Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Carbonic Anhydrase Inhibition
- (i)
- The physiologically dominant cytosolic human isoform hCA I was effectively inhibited by all evaluated sulfonamides 3a–l, with KIs in the range of 13.3–87.6 nM. As shown in Table 1, all tested compounds exhibited better inhibition against this isozyme compared with acetazolamide (AAZ) as the control drug. Interestingly, the poorest inhibitor of the series, 3l, inhibited hCA I up to three-fold compared to the reference inhibitor (KI = 250 nM). Since the structure–activity relationship (SAR) was not flat, with the aim of simplifying its interpretation, the compounds were classified into five classes: (i) acyclic alkyl-; (ii) cyclic alkyl-; (iii) benzyl-; (iv) vinyl-; and (iv) aryl-substituted derivatives. The SARs for the linear alkyl-substituted compounds 3a–c and 3e–g indicated that a higher alkyl chain length leads to more potent inhibitory activities against hCA I. Therefore, hexanamide 3g exhibited the most engaging activity, with a KI value of 13.3 nM. Similarly, by the expansion of the ring size of the cyclic alkyl-substituted derivatives 3d,h, their inhibitory potency increased; albeit there is no clear relationship between the inhibitory activity of acyclic and cyclic series. On the other hand, the benzyl- and vinyl-substituted derivatives 3i and 3j,k, respectively, exhibited similar inhibitory activities, which were almost equal to the medium-sized ring alkane-substituted 3l. Finally, among the investigated compounds, the only aryl-substituted derivative, 3l, exhibited the poorest inhibition for this isozyme. In summary, the potency for the inhibition of hCA I by the newly designed compounds followed the order: long aliphatic chain (C6)-substituted > medium aliphatic chain (C2-C4)-substituted ≥ medium-sized cyclic aliphatic (C6)-substituted ≈ vinyl-substituted ≈ benzyl-substituted > small-sized cyclic aliphatic (C3)-substituted ≈ aryl-substituted derivatives.
- (ii)
- The physiologically most relevant and fastest isoform, hCA II, was also effectively inhibited by most of the evaluated sulfonamides, with KIs ranging between 5.3 and 384.3 nM. Notably, half of compounds reported here displayed better inhibitory activity towards hCA II compared to AAZ. Again, a linear alkyl-substituted sulfonamide, 3f, showed superior activity, with a KI value of 5.3 nM, which was 2.5-fold higher than that of AAZ. The SAR was rather similar to that outlined above for hCA I, with the most obvious difference being in the case of the aryl-substituted derivatives. While for hCA I the worst inhibition was observed for compound 3l, and this compound showed one of the best inhibition values of the series against hCA II (KI of 6.8 nM). Needless to say that the high similarity of the observed SARs for hCA I and hCA II can be explained by the high-sequence homology of the amino acid present within the active site of these isozymes [45].
- (iii)
- The other cytosolic isoform, hCA VII, which was recently validated as a therapeutic target in neuropathic pain [46], was also strongly inhibited by all evaluated compounds (KIs in the range of 1.1–13.5 nM) compared to AAZ with a KI of 2.5 nM. The data presented in Table 1 indicate that one-third of the compounds investigated here (3d–f and 3h) displayed even better inhibitory activities against hCA VII in comparison with AAZ. Among them, 3d showed superior selectivity against this isoform versus hCA I and hCA II, which was more than 46 and 202 times more selective against hCA VII vs. hCA I and hCA II, respectively. Therefore, this compound may be considered an interesting starting point for the development of hCA VII-selective inhibitors, which may be used as neuropathic-attenuating agents.
- (iv)
- As seen from the data in Table 1, the tested sulfonamides exhibited good to moderate inhibitory action against the mycobacterial enzyme MtCA1, with nanomolar to micromolar efficacies (KIs of 95.2 nM to 6.669 μM). The SAR is diverse from what was observed for the α-isoforms, except for the most massive aliphatic (C6)-substituted derivatives 3g,h, the rest of the studied derivatives were active in the nanomolar range. Compound 3d, which exhibited the weakest results for hCA I and II, displayed the best activity against MtCA1, with an KI value of 95.2 nM andfive-fold superior to acetazolamide (KI of 480 nM). The results are highly encouraging towards their future use in designing β-CA-selective inhibitors.
- (v)
- The second M. tuberculosis isoform, MtCA2, was the best inhibited bacterial CA among the three such enzymes investigated in this study, with N-((4-sulfamoylphenyl)carbamothioyl) amides 3a–l. Indeed, all of these compounds showed low nanomolar inhibition constants ranging between 3.4 and 57.1 nM. It is worthwhile to note that almost 85% of the tested compounds 3a–d and 3g–l displayed better inhibitory activities than AAZ. This means that all of the substitution patterns explored here led to highly effective MtCA2 inhibitors.
- (vi)
- MtCA3 was, on the other hand, less sensitive to inhibition with the evaluated compounds compared to MtCA1 and MtCA2, and the KIs were in the range of 446.6–9396 nM. In this case, the styrene-substituted derivative 3k demonstrated the best activity, with a KI value of 446.6 nM but was still 4.3-fold less potent than acetazolamide (KI of 104 nM).
3. In Silico Studies
4. Materials and Methods
4.1. Chemistry
4.2. Synthesis
4.2.1. Synthesis of N-((4-Sulfamoylphenyl)carbamothioyl)acetamide 3a
4.2.2. Synthesis of N-((4-Sulfamoylphenyl)carbamothioyl)propionamide 3b
4.2.3. Synthesis of N-((4-Sulfamoylphenyl)carbamothioyl)butyramide 3c
4.2.4. Synthesis of N-((4-Sulfamoylphenyl)carbamothioyl)cyclopropanecarboxamide 3d
4.2.5. Synthesis of N-((4-sulfamoylphenyl)carbamothioyl)isobutyramide 3e
4.2.6. Synthesis of 3-methyl-N-((4-sulfamoylphenyl)carbamothioyl)butanamide 3f
4.2.7. Synthesis of N-((4-sulfamoylphenyl)carbamothioyl)hexanamide 3g
4.2.8. Synthesis of N-((4-Sulfamoylphenyl)carbamothioyl)cyclohexanecarboxamide 3h
4.2.9. Synthesis of 2-(Naphthalen-1-yl)-N-((4-sulfamoylphenyl)carbamothioyl)acetamide 3i
4.2.10. Synthesis of N-((4-Sulfamoylphenyl)carbamothioyl)but-2-enamide 3j
4.2.11. Synthesis of N-((4-Sulfamoylphenyl)carbamothioyl)cinnamamide 3k
4.2.12. Synthesis of 4-nitro-N-((4-sulfamoylphenyl)carbamothioyl)benzamide 3l
4.3. CA Inhibitory Assay
4.4. In Silico Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 473, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T.; Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem. 2007, 15, 4336–4350. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, A.; Supuran, C.T.; Capasso, C. An overview on the recently discovered iota-carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 2021, 36, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- Aspatwar, A.; Tolvanen, M.E.E.; Barker, H.; Syrjänen, L.; Valanne, S.; Purmonen, S.; Waheed, A.; Sly, W.S.; Parkkila, S. Carbonic anhydrases in metazoan model organisms: Molecules, mechanisms, and physiology. Physiol. Rev. 2022, 102, 1327–1383. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T. Carbonic anhydrases—An overview. Curr. Pharm. Des. 2008, 14, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Alterio, V.; Kellner, M.; Esposito, D.; Liesche-Starnecker, F.; Bua, S.; Supuran, C.T.; Monti, S.M.; Zeidler, R.; De Simone, G. Biochemical and structural insights into carbonic anhydrase XII/Fab6A10 complex. J. Mol. Biol. 2019, 431, 4910–4921. [Google Scholar] [CrossRef]
- Mann, T.; Keilin, D. Sulphanilamide as a specific inhibitor of carbonic anhydrase. Nature 1940, 146, 164–165. [Google Scholar] [CrossRef]
- Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev. 2003, 23, 146–189. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7, 168–181. [Google Scholar] [CrossRef]
- Scott, K.A.; Njardarson, J.T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. 2018, 376, 5. [Google Scholar] [CrossRef]
- Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci. 2021, 135, 1233–1249. [Google Scholar] [CrossRef] [PubMed]
- Zaib, S.; Saeed, A.; Stolte, K.; Flörke, U.; Shahid, M.; Iqbal, J. New aminobenzenesulfonamide-thiourea conjugates: Synthesis and carbonic anhydrase inhibition and docking studies. Eur. J. Med. Chem. 2014, 78, 140–150. [Google Scholar] [CrossRef]
- Saeed, A.; Al-Rashida, M.; Hamayoun, M.; Mumtaz, A.; Iqbal, J. Carbonic anhydrase inhibition by 1-aroyl-3-(4-aminosulfonylphenyl)thioureas. J. Enzyme Inhib. Med. Chem. 2014, 29, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Tugrak, M.; Gul, H.I.; Demir, Y.; Gulcin, I. Synthesis of benzamide derivatives with thiourea-substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch. Pharm. 2021, 354, 2000230. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.U.; Saeed, A.; Bua, S.; Nocentini, A.; Gratteri, P.; Supuran, C.T. Synthesis, biological evaluation and computational studies of novel iminothiazolidinone benzenesulfonamides as potent carbonic anhydrase II and IX inhibitors. Bioorg. Chem. 2018, 77, 381–386. [Google Scholar] [CrossRef]
- Fattah, T.A.; Bua, S.; Saeed, A.; Shabir, G.; Supuran, C.T. 3-Aminobenzenesulfonamides incorporating acylthiourea moieties selectively inhibit the tumor-associated carbonic anhydrase isoform IX over the off-target isoforms I, II and IV. Bioorg. Chem. 2019, 82, 123–128. [Google Scholar] [CrossRef]
- Abdoli, M.; Angeli, A.; Bozdag, M.; Carta, F.; Kakanejadifard, A.; Saeidian, H.; Supuran, C.T. Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of benzo[d]thiazole-5- and 6-sulfonamides. J. Enzyme Inhib. Med. Chem. 2017, 32, 1071–1078. [Google Scholar] [CrossRef]
- Abdoli, M.; Bozdag, M.; Angeli, A.; Supuran, C.T. Benzamide-4-Sulfonamides Are Effective Human Carbonic Anhydrase I, II, VII, and IX Inhibitors. Metabolites 2018, 8, 37. [Google Scholar] [CrossRef]
- Abdoli, M.; Giovannuzzi, S.; Supuran, C.T.; Žalubovskis, R. 4-(3-Alkyl/benzyl-guanidino)benzenesulfonamides as selective carbonic anhydrase VII inhibitors. J. Enzyme Inhib. Med. Chem. 2022, 37, 1568–1576. [Google Scholar] [CrossRef]
- Abdoli, M.; Bonardi, A.; Supuran, C.T.; Žalubovskis, R. 4-Cyanamidobenzenesulfonamide derivatives: A novel class of human and bacterial carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 2023, 38, 156–165. [Google Scholar] [CrossRef]
- Abdoli, M.; De Luca, V.; Capasso, C.; Supuran, C.T.; Žalubovskis, R. Benzenesulfonamides Incorporating Hydantoin Moieties Effectively Inhibit Eukaryoticand Human Carbonic Anhydrases. Int. J. Mol. Sci. 2022, 23, 14115. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, J.; Abdoli, M.; Nocentini, A.; Žalubovskis, R.; Supuran, C.T. 1,2,3-Benzoxathiazine-2,2-dioxides—Effective inhibitors of human carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 2023, 38, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, M.; De Luca, V.; Capasso, C.; Supuran, C.T.; Žalubovskis, R. Inhibition studies on carbonic anhydrase isoforms I, II, IX and XII with a series of sulfaguanidines. ChemMedChem. 2023, 18, e202200658. [Google Scholar] [CrossRef]
- Abdoli, M.; De Luca, V.; Capasso, C.; Supuran, C.T.; Žalubovskis, R. Novel thiazolone-benzenesulphonamide inhibitors of human and bacterial carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 2023, 38, 2163243. [Google Scholar] [CrossRef]
- Abdoli, M.; Bonardi, A.; Supuran, C.T.; Žalubovskis, R. Investigation of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 2023, 38, 2152811. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, J.; Abdoli, M.; Nocentini, A.; Žalubovskis, R.; Supuran, C.T. Derivatives of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide as selective inhibitors of human carbonic anhydrases IX and XII over the cytosolic isoforms I and II. J. Enzyme Inhib. Med. Chem. 2023, 38, 2170370. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, M.; Supuran, C.T.; Žalubovskis, R. 2-((1H-Benzo [d] imidazol-2-yl) amino) benzo [d] thiazole-6-sulphonamides: A class of carbonic anhydrase II and VII-selective inhibitors. J. Enzyme Inhib. Med. Chem. 2023, 38, 2174981. [Google Scholar] [CrossRef]
- Alterio, V.; Tanc, M.; Ivanova, J.; Zalubovskis, R.; Vozny, I.; Monti, S.M.; Di Fiore, A.; De Simone, G.; Supuran, C.T. X-ray crystallographic and kinetic investigations of 6-sulfamoyl-saccharin as a carbonic anhydrase inhibitor. Org. Biomol. Chem. 2015, 13, 4064–4069. [Google Scholar] [CrossRef]
- Grandane, A.; Nocentini, A.; Werner, T.; Zalubovskis, R.; Supuran, C.T. Benzoxepinones: A new isoform-selective class of tumor associated carbonic anhydrase inhibitors. Bioorg. Med. Chem. 2020, 28, 115496. [Google Scholar] [CrossRef]
- Grandāne, A.; Nocentini, A.; Domračeva, I.; Žalubovskis, R.; Supuran, C.T. Development of oxathiino[6,5-b]pyridine 2,2-dioxide derivatives as selective inhibitors of tumor-related carbonic anhydrases IX and XII. Eur. J. Med. Chem. 2020, 200, 112300. [Google Scholar] [CrossRef]
- Krasavin, M.; Sharonova, T.; Sharoyko, V.; Zhukovsky, D.; Kalinin, S.; Žalubovskis, R.; Tennikova, T.; Supuran, C.T. Combining carbonic anhydrase and thioredoxin reductase inhibitory motifs within a single molecule dramatically increases its cytotoxicity. J. Enzyme Inhib. Med. Chem. 2020, 35, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Podolski-Renić, A.; Dinić, J.; Stanković, T.; Jovanović, M.; Ramović, A.; Pustenko, A.; Žalubovskis, R.; Pešić, M. Sulfocoumarins, specific carbonic anhydrase IX and XII inhibitors, interact with cancer multidrug resistant phenotype through pH regulation and reverse P-glycoprotein mediated resistance. Eur. J. Pharm. Sci. 2019, 138, 105012. [Google Scholar] [CrossRef]
- Ivanova, J.; Balode, A.; Žalubovskis, R.; Leitans, J.; Kazaks, A.; Vullo, D.; Tars, K.; Supuran, C.T. 5-Substituted-benzylsulfanyl-thiophene-2-sulfonamides with effective carbonic anhydrase inhibitory activity: Solution and crystallographic investigations. Bioorg. Med. Chem. 2017, 25, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Pustenko, A.; Nocentini, A.; Balašova, A.; Alafeefy, A.; Krasavin, M.; Žalubovskis, R.; Supuran, C.T. Aryl derivatives of 3H-1,2-benzoxathiepine 2,2-dioxide as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35, 245–254. [Google Scholar] [CrossRef]
- Žalubovskis, R. In a search for selective inhibitors of carbonic anhydrases: Coumarin and its bioisosteres-synthesis and derivatization. Chem. Heterocycl. Comp. 2015, 51, 607–612. [Google Scholar] [CrossRef]
- Pustenko, A.; Nocentini, A.; Balašova, A.; Krasavin, M.; Žalubovskis, R.; Supuran, C.T. 7-Acylamino-3H-1,2-benzoxathiepine 2,2-dioxides as new isoform-selective carbonic anhydrase IX and XII inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35, 650–656. [Google Scholar] [CrossRef]
- Aspatwar, A.; Kairys, V.; Rala, S.; Parikka, M.; Bozdag, M.; Carta, F.; Supuran, C.T.; Parkkila, S. Mycobacterium tuberculosis β-carbonic anhydrases: Novel targets for developing antituberculosis drugs. Int. J. Mol. Sci. 2019, 20, 5153. [Google Scholar] [CrossRef]
- Wani, T.V.; Bua, S.; Khude, P.S.; Chowdhary, A.H.; Supuran, C.T.; Toraskar, M.P. Evaluation of sulphonamide derivatives acting as inhibitors of human carbonic anhydrase isoforms I, II and Mycobacterium tuberculosis β-class enzyme Rv3273. J. Enzyme Inhib. Med. Chem. 2018, 33, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Nishimori, I.; Minakuchi, T.; Maresca, A.; Carta, F.; Scozzafava, A.; Supuran, C.T. The β-carbonic anhydrases from Mycobacterium tuberculosis as drug targets. Curr. Pharm. Des. 2010, 16, 3300–3309. [Google Scholar] [CrossRef]
- Güzel, O.; Maresca, A.; Scozzafava, A.; Salman, A.; Balaban, A.T.; Supuran, C.T. Discovery of low nanomolar and subnanomolar inhibitors of the mycobacterial beta-carbonic anhydrases Rv1284 and Rv3273. J. Med. Chem. 2009, 52, 4063–4067. [Google Scholar] [CrossRef]
- Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Innocenti, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Cloning, characterization, and inhibition studies of a new beta-carbonic anhydrase from Mycobacterium tuberculosis. J. Med. Chem. 2009, 52, 3116–3120. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias, A.S.; Bergfors, T.; Jones, T.A.; Högbom, M. Structural mechanics of the pH-dependent activity of beta-carbonic anhydrase from Mycobacterium tuberculosis. J. Biol. Chem. 2006, 281, 4993–4999. [Google Scholar] [CrossRef] [PubMed]
- Suarez Covarrubias, A.; Larsson, A.M.; Högbom, M.; Lindberg, J.; Bergfors, T.; Björkelid, C.; Mowbray, S.L.; Unge, T.; Jones, T.A. Structure and function of carbonic anhydrases from Mycobacterium tuberculosis. J. Biol. Chem. 2005, 280, 18782–18789. [Google Scholar] [CrossRef] [PubMed]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase: I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [CrossRef]
- Aksu, K.; Nar, M.; Tanc, M.; Vullo, D.; Gülçin, İ.; Göksu, S.; Tümer, F.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory properties of sulfamides structurally related to dopamine. Bioorg. Med. Chem. 2013, 21, 2925–2931. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev. Neurother. 2016, 16, 961–968. [Google Scholar] [CrossRef]
- McGurn, L.D.; Moazami-Goudarzi, M.; White, S.A.; Suwal, T.; Brar, B.; Tang, J.Q.; Espie, G.S.; Kimber, M.S. The structure, kinetics and interactions of the β-carboxysomal β-carbonic anhydrase, CcaA. Biochem. J. 2016, 473, 4559–4572. [Google Scholar] [CrossRef]
- Vermelho, A.B.; da Silva Cardoso, V.; Ricci Junior, E.; Dos Santos, E.P.; Supuran, C.T. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem. 2018, 33, 139–146. [Google Scholar] [CrossRef]
- Nocentini, A.; Carta, F.; Tanc, M.; Selleri, S.; Supuran, C.T.; Bazzicalupi, C.; Gratteri, P. Deciphering the mechanism of human carbonic anhydrases inhibition with sulfocoumarins: Computational and experimental studies. Eur. J. Chem. 2018, 24, 7840–7844. [Google Scholar] [CrossRef]
- Pustenko, A.; Nocentini, A.; Gratteri, P.; Bonardi, A.; Vozny, I.; Žalubovskis, R.; Supuran, C.T. The antibiotic furagin and its derivatives are isoform-selective human carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35, 1011–1020. [Google Scholar] [CrossRef]
- Nocentini, A.; Bonardi, A.; Gratteri, P.; Cerra, B.; Gioiello, A.; Supuran, C.T. Steroids interfere with human carbonic anhydrase activity by using alternative binding mechanisms. J. Enzyme Inhib. Med. Chem. 2018, 33, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Chohan, Z.H.; Munawar, A.; Supuran, C.T. Transition metal ion complexes of Schiff-bases. Synthesis, characterization and antibacterial properties. Met. Based Drugs 2001, 8, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, J.; Carta, F.; Vullo, D.; Leitans, J.; Kazaks, A.; Tars, K.; Žalubovskis, R.; Supuran, C.T. N-Substituted and ring opened saccharin derivatives selectively inhibit transmembrane, tumor-associated carbonic anhydrases IX and XII. Bioorg. Med. Chem. 2017, 25, 3583–3589. [Google Scholar] [CrossRef] [PubMed]
- Briganti, F.; Pierattelli, R.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Part 37. Novel classes of isozyme I and II inhibitors and their mechanism of action. Kinetic and spectroscopic investigations on native and cobalt-substituted enzymes. Eur. J. Med. Chem. 1996, 31, 1001–1010. [Google Scholar] [CrossRef]
- Pastorekova, S.; Casini, A.; Scozzafava, A.; Vullo, D.; Pastorek, J.; Supuran, C.T. Carbonic anhydrase inhibitors: The first selective, membrane-impermeant inhibitors targeting the tumor-associated isozyme IX. Bioorg. Med. Chem. Lett. 2004, 14, 869–873. [Google Scholar] [CrossRef]
- Carta, F.; Supuran, C.T.; Scozzafava, A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med. Chem. 2014, 6, 1149–1165. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, A.; Atmaca, U.; Keskin, A.; Topal, A.M.; Celik, M.; Gülçin, İ.; Supuran, C.T. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isoenzymes I and II. Bioorg. Med. Chem. 2015, 23, 2598–2605. [Google Scholar] [CrossRef]
- Innocenti, A.; Gülçin, İ.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I–XV. Bioorg. Med. Chem. Lett. 2010, 20, 5050–5053. [Google Scholar] [CrossRef]
- Schrödinger Suite Release 2022-4, Prime, v.5.5; Schrödinger, LLC: New York, NY, USA, 2022.
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Srivastava, D.K.; Jude, K.M.; Banerjee, A.L.; Haldar, M.; Manokaran, S.; Kooren, J.; Mallik, S.; Christianson, D.W. Structural analysis of charge discrimination in the binding of inhibitors to human carbonic anhydrases I and II. J. Am. Chem. Soc. 2007, 129, 5528–5537. [Google Scholar] [CrossRef]
- Behnke, C.A.; Le Trong, I.; Godden, J.W.; Merritt, E.A.; Teller, D.C.; Bajorath, J.; Stenkamp, R.E. Atomic resolution studies of carbonic anhydrase II. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 616–627. [Google Scholar] [CrossRef]
- Buemi, M.R.; Di Fiore, A.; De Luca, L.; Angeli, A.; Mancuso, F.; Ferro, S.; Monti, S.M.; Buonanno, M.; Russo, E.; De Sarro, G.; et al. Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety. Eur. J. Med. Chem. 2019, 163, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Schrödinger Suite Release 2022-4, Maestro v.13.2; Schrödinger, LLC.: New York, NY, USA, 2022.
- Schrödinger Suite Release 2022-4, Epik, v.6.0; Schrödinger, LLC.: New York, NY, USA, 2022.
- Schrödinger Suite Release 2022-4, Macromodel v.13.6.; Schrödinger, LLC.: New York, NY, USA, 2022.
- Schrödinger Suite Release 2022-4, Glide, v.9.5; Schrödinger, LLC.: New York, NY, USA, 2022.
- Schrödinger Suite Release 2022-4, Impact, v.9.5; Schrödinger, LLC.: New York, NY, USA, 2022.
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, G.A.; Friesner, R.A.; Tirado-Rives, J.; Jorgensen, W.L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105, 6474–6487. [Google Scholar] [CrossRef]
- Bonardi, A.; Nocentini, A.; Cadoni, R.; Del Prete, S.; Dumy, P.; Capasso, C.; Gratteri, P.; Supuran, C.T.; Winum, J.Y. Benzoxaboroles: New Potent Inhibitors of the Carbonic Anhydrases of the Pathogenic Bacterium Vibrio cholerae. ACS Med. Chem. Lett. 2020, 11, 2277–2284. [Google Scholar] [CrossRef]
- Bonardi, A.; Nocentini, A.; Osman, S.M.; Alasmary, F.A.; Almutairi, T.M.; Abdullah, D.S.; Gratteri, P.; Supuran, C.T. Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with aromatic sulphonamides and clinically licenced drugs—A joint docking/molecular dynamics study. J. Enzyme Inhib. Med. Chem. 2021, 36, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Grande, R.; Carradori, S.; Puca, V.; Vitale, I.; Angeli, A.; Nocentini, A.; Bonardi, A.; Gratteri, P.; Lanuti, P.; Bologna, G.; et al. Selective Inhibition of Helicobacter pylori Carbonic Anhydrases by Carvacrol and Thymol Could Impair Biofilm Production and the Release of Outer Membrane Vesicles. Int. J. Mol. Sci. 2021, 22, 11583. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
Compound | KI (nM) a | |||||
---|---|---|---|---|---|---|
hCA I (α-CA) | hCA II (α-CA) | hCA VII (α-CA) | MtCA1 (β-CA) | MtCA2 (β-CA) | MtCA3 (β-CA) | |
3a | 85.2 | 78.7 | 13.5 | 897.3 | 4.4 | 610.2 |
3b | 58.3 | 35.9 | 2.8 | 251.6 | 5.4 | 806.0 |
3c | 50.3 | 7.7 | 3.0 | 783.7 | 7.6 | 9396.5 |
3d | 87.4 | 384.3 | 1.9 | 95.2 | 4.2 | 6284.1 |
3e | 72.7 | 8.9 | 1.1 | 369.1 | 57.1 | 3670.6 |
3f | 36.4 | 5.3 | 2.1 | 782.4 | 21.1 | 8393.7 |
3g | 13.3 | 46.5 | 3.2 | 3512 | 3.4 | 718.7 |
3h | 67.8 | 21.7 | 2.2 | 6669.2 | 8.4 | 7144.4 |
3i | 60.5 | 9.7 | 2.6 | 961.6 | 4.6 | 2125.9 |
3j | 69.4 | 64.6 | 10.3 | 2421 | 9.2 | 850.7 |
3k | 47.9 | 9.2 | 3.1 | 223.9 | 8.1 | 446.6 |
3l | 87.6 | 6.8 | 2.5 | 868.2 | 4.8 | 5275.4 |
AAZ | 250 | 12.5 | 2.5 | 480 | 9.8 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoli, M.; Bonardi, A.; Paoletti, N.; Aspatwar, A.; Parkkila, S.; Gratteri, P.; Supuran, C.T.; Žalubovskis, R. Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides. Molecules 2023, 28, 4020. https://doi.org/10.3390/molecules28104020
Abdoli M, Bonardi A, Paoletti N, Aspatwar A, Parkkila S, Gratteri P, Supuran CT, Žalubovskis R. Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides. Molecules. 2023; 28(10):4020. https://doi.org/10.3390/molecules28104020
Chicago/Turabian StyleAbdoli, Morteza, Alessandro Bonardi, Niccolò Paoletti, Ashok Aspatwar, Seppo Parkkila, Paola Gratteri, Claudiu T. Supuran, and Raivis Žalubovskis. 2023. "Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides" Molecules 28, no. 10: 4020. https://doi.org/10.3390/molecules28104020
APA StyleAbdoli, M., Bonardi, A., Paoletti, N., Aspatwar, A., Parkkila, S., Gratteri, P., Supuran, C. T., & Žalubovskis, R. (2023). Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides. Molecules, 28(10), 4020. https://doi.org/10.3390/molecules28104020