] [PubMed]
- Weaver, B.A. How Taxol/Paclitaxel Kills Cancer Cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, M.J.; Kim, Y.J.; Chang, H.; Kim, J.W.; Lee, J.O.; Lee, K.W.; Kim, J.H.; Bang, S.M.; Lee, J.S. Paclitaxel as Third-Line Chemotherapy for Small Cell Lung Cancer Failing Both Etoposide-A Nd Camptothecin-Based Chemotherapy. Medicine 2017, 96, e8176. [Google Scholar] [CrossRef]
- Kaltschmidt, B.; Greiner, J.F.W.; Kaltschmidt, C. Subunit-Specific Role of NF-κ B in Cancer. Biomedicines 2018, 6, 44. [Google Scholar] [CrossRef]
- Huang, S.; Chen, H.; Li, W.; Zhu, X.; Ding, W.; Li, C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium Chrysogenum. Mar. Drugs 2016, 14, 172. [Google Scholar] [CrossRef]
- Chen, S.; Chen, D.; Cai, R.; Cui, H.; Long, Y.; Lu, Y.; Li, C.; She, Z. Cytotoxic and Antibacterial Preussomerins from the Mangrove Endophytic Fungus Lasiodiplodia Theobromae ZJ-HQ1. J. Nat. Prod. 2016, 79, 2397–2402. [Google Scholar] [CrossRef]
- Yu, G.; Wu, G.; Sun, Z.; Zhang, X.; Che, Q.; Gu, Q.; Zhu, T.; Li, D.; Zhang, G. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus Versicolor HDN1009. Mar. Drugs 2018, 16, 335. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Li, L.; Tang, M.; Meng, Q.; Zhang, C.; Hua, E.; Pei, Y.; Sun, Y. New Cytotoxic Cytochalasans from a Plant-Associated Fungus Chaetomium Globosum Kz-19. Mar. Drugs 2021, 19, 438. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Liu, H.; Huang, X.; Liu, Y.; Tao, Y.; She, Z. Cytotoxic Isocoumarin Derivatives from the Mangrove Endophytic Fungus Aspergillus sp. HN15-5D. Arch. Pharm. Res. 2019, 42, 326–331. [Google Scholar] [CrossRef]
- Zheng, C.J.; Bai, M.; Zhou, X.M.; Huang, G.L.; Shao, T.M.; Luo, Y.P.; Niu, Z.G.; Niu, Y.Y.; Chen, G.Y.; Han, C.R. Penicilindoles A-C, Cytotoxic Indole Diterpenes from the Mangrove-Derived Fungus Eupenicillium sp. HJ002. J. Nat. Prod. 2018, 81, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Han, X.; Zhu, G.; Wang, Y.; Chairoungdua, A.; Piyachaturawat, P.; Zhu, W. Polyketides from the Endophytic Fungus Cladosporium sp. Isolated from the Mangrove Plant Excoecaria Agallocha. Front. Chem. 2018, 6, 344. [Google Scholar] [CrossRef] [PubMed]
- Siridechakorn, I.; Yue, Z.; Mittraphab, Y.; Lei, X.; Pudhom, K. Identification of Spirobisnaphthalene Derivatives with Anti-Tumor Activities from the Endophytic Fungus Rhytidhysteron Rufulum AS21B. Bioorg. Med. Chem. 2017, 25, 2878–2882. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Abdel-Razek, A.S.; Soliman, H.S.M.; Ponomareva, L.V.; Thorson, J.S.; Shaaban, K.A.; Shaaban, M. Diverse Polyketides from the Marine Endophytic Alternaria sp. LV52: Structure Determination and Cytotoxic Activities. Biotechnol. Rep. 2022, 33, e00628. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.M.; Liang, X.A.; Zhang, H.C.; Liu, R. Cytotoxic and Antibiotic Cyclic Pentapeptide from an Endophytic Aspergillus Tamarii of Ficus Carica. J. Agric. Food Chem. 2016, 64, 3789–3793. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Lu, Z.; Fan, J.; Wang, L.; Zhu, G.; Wang, Y.; Li, X.; Hong, K.; Piyachaturawat, P.; Chairoungdua, A.; et al. Ophiobolins from the Mangrove Fungus Aspergillus Ustus. J. Nat. Prod. 2018, 81, 2–9. [Google Scholar] [CrossRef]
- Yu, F.X.; Chen, Y.; Yang, Y.H.; Li, G.H.; Zhao, P.J. A New Epipolythiodioxopiperazine with Antibacterial and Cytotoxic Activities from the Endophytic Fungus Chaetomium sp. M336. Nat. Prod. Res. 2018, 32, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Liu, W.Z.; Chen, Y.C.; Sun, Z.H.; Tan, Y.Z.; Li, H.H.; Zhang, W.M. Cytotoxic Trichothecene Macrolides from the Endophyte Fungus Myrothecium Roridum. J. Asian Nat. Prod. Res. 2016, 18, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Zhang, H.; Liu, W.; Zhang, L.; Peng, F.; Chen, Y.; Zhang, Q.; Zhang, G.; Zhang, W.; Zhang, C. Identification and Bioactivity Evaluation of Secondary Metabolites from Antarctic-DerivedPenicillium ChrysogenumCCTCC M 2020019. RSC Adv. 2020, 10, 20738–20744. [Google Scholar] [CrossRef]
- Wang, J.; Bai, G.; Liu, Y.; Wang, H.; Li, Y.; Yin, W.; Wang, Y.; Lu, F. Cytotoxic Metabolites Produced by the Endophytic Fungus Aspergillus Clavatus. Chem. Lett. 2015, 44, 1148–1149. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, J.Y.; Sun, H.D.; Zhao, X.; Zhong, W.T.; Duan, D.Z.; Wang, L.; Wang, X.L. Sinopestalotiollides A–D, Cytotoxic Diphenyl Ether Derivatives from Plant Endophytic Fungus Pestalotiopsis Palmarum. Bioorg. Med. Chem. Lett. 2018, 28, 515–518. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, X.; Li, Y.; Wang, Y.; Yu, M.; Qing, J.; Sun, B.; Niu, S.; Ding, G. Hispidulones A and B, Two New Phenalenone Analogs from Desert Plant Endophytic Fungus Chaetosphaeronema Hispidulum. J. Antibiot. 2020, 73, 56–59. [Google Scholar] [CrossRef]
- Bashyal, B.P.; Wijeratne, E.M.K.; Tillotson, J.; Arnold, A.E.; Chapman, E.; Gunatilaka, A.A.L. Chlorinated Dehydrocurvularins and Alterperylenepoxide A from Alternaria sp. AST0039, a Fungal Endophyte of Astragalus Lentiginosus. J. Nat. Prod. 2017, 80, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Burns, A.M.; Liu, M.X.; Faeth, S.H.; Gunatilaka, A.A.L. Search for Cell Motility and Angiogenesis Inhibitors with Potential Anticancer Activity: Beauvericin and Other Constituents of Two Endophytic Strains of Fusarium Oxysporum. J. Nat. Prod. 2007, 70, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Adames, I.; Ortega, H.E.; Asai, Y.; Kato, M.; Nagaoka, K.; Tendyke, K.; Shen, Y.Y.; Cubilla-Ríos, L. 3-Epi-Waol A and Waol C: Polyketide-Derived γ-Lactones Isolated from the Endophytic Fungus Libertella Blepharis F2644. Tetrahedron Lett. 2015, 56, 252–255. [Google Scholar] [CrossRef]
- Ortega, H.E.; Graupner, P.R.; Asai, Y.; Tendyke, K.; Qiu, D.; Shen, Y.Y.; Rios, N.; Arnold, A.E.; Coley, P.D.; Kursar, T.A.; et al. Mycoleptodiscins A and B, Cytotoxic Alkaloids from the Endophytic Fungus Mycoleptodiscus sp. F0194. J. Nat. Prod. 2013, 76, 741–744. [Google Scholar] [CrossRef]
- Meng, L.H.; Li, X.M.; Lv, C.T.; Huang, C.G.; Wang, B.G. Brocazines A-F, Cytotoxic Bisthiodiketopiperazine Derivatives from Penicillium Brocae MA-231, an Endophytic Fungus Derived from the Marine Mangrove Plant Avicennia Marina. J. Nat. Prod. 2014, 77, 1921–1927. [Google Scholar] [CrossRef]
- Wei, H.; Xu, Y.; Espinosa-artiles, P.; Liu, M.X.; Luo, J.; Arnold, A.E.; Gunatilaka, A.A.L.; States, U.; States, U.; Biology, E.; et al. Sesquiterpenes and Other Constituents of Xylaria sp. NC1214, a Fungal Endophyte of the Moss Hypnum sp. Phytochemistry 2015, 118, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Chinworrungsee, M.; Wiyakrutta, S.; Sriubolmas, N.; Chuailua, P.; Suksamrarn, A. Cytotoxic Activities of Trichothecenes Isolated from an Endophytic Fungus Belonging to Order Hypocreales. Arch. Pharm. Res. 2008, 31, 611–616. [Google Scholar] [CrossRef]
- Tantapakul, C.; Promgool, T.; Kanokmedhakul, K.; Soytong, K.; Song, J.; Hadsadee, S.; Jungsuttiwong, S.; Kanokmedhakul, S. Bioactive Xanthoquinodins and Epipolythiodioxopiperazines from Chaetomium globosum 7s-1, an Endophytic Fungus Isolated from Rhapis cochinchinensis (Lour.) Mart. Nat. Prod. Res. 2020, 34, 494–502. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, X.; Zhang, X.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Prenylated P-Terphenyls from a Mangrove Endophytic Fungus, Aspergillus candidus LDJ-5. J. Nat. Prod. 2020, 83, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhang, X.; Shah, M.; Che, Q.; Zhang, G.; Gu, Q.; Zhu, T.; Li, D. Polyhydroxy P-Terphenyls from a Mangrove Endophytic Fungus Aspergillus candidus LDJ-5. Mar. Drugs 2021, 19, 82. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, X.; Al Anbari, W.H.; Zhou, Q.; Zhou, P.; Zhang, M.; Zeng, F.; Chen, C.; Tong, Q.; Wang, J.; et al. Cysteine Residue Containing Merocytochalasans and 17,18-Seco-Aspochalasins from Aspergillus micronesiensis. J. Nat. Prod. 2019, 82, 2653–2658. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhou, K.; He, P.; Wang, K.M.; Zhu, R.Z.; Wang, Y.D.; Dong, W.; Li, G.P.; Yang, H.Y.; Ye, Y.Q.; et al. Antiviral and Cytotoxic Isocoumarin Derivatives from an Endophytic Fungus Aspergillus oryzae. Planta Med. 2016, 82, 414–417. [Google Scholar] [CrossRef]
- Cai, J.; Chen, C.; Tan, Y.; Chen, W.; Luo, X.; Luo, L.; Yang, B.; Liu, Y.; Zhou, X. Bioactive Polyketide and Diketopiperazine Derivatives from the Mangrove-Sediment-Derived Fungus Aspergillus sp. SCSIO41407. Molecules 2021, 26, 4851. [Google Scholar] [CrossRef]
- Xie, F.; Li, X.-B.; Zhou, J.-C.; Xu, Q.-Q.; Wang, X.-N.; Yuan, H.-Q.; Lou, H.-X. Secondary Metabolites from Aspergillus fumigatus,an Endophytic Fungus from the Liverwort Heteroscyphus tener (Steph.) Schiffn. Chem. Biodivers. 2015, 12, 1313–1321. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Cao, F.; Wang, J.; Hu, Z.; Zhang, Y. Proversilins A-E, Drimane-Type Sesquiterpenoids from the Endophytic Aspergillus Versicolor. J. Nat. Prod. 2020, 83, 2200–2206. [Google Scholar] [CrossRef]
- Li, X.G.; Pan, W.D.; Lou, H.Y.; Liu, R.M.; Xiao, J.H.; Zhong, J.J. New Cytochalasins from Medicinal Macrofungus Crodyceps Taii and Their Inhibitory Activities against Human Cancer Cells. Bioorg. Med. Chem. Lett. 2015, 25, 1823–1826. [Google Scholar] [CrossRef]
- Li, Q.; Chen, C.; Cheng, L.; Wei, M.; Dai, C.; He, Y.; Gong, J.; Zhu, R.; Li, X.N.; Liu, J.; et al. Emeridones A-F, a Series of 3,5-Demethylorsellinic Acid-Based Meroterpenoids with Rearranged Skeletons from an Endophytic Fungus Emericella sp. TJ29. J. Org. Chem. 2019, 84, 1534–1541. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zou, G.; Chen, S.; Pang, J.; She, Z. Bioactive Polyketides from the Mangrove Endophytic Fungi Phoma Sp. SYSU-SK-7. Fitoterapia 2019, 139, 104369. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C.; Wang, W.; Zhao, C.; Luo, M.; Mu, F.; Fu, Y.; Zu, Y.; Yao, M. Hypocrea lixii, Novel Endophytic Fungi Producing Anticancer Agent Cajanol, Isolated from Pigeon Pea (Cajanus cajan [L.] Millsp.). J. Appl. Microbiol. 2013, 115, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, G.; Yuan, Y.; Zou, G.; Yang, W.; Tan, Q.; Kang, W.; She, Z. Metabolites with Cytotoxic Activities from the Mangrove Endophytic Fungus Fusarium sp. 2ST2. Front. Chem. 2022, 10, 842405. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.X.; Li, S.F.; Zhao, F.; Dai, H.Q.; Bao, L.; Ding, R.; Gao, H.; Zhang, L.X.; Wen, H.A.; Liu, H.W. Chemical Constituents from Endophytic Fungus Fusarium Oxysporum. Fitoterapia 2011, 82, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Wang, G.; Zhou, Y.; Zeng, D.; Liu, X.; Ding, R.; Jiang, X.; Zhu, D.; Shan, W.; Chen, H. Structure Elucidation and Biological Activity of Two New Trichothecenes from an Endophyte, Myrothecium Roridum. J. Agric. Food Chem. 2014, 62, 5993–6000. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhou, D.; Liang, F.; Wu, Z.; She, Z.; Li, C. Penochalasin K, a New Unusual Chaetoglobosin from the Mangrove Endophytic Fungus Penicillium Chrysogenum V11 and Its Effective Semi-Synthesis. Fitoterapia 2017, 123, 23–28. [Google Scholar] [CrossRef]
- Zhao, D.L.; Yuan, X.L.; Du, Y.M.; Zhang, Z.F.; Zhang, P. Benzophenone Derivatives from an Algal-Endophytic Isolate of Penicillium Chrysogenum and Their Cytotoxicity. Molecules 2018, 23, 3378. [Google Scholar] [CrossRef]
- Chen, J.; Huo, L.N.; Gao, Y.; Zhang, Y.L.; Chen, Y. Two New N-Acetyl-ᴅ-Glucosamine Derivatives from the Medical Algae-Derived Endophytic Fungus Penicillium Chrysogenum. Nat. Prod. Res. 2022, 36, 3988–3991. [Google Scholar] [CrossRef]
- Cai, X.Y.; Wang, J.P.; Shu, Y.; Hu, J.T.; Sun, C.T.; Cai, L.; Ding, Z.T. A New Cytotoxic Indole Alkaloid from the Fungus Penicillium Polonicum TY12. Nat. Prod. Res. 2022, 36, 2270–2276. [Google Scholar] [CrossRef]
- Tang, J.W.; Kong, L.M.; Zu, W.Y.; Hu, K.; Li, X.N.; Yan, B.C.; Wang, W.G.; Sun, H.D.; Li, Y.; Puno, P.T. Isopenicins A-C: Two Types of Antitumor Meroterpenoids from the Plant Endophytic Fungus Penicillium sp. Sh18. Org. Lett. 2019, 21, 771–775. [Google Scholar] [CrossRef]
- Noumeur, S.R.; Helaly, S.E.; Jansen, R.; Gereke, M.; Stradal, T.E.B.; Harzallah, D.; Stadler, M. Preussilides A-F, Bicyclic Polyketides from the Endophytic Fungus Preussia Similis with Antiproliferative Activity. J. Nat. Prod. 2017, 80, 1531–1540. [Google Scholar] [CrossRef]
- Lai, D.; Wang, A.; Cao, Y.; Zhou, K.; Mao, Z.; Dong, X.; Tian, J.; Xu, D.; Dai, J.; Peng, Y.; et al. Bioactive Dibenzo-α-Pyrone Derivatives from the Endophytic Fungus Rhizopycnis Vagum Nitaf22. J. Nat. Prod. 2016, 79, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Balde, E.S.; Andolfi, A.; Bruyère, C.; Cimmino, A.; Lamoral-Theys, D.; Vurro, M.; Van Damme, M.; Altomare, C.; Mathieu, V.; Kiss, R.; et al. Investigations of Fungal Secondary Metabolites with Potential Anticancer Activity. J. Nat. Prod. 2010, 73, 969–971. [Google Scholar] [CrossRef]
- Rehman, S.U.; Yang, L.J.; Zhang, Y.H.; Wu, J.S.; Shi, T.; Haider, W.; Shao, C.L.; Wang, C.Y. Sorbicillinoid Derivatives From Sponge-Derived Fungus Trichoderma Reesei (HN-2016-018). Front. Microbiol. 2020, 11, 1334. [Google Scholar] [CrossRef]
- Gao, S.S.; Li, X.M.; Williams, K.; Proksch, P.; Ji, N.Y.; Wang, B.G. Rhizovarins A-F, Indole-Diterpenes from the Mangrove-Derived Endophytic Fungus Mucor Irregularis QEN-189. J. Nat. Prod. 2016, 79, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, R.S.; Kim, H.J.; Hur, B.K. Taxol Promising Fungal Endophyte, Pestalotiopsis Species Isolated from Taxus Cuspidata. J. Biosci. Bioeng. 2010, 110, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.X.; Chen, Y.C.; Sun, Z.H.; Li, H.H.; Li, S.N.; Yan, M.L.; Zhang, W.M. Two New Metabolites from the Endophytic Fungus Alternaria sp. A744 Derived from Morinda officinalis. Molecules 2017, 22, 765. [Google Scholar] [CrossRef]
- Suresh, G.; Kokila, D.; Suresh, T.C.; Kumaran, S.; Velmurugan, P.; Vedhanayakisri, K.A.; Sivakumar, S.; Ravi, A.V. Mycosynthesis of Anticancer Drug Taxol by Aspergillus Oryzae, an Endophyte of Tarenna Asiatica, Characterization, and Its Activity against a Human Lung Cancer Cell Line. Biocatal. Agric. Biotechnol. 2020, 24, 101525. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z.H.; Chen, Y.C.; Liu, H.X.; Li, H.H.; Tan, G.H.; Li, S.N.; Guo, X.L.; Zhang, W.M. Cytotoxic Cochlioquinone Derivatives from the Endophytic Fungus Bipolaris Sorokiniana Derived from Pogostemon Cablin. Fitoterapia 2016, 110, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Tan, H.B.; Chen, Y.C.; Li, S.N.; Li, H.H.; Zhang, W.M. Cytotoxic Triquinane-Type Sesquiterpenoids from the Endophytic Fungus Cerrena sp. A593. Nat. Prod. Res. 2020, 34, 2430–2436. [Google Scholar] [CrossRef]
- Bashyal, B.P.; Wijeratne, E.M.K.; Faeth, S.H.; Gunatilaka, A.A.L. Globosumones A-C, Cytotoxic Orsellinic Acid Esters from the Sonoran Desert Endophytic Fungus Chaetomium globosum. J. Nat. Prod. 2005, 68, 724–728. [Google Scholar] [CrossRef]
- Liu, H.; Tan, H.; Chen, Y.; Guo, X.; Wang, W.; Guo, H.; Liu, Z.; Zhang, W. Cytorhizins A-D, Four Highly Structure-Combined Benzophenones from the Endophytic Fungus Cytospora Rhizophorae. Org. Lett. 2019, 21, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Z.; Huang, Y.; Liu, L.; He, J.; Wang, L.; Yuan, J.; She, Z. Ascomylactams A-C, Cytotoxic 12- or 13-Membered-Ring Macrocyclic Alkaloids Isolated from the Mangrove Endophytic Fungus Didymella sp. CYSK-4, and Structure Revisions of Phomapyrrolidones A and C. J. Nat. Prod. 2019, 82, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; You, Y.X.; Su, Y.; Liu, Y.; He, Q.; Fan, Y.; Hu, F.; Xu, Y.K.; Zhang, C.R. Two Spiroketal Derivatives with an Unprecedented Amino Group and Their Cytotoxicity Evaluation from the Endophytic Fungus Pestalotiopsis Flavidula. Fitoterapia 2019, 135, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, E.M.K.; Paranagama, P.A.; Marron, M.T.; Gunatilaka, M.K.; Arnold, A.E.; Gunatilaka, A.A.L. Sesquiterpene Quinones and Related Metabolites from Phyllosticta Spinarum, a Fungal Strain Endophytic in Platycladus Orientalis of the Sonoran Desert. J. Nat. Prod. 2008, 71, 218–222. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Mishra, P.D.; Kulkarni-Almeida, A.; Verekar, S.; Sahoo, M.R.; Periyasamy, G.; Goswami, H.; Khanna, A.; Balakrishnan, A.; Vishwakarma, R. Anti-Inflammatory and Anticancer Activity of Ergoflavin Isolated from an Endophytic Fungus. Chem. Biodivers. 2009, 6, 784–789. [Google Scholar] [CrossRef]
- Lai, D.; Mao, Z.; Zhou, Z.; Zhao, S.; Xue, M.; Dai, J.; Zhou, L.; Li, D. New Chlamydosporol Derivatives from the Endophytic Fungus Pleosporales Sp. Sigrf05 and Their Cytotoxic and Antimicrobial Activities. Sci. Rep. 2020, 10, 8193. [Google Scholar] [CrossRef]
- Isaka, M.; Palasarn, S.; Lapanun, S.; Chanthaket, R.; Boonyuen, N.; Lumyong, S. γ-Lactones and Ent-Eudesmane Sesquiterpenes from the Endophytic Fungus Eutypella sp. BCC 13199. J. Nat. Prod. 2009, 72, 1720–1722. [Google Scholar] [CrossRef]
- Bunyapaiboonsri, T.; Yoiprommarat, S.; Srikitikulchai, P.; Srichomthong, K.; Lumyong, S. Oblongolides from the Endophytic Fungus Phomopsis Sp. BCC 9789. J. Nat. Prod. 2010, 73, 55–59. [Google Scholar] [CrossRef]
- Isaka, M.; Chinthanom, P.; Boonruangprapa, T.; Rungjindamai, N.; Pinruan, U. Eremophilane-Type Sesquiterpenes from the Fungus Xylaria Sp. BCC 21097. J. Nat. Prod. 2010, 73, 683–687. [Google Scholar] [CrossRef]
- Sawadsitang, S.; Mongkolthanaruk, W.; Suwannasai, N.; Sodngam, S. Antimalarial and Cytotoxic Constituents of Xylaria Cf. Cubensis PK108. Nat. Prod. Res. 2015, 29, 2033–2036. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybczyńska-Tkaczyk, K.; Grenda, A.; Jakubczyk, A.; Krawczyk, P. Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules 2023, 28, 4381. https://doi.org/10.3390/molecules28114381
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Krawczyk P. Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules. 2023; 28(11):4381. https://doi.org/10.3390/molecules28114381
Chicago/Turabian StyleRybczyńska-Tkaczyk, Kamila, Anna Grenda, Anna Jakubczyk, and Paweł Krawczyk. 2023. "Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells" Molecules 28, no. 11: 4381. https://doi.org/10.3390/molecules28114381
APA StyleRybczyńska-Tkaczyk, K., Grenda, A., Jakubczyk, A., & Krawczyk, P. (2023). Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules, 28(11), 4381. https://doi.org/10.3390/molecules28114381