Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Chromatographic Separation and Mass Spectrometric Detection
2.2. UPLC-Q-TOF-MS/MS Analysis and Identification of the Chemical Components of CHDG and VPDG
2.2.1. Identification of Flavonoids
2.2.2. Identification of Diterpene Esters
2.2.3. Identification of Lignan and Coumarin
2.3. Multivariate Statistical Analysis
2.4. Analysis of Chemicals of DG after Processing
3. Experimental
3.1. Materials, Chemicals, and Reagents
3.2. Sample Preparation and Extraction
3.3. Chromatography Separation
3.4. Mass Spectrometry
3.5. Mass Data Processing and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wu, X.; Wang, S.P.; Lu, J.R.; Jing, Y.; Li, M.X.; Cao, J.L.; Bian, B.L.; Hu, C.J. Seeing the unseen of Chinese herbal medicine processing (Paozhi): Advances in new perspectives. Chin. Med. 2018, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Nagachi, Y.; Ishiuchi, K.; Tabuchi, Y.; Xu, F.; Shang, M.Y.; Cai, S.Q.; Makino, T. Comparison of the inducible effects of licorice products with or without heat-processing and pre-treatment with honey on granulocyte colony-stimulating factor secretion in cultured enterocytes. J. Ethnopharmacol. 2018, 214, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fu, J.F.; Lv, M.Y.; Tian, Y.; Xu, F.G.; Song, R.; Zhang, Z.J. Effect of wine processing and acute blood stasis on the serum pharmacochemistry of rhubarb: A possible explanation for processing mechanism. J. Sep. Sci. 2014, 37, 2499–2503. [Google Scholar] [CrossRef]
- Wu, L.Y.; Yang, Y.; Mao, Z.J.; Wu, J.J.; Ren, D.; Zhu, B.; Qin, L.P. Processing and Compatibility of Corydalis yanhusuo: Phytochemistry, Pharmacology, Pharmacokinetics, and Safety. Evid. Based Complement. Altern. Med. 2021, 2021, 1271953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, W.F.; Liang, H.; Zhu, X.H.; Na, B.Q.; Xu, J.F.; Zhang, C.H.; Li, M.H. Study on traditional processing method of Mongolian medicine and excipient usage based on data mining. Zhongguo Zhong Yao Za Zhi 2020, 45, 3988–3996. [Google Scholar] [PubMed]
- Cai, B.C.; Qin, K.M.; Wu, H.; Cai, H.; Lu, T.L.; Zhang, X.D. Chemical mechanism during Chinese medicine processing. Prog. Chem. 2012, 24, 637–649. [Google Scholar] [CrossRef]
- Yu, J.G.; Guo, J.; Zhu, K.Y.; Tao, W.; Chen, Y.; Liu, P.; Hua, Y.; Tang, Y.; Duan, J.A. How impaired efficacy happened between Gancao and Yuanhua: Compounds, targets and pathways. Sci. Rep. 2017, 7, 3828. [Google Scholar] [CrossRef]
- Hong, J.Y.; Chung, H.J.; Lee, H.J.; Park, H.J.; Lee, S.K. Growth inhibition of human lung cancer cells via down-regulation of epidermal growth factor receptor signaling by yuanhuadine, a daphnane diterpene from Daphne genkwa. J. Nat. Prod. 2011, 74, 2102–2108. [Google Scholar] [CrossRef]
- Li, S.M.; Chou, G.X.; Hseu, Y.C.; Yang, H.L.; Kwan, H.Y.; Yu, Z.L. Isolation of anticancer constituents from flos genkwa (Daphne genkwa Sieb. et Zucc.) through bioassay-guided procedures. Chem. Cent. J. 2013, 7, 159. [Google Scholar] [CrossRef]
- Yoo, N.; Lee, H.R.; Son, J.M.; Kang, H.B.; Lee, H.G.; Yoon, S.R.; Yoon, S.Y.; Kim, J.W. Genkwadaphnin promotes leukocyte migration by increasing CD44 expression via PKD1/NF-κB signaling pathway. Immunol. Lett. 2016, 173, 69–76. [Google Scholar] [CrossRef]
- Bailly, C. Yuanhuacin and related anti-inflammatory and anticancer daphnane diterpenes from Genkwa Flos—An overview. Biomolecules 2022, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Park, B.Y.; Kwon, O.K.; Yuk, J.E.; Oh, S.R.; Kim, H.S.; Lee, H.K.; Ahn, K.S. Anti-inflammatory activity of (-)-aptosimon isolated from Daphne genkwa in RAW264.7 cells. Int. Immunopharmacol. 2009, 9, 878–885. [Google Scholar] [CrossRef]
- Li, Y.N.; Yin, L.H.; Xu, L.N.; Peng, J.Y. A simple and efficient protocol for large-scale preparation of three flavonoids from the flower of Daphne genkwa by combination of macroporous resin and counter-current chromatography. J. Sep. Sci. 2010, 33, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Liang, Y.; Ito, Y.; Wang, X.; Chen, R.; He, J.; Li, H.; Zhang, T. Preparative isolation and purification of four flavonoids from Daphne genkwa Sieb. et Zucc. by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2360–2372. [Google Scholar] [CrossRef]
- Mi, S.H.; Zhao, P.; Li, Q.; Zhang, H.; Guo, R.; Liu, Y.Y.; Lin, B.; Yao, G.D.; Song, S.J.; Huang, X.X. Guided isolation of daphnane-type diterpenes from Daphne genkwa by molecular network strategies. Phytochemistry 2022, 198, 113144. [Google Scholar] [CrossRef]
- Pan, R.R.; Zhang, C.Y.; Li, Y.; Zhang, B.B.; Zhao, L.; Ye, Y.; Song, Y.N.; Zhang, M.; Tie, H.Y.; Zhang, H.; et al. Daphnane Diterpenoids from Daphne genkwa inhibit PI3K/Akt/mTOR signaling and induce cell cycle arrest and apoptosis in human colon cancer cells. J. Nat. Prod. 2020, 83, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.J.; Fan, C.Q.; Ding, J.; Yue, J.M. Novel diterpenoids with potent inhibitory activity against endothelium cell HMEC and cytotoxic activities from a well-known TCM plant Daphne genkwa. Bioorg. Med. Chem. 2005, 13, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Park, B.Y.; Min, B.S.; Oh, S.R.; Kim, J.H.; Bae, K.H.; Lee, H.K. Isolation of flavonoids, a biscoumarin and an amide from the flower buds of Daphne genkwa and the evaluation of their anti-complement activity. Phytother. Res. 2006, 20, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Luo, L.; Xia, J.; Song, Y.N.; Zhang, L.J.; Zhang, M.; Rahman, K.; Ye, Y.; Zhang, H.; Zhu, J.Y. Sesquiterpenes and lignans from the flower buds of Daphne genkwa and their nitric oxide inhibitory activities. Nat. Prod. Res. 2018, 32, 2893–2899. [Google Scholar] [CrossRef]
- Gan, L.; Ji, J.; Wang, L.; Li, Q.Y.; Zhang, C.F.; Wang, C.Z.; Yuan, C.S. Identification of the metabolites in normal and AA rat plasma, urine and feces after oral administration of Daphne genkwa flavonoids by LC-Q-TOF-MS spectrometry. J. Pharm. Biomed. Anal. 2020, 177, 112856. [Google Scholar] [CrossRef]
- Zhao, H.D.; Lu, Y.; Yan, M.; Chen, C.H.; Morris-Natschke, S.L.; Lee, K.H.; Chen, D.F. Rapid recognition and targeted isolation of anti-HIV daphnane diterpenes from Daphne genkwa guided by UPLC-MS(n). J. Nat. Prod. 2020, 83, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Du, W.J.; Ji, J.; Wang, L.; Lan, X.Y.; Li, J.; Lei, J.Q.; He, X.; Zhang, C.F.; Huang, W.Z.; Wang, Z.Z.; et al. Relationship between the UPLC-Q-TOF-MS fingerprinted constituents from Daphne genkwa and their anti-inflammatory, anti-oxidant activities. Biomed. Chromatogr. 2017, 31, e4012. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Wang, Z.; Xia, K. Comprehensive evaluation and practical confirmation on processing technology of Daphne genkwa Sieb. et Zucc. Zhongguo Zhong Yao Za Zhi 1999, 24, 464–465, 510. [Google Scholar] [PubMed]
- Zhang, C.F.; Zhang, S.L.; He, X.; Yang, X.L.; Wu, H.T.; Lin, B.Q.; Jiang, C.P.; Wang, J.; Yu, C.H.; Yang, Z.L.; et al. Antioxidant effects of Genkwa Flos flavonoids on Freund’s adjuvant-induced rheumatoid arthritis in rats. J. Ethnopharmacol. 2014, 153, 793–800. [Google Scholar] [CrossRef]
- Zhou, D.C.; Zheng, G.; Jia, L.Y.; He, X.; Zhang, C.F.; Wang, C.Z.; Yuan, C.S. Comprehensive evaluation on anti-inflammatory and anti-angiogenic activities in vitro of fourteen flavonoids from Daphne genkwa based on the combination of efficacy coefficient method and principal component analysis. J. Ethnopharmacol. 2021, 268, 113683. [Google Scholar] [CrossRef]
- Zhou, Q.R.; Xiao, L.Y.; Liu, Q.N.; Sun, P.P.; Zhang, L. Vinegar processing attenuates toxicity on IEC-6 cells caused by chloroform extraction of Daphne genkwa. Zhongguo Zhong Yao Za Zhi 2018, 43, 2282–2287. [Google Scholar]
- Chen, Y.; Guo, J.; Tang, Y.; Wu, L.; Tao, W.; Qian, Y.; Duan, J.A. Pharmacokinetic profile and metabolite identification of yuanhuapine, a bioactive component in Daphne genkwa by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J. Pharm. Biomed. Anal. 2015, 112, 60–69. [Google Scholar] [CrossRef]
- Tao, Y.; Su, D.D.; Li, W.D.; Cai, B.C. Pharmacokinetic comparisons of six components from raw and vinegar-processed Daphne genkwa aqueous extracts following oral administration in rats by employing UHPLC-MS/MS approaches. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2018, 1079, 34–40. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, Y.; Liu, S.; Liu, Z.Q.; Song, F.R.; Liu, Z.Y. A strategy to comprehensively and quickly identify the chemical constituents in Platycodi Radix by ultra-performance liquid chromatography coupled with traveling wave ion mobility quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2021, 44, 691–708. [Google Scholar] [CrossRef]
- Tian, P.P.; Zhang, X.X.; Wang, H.P.; Li, P.L.; Liu, Y.X.; Li, S.J. Rapid analysis of components in Coptis chinensis Franch by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Pharmacogn. Mag. 2017, 13, 175–179. [Google Scholar]
- Oh, J.H.; Ha, I.J.; Lee, M.Y.; Kim, E.O.; Park, D.; Lee, J.H.; Lee, S.G.; Kim, D.W.; Lee, T.H.; Lee, E.J.; et al. Identification and metabolite profiling of alkaloids in aerial parts of Papaver rhoeas by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J. Sep. Sci. 2018, 41, 2517–2527. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Han, F.; Tang, Z.; Liu, R.; Zhao, X.; Chen, X.H.; Bi, K.S. UFLC-MS/MS method for simultaneous determination of luteolin-7-O-gentiobioside, luteolin-7-O-β-D-glucoside and luteolin-7-O-β-D-glucuronide in beagle dog plasma and its application to a pharmacokinetic study after administration of traditional Chinese medicinal preparation: Kudiezi injection. J. Pharm. Biomed. Anal. 2013, 72, 127–133. [Google Scholar] [PubMed]
- Park, B.Y.; Min, B.S.; Ahn, K.S.; Kwon, O.K.; Joung, H.; Bae, K.H.; Lee, H.K.; Oh, S.R. Daphnane diterpene esters isolated from flower buds of Daphne genkwa induce apoptosis in human myelocytic HL-60 cells and suppress tumor growth in Lewis lung carcinoma (LLC)-inoculated mouse model. J. Ethnopharmacol. 2007, 111, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.L.; Sun, H.Y.; Yuan, Y.; Liu, Z.Z.; Cui, Y.; Bi, K.S.; Chen, X.H. Discrimination of raw and vinegar-processed Genkwa Flos using metabolomics coupled with multivariate data analysis: A discrimination study with metabolomics coupled with PCA. Fitoterapia 2013, 84, 286–294. [Google Scholar] [CrossRef]
- Li, W.; Yang, M.H.; Zheng, Y.G. Fragmentation investigation of seven arylnaphthalide lignans using liquid chromatography/tandem quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 2012, 26, 950–956. [Google Scholar] [CrossRef]
- Zhang, J.X.; Yang, W.Z.; Li, S.R.; Yao, S.; Qi, P.; Yang, Z.; Feng, Z.J.; Hou, J.J.; Cai, L.Y.; Yang, M.; et al. An intelligentized strategy for endogenous small molecules characterization and quality evaluation of earthworm from two geographic origins by ultra-high performance HILIC/QTOF MS(E) and Progenesis QI. Anal. Bioanal. Chem. 2016, 408, 3881–3890. [Google Scholar] [CrossRef]
- Huang, B.M.; Zha, Q.L.; Chen, T.B.; Xiao, S.Y.; Xie, Y.; Luo, P.; Wang, Y.P.; Liu, L.; Zhou, H. Discovery of markers for discriminating the age of cultivated ginseng by using UHPLC-QTOF/MS coupled with OPLS-DA. Phytomedicine 2018, 45, 8–17. [Google Scholar] [CrossRef]
- Qi, S.; Zha, L.Y.; Peng, Y.Z.; Luo, W.; Chen, K.L.; Li, X.; Huang, D.F.; Yin, D.M. Quality and Metabolomics Analysis of Houttuynia cordata Based on HS-SPME/GC-MS. Molecules 2022, 27, 3921. [Google Scholar] [CrossRef]
- Song, H.H.; Kim, D.Y.; Woo, S.; Lee, H.K.; Oh, S.R. An approach for simultaneous determination for geographical origins of Korean Panax ginseng by UPLC-QTOF/MS coupled with OPLS-DA models. J. Ginseng Res. 2013, 37, 341–348. [Google Scholar] [CrossRef]
- Zeng, F.Q.; Xu, Y.L.; Li, Y.L.; Yan, Z.G.; Li, L. Metabonomics Study of the hematopoietic effect of medicinal wine Maoji Jiu on a blood deficiency rat model by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry and a pattern recognition approach. Molecules 2022, 27, 3791. [Google Scholar] [CrossRef]
- Wheelock, Å.M.; Wheelock, C.E. Trials and tribulations of ‘omics data analysis: Assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol. Biosyst. 2013, 9, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.W.; Sheng, Y.X.; Zeng, G.W.; Zeng, Z.J.; Li, B.T.; Jiang, L.; Xu, G.L.; Zhang, Q.Y. Metabonomic study on the plasma of high-fat diet-induced dyslipidemia rats treated with Ge Gen Qin Lian decoction by ultrahigh-performance liquid chromatography-mass spectrometry. Evid. Based Complement. Altern. Med. 2021, 2021, 6692456. [Google Scholar] [CrossRef]
- Nthai, D.; Thibane, V.S.; Gololo, S.S. Comparative study of abiotic stress factors on GC-MS-detected phytoconstituents of Aloe greatheadii var: Davyana using heat map and hierarchical clustering dendrogram. Biochem. Res. Int. 2022, 2022, 5365024. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.H.; Rybalov, L.; Negrin, A.; Morcol, T.; Long, W.W.; Myers, A.K.; Isaac, G.; Yuk, J.; Kennelly, E.J.; Long, C.L. Metabolic profiling of different parts of Acer truncatum from the Mongolian plateau using UPLC-QTOF-MS with comparative bioactivity assays. J. Agric. Food Chem. 2019, 67, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.L. Metabonomic Study of Genkwa Flos-Induced Hepatic Injury and Detoxification of Herb-Processing. Ph.D. Dissertation, Shenyang Pharmaceutical University, Shenyang, China, 2013. [Google Scholar]
- Campos, A.; Vendramini-Costa, D.B.; Longato, G.B.; Zermiani, T.; Ruiz, A.L.; de Carvalho, J.E.; Pandiella, A.; Cechinel Filho, V. Antiproliferative effect of Synadenium grantii Hook f. stems (Euphorbiaceae) and a rare phorbol diterpene ester. Int. J. Toxicol. 2016, 35, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Zayed, S.M.; Farghaly, M.; Soliman, S.M.; Gotta, H.; Sorg, B.; Hecker, E. Dietary cancer risk from conditional cancerogens (tumor promoters) in produce of livestock fed on species of spurge (Euphorbiaceae). V. Skin irritant and tumor-promoting diterpene ester toxins of the tigliane and ingenane type in the herbs Euphorbia nubica and Euphorbia helioscopia contaminating fodder of livestock. J. Cancer Res. Clin. Oncol. 2001, 127, 40–47. [Google Scholar] [PubMed]
- Ma, X.H.; Wang, Z.B.; Zhang, L.; Li, W.; Deng, C.M.; Zhong, T.H.; Li, G.Y.; Zheng, W.M.; Zhang, Y.H. Diterpenoids from Wedelia prostrata and their derivatives and cytotoxic activities. Chem. Biodivers. 2017, 14, e1600423. [Google Scholar] [CrossRef]
- Samadder, A.; Das, J.; Das, S.; Das, D.; De, A.; Bhadra, K.; Khuda-Bukhsh, A.R. Dihydroxy-isosteviol methyl ester of Pulsatilla nigricans extract reduces arsenic-induced DNA damage in testis cells of male mice: Its toxicity, drug-DNA interaction and signaling cascades. Zhong Xi Yi Jie He Xue Bao 2012, 10, 1433–1442. [Google Scholar] [CrossRef]
- Zayed, S.M.; Farghaly, M.; Taha, H.; Gminski, R.; Hecker, E. Dietary cancer risk from conditional cancerogens in produce of livestock fed on species of spurge (Euphorbiaceae). III. Milk of lactating goats fed on the skin irritant herb Euphorbia peplus is polluted by tumor promoters of the ingenane diterpene ester type. J. Cancer Res. Clin. Oncol. 1998, 124, 301–306. [Google Scholar]
- Zhou, S.K.; Zhang, Y.; Ju, Y.H.; Zhang, Q.; Luo, D.; Cao, Y.D.; Yao, W.F.; Tang, Y.P.; Zhang, L. Comparison of content-toxicity-activity of six ingenane-type diterpenoids between Euphorbia kansui before and after stir-fried with vinegar by using UFLC-MS/MS, zebrafish embryos and HT-29 cells. J. Pharm. Biomed. Anal. 2021, 195, 113828. [Google Scholar] [CrossRef]
No. | Retention Time, TR (min) | Compound Name | Molecular Formula | Detected Mass (m/z) | Ion Type | Mass Error (ppm) | MS/MS (m/z) |
---|---|---|---|---|---|---|---|
1 * | 2.43 | protocatechuic acid | C7H6O4 | 153.0199 | [M−H]− | 3.6 | 135.0258; 109.0292 |
2 * | 2.74 | chlorogenic acid | C16H18O9 | 353.0882 | [M−H]− | 1.2 | 191.0567; 179.0345; 161.0245; 135.0451 |
3 * | 2.86 | rutin | C27H30O16 | 609.1461 | [M−H]− | −0.1 | 285.0393 |
4 * | 3.21 | isoquercitrin | C21H20O12 | 463.0879 | [M−H]− | −0.5 | 301.0353 |
5 * | 3.32 | pinoresinol diglucoside | C32H42O16 | 727.2454 | [M−H+HCOOH]− | −0.1 | 681.2395; 357.1347; 151.0393 |
6 * | 3.37 | caffeic acid | C9H8O4 | 179.0354 | [M−H]− | 2.1 | 135.0451 |
7 | 3.77 | eleutheroside E | C34H46O8 | 787.2659 | [M−H+HCOOH]− | −1 | 417.1547; 367.1021; 181.0510 |
8 | 3.78 | methyl 4-caffeoylquinate | C17H20O9 | 367.1936 | [M−H]− | 0.5 | 191.0559; 181.0510 |
9 * | 4.28 | cynaroside | C21H20O11 | 447.0929 | [M−H]− | −0.9 | 285.0403; 133.0293; 107.0131 |
10 | 4.74 | apigenin-5-O-β-d-primeveroside | C26H28O14 | 563.1403 | [M−H]− | −0.6 | 311.0552; 269.0483; 117.0342 |
11 * | 5.07 | 7-hydroxycoumarin | C9H6O3 | 161.0245 | [M−H]− | 0.5 | 133.0311 |
12 * | 5.23 | luteolin-7-O-β-d-glucuronide | C21H18O12 | 461.0726 | [M−H]− | 0 | 285.0403; 243.0286; 151.0036; 133.0296 |
13 * | 5.28 | kaempferol-3-O-glucosyl(1-2)rhamnoside | C27H30O15 | 593.1513 | [M−H]− | 0.2 | 299.0563; 284.0326 |
14 * | 5.4 | genkwanin-5-O-β-d-glucoside | C21H20O10 | 431.0986 | [M−H]− | 0.5 | 311.0562; 269.0459; 240.0423; 117.0347 |
15 * | 5.57 | apigenin-7-O-β-d-methylglucuronate | C22H20O11 | 505.0988 | [M−H+HCOOH]− | 0.1 | 311.0562; 283.0613; 269.9452; 117.0347 |
16 | 5.63 | hydroxygenkwanin-3′-O-β-d-glucoside hydroxygenkwanin-5-O-β-d-glucoside | C22H20O11 | 461.1088 | [M−H]− | −0.3 | 284.0329; 255.0299; 133.0294 |
17 * | 5.67 | isovitexin | C21H20O10 | 477.1031 | [M−H+HCOOH]− | −1.5 | 271.0238; 117.0343 |
18 * | 5.77 | quercitrin | C21H20O11 | 447.0931 | [M−H]- | −0.3 | 284.0326 |
19 | 5.8 | genkwanin-5-O-β-d-primveroside | C27H30O14 | 577.1566 | [M−H]− | 0.6 | 283.0616; 269.0459; 268.0380; 175.0249 |
20 | 5.88 | apigenin-7-O-β-d-glucuronate | C21H18O11 | 445.0777 | [M−H]− | 0.1 | 269.0459; 175.0249; 113.0244 |
21 | 6.07 | genkwanol A | C30H22O10 | 541.1144 | [M−H]− | 0.6 | 417.0973; 285.0396; 227.0346 |
22 | 6.11 | genkwanin-5-O-β-d-glucopyranoside | C23H26O9 | 445.1139 | [M−H]− | 0.1 | 283.0631; 268.0390; 239.0374; 165.0200; 151.0034; 117.0342 |
23 * | 6.28 | quercetin | C15H10O7 | 301.0355 | [M−H]− | 0.6 | 149.0240 |
24 | 7.94 | edgeworthin | C18H10O7 | 337.0353 | [M−H]− | −0.3 | 164.0062; 112.9884 |
25 * | 8.53 | luteolin | C15H10O6 | 285.0405 | [M−H]− | 0.1 | 151.0041; 133.0294 |
26 * | 8.90 | tiliroside | C30H26O13 | 593.1298 | [M−H]− | −0.4 | 447.0920; 307.0822; 285.0398; 227.0348; 211.0392; 145.0293; 117.0339 |
27 | 9.47 | matairesinol | C20H22O6 | 357.1344 | [M−H]− | 0.1 | 285.0434; 255.0264; 227.0343 |
28 | 9.69 | naringenin | C15H12O5 | 271.0611 | [M−H]− | −0.5 | 255.0334; 151.0039 |
29 * | 10.5 | apigenin | C15H10O5 | 269.0460 | [M−H]− | 1.6 | 117.0348; 107.0136 |
30 * | 10.58 | daphnoretin | C19H12O7 | 351.0513 | [M−H]− | 0.9 | 190.9986; 163.0038; 135.0093 |
31 | 10.77 | 8-methoxykaempferol | C16H12O7 | 315.0510 | [M−H]− | 0 | 300.0274 |
32 * | 13.82 | hydroxygenkwanin | C16H12O6 | 299.0562 | [M−H]− | 0.4 | 284.0325; 256.0368; 227.0342; 151.0031; 133.0293 |
33 * | 18.81 | genkwanin | C16H12O5 | 283.0616 | [M−H]− | 1.5 | 268.0378; 240.0419; 211.0396; 117.0344; 151.0033 |
34 | 18.87 | isodaphnoretin B | C20H14O8 | 417.0404 | [M−H]− | 5.2 | 151.0033 |
35 | 20.22 | 4′,5-dihydroxy-3′,7-dimethoxyflavone | C17H14O6 | 313.0722 | [M−H]− | 1.4 | 255.0173; 190.9265; 138.9457 |
36 | 24.33 | luteolin-3′,4′,7-trimethyl ether | C18H16O6 | 327.0869 | [M−H]− | −1.6 | 253.0563 |
37 | 25.08 | syringaresinol | C22H26O8 | 463.1608 | [M−H]− | −0.4 | 121.0295 |
38 | 25.33 | genkwanines O | C27H36O9 | 503.2287 | [M−H]− | 0.1 | 315.16256; 239.09879; 194.08435; 121.03045 |
39 | 25.53 | orthobenzoate 2 | C27H34O8 | 485.2180 | [M−H]− | −0.3 | 297.1482; 121.0289 |
40 | 25.55 | yuanhuapin | C29H34O10 | 541.2082 | [M−H]− | 0.5 | 293.1180; 121.0292 |
41 | 26.98 | (4S,5R,7S)-4,11-dihydroxy-guaia-1(2),9(10)-dien | C15H24O2 | 235.1703 | [M−H]− | −0.4 | 183.1391 |
42 | 27.11 | genkwanoids H | C15H22O4 | 265.1481 | [M−H]− | 13.4 | 251.1976; 116.9276 |
43 | 27.52 | daphgenkin F | C31H36O10 | 567.2239 | [M−H]− | 0.6 | 183.0126 |
44 | 28.10 | (3β,12α,13α)-3,12-dihydroxypimara–-7,15-dien-2-one | C20H30O3 | 363.2151 | [M−H]− | −7.2 | 277.2172; 195.1391 |
45 | 28.3 | genkwadaphnin | C34H34O10 | 601.2074 | [M−H]− | −0.9 | 309.1132; 187.0764; 121.0292 |
46 | 28.58 | yuanhuatin | C34H36O10 | 603.2230 | [M−H]− | −1 | 121.0292; 253.1231 |
47 | 28.63 | 12-hydroxydaphnetoxin | C34H36O10 | 543.2604 | [M−H]− | 0.8 | 167.1078 |
48 | 29.15 | daphgenkin B | C37H48O12 | 683.3051 | [M−H]− | −3.2 | 309.1728; 183.0119; 471.3462 |
49 | 29.45 | genkwanines D | C34H40O10 | 607.2551 | [M−H]− | 0.4 | 327.1242; 309.1743; 187.0754; 165.0921; 121.0297 |
50 | 29.47 | yuanhuagine | C34H40O10 | 583.2553 | [M−H]− | 0.7 | 327.1242; 311.1690; 165.0921; 121.0297 |
51 | 30.12 | genkwanines M | C34H38O9 | 589.2442 | [M−H]− | −0.3 | 467.2066; 121.0295 |
52 | 30.21 | yuanhuadine/isoyuanhaudine | C32H42O10 | 585.2703 | [M−H]− | −0.4 | 281.1181; 167.1078; 123.1175 |
53 | 30.64 | excoecariatoxin | C32H42O10 | 527.2647 | [M−H]− | −0.7 | 167.1068 |
54 | 30.83 | 12-O-N-deca-2,4,6-trienoyl-phorbol-(13)-acetate | C32H42O8 | 599.2858 | [M−H]− | −0.7 | 309.1117; 167.1073 |
55 | 31.22 | yuanhuajine | C37H42O10 | 645.2699 | [M−H]− | 0.5 | 277.2140; 225.2216; 165.0934 |
56 | 31.44 | genkwadane D | C34H46O10 | 613.3010 | [M−H]− | −0.3 | 295.1881; 167.1075 |
57 | 31.76 | genkwanines C | C37H48O10 | 651.3160 | [M−H]− | −2.3 | 293.1792; 165.0922 |
58 * | 31.84 | yuanhuacine | C37H44O10 | 647.2853 | [M−H]− | −1.3 | 327.1231; 309.1131; 281.1182; 167.1077; 121.0294 |
59 | 31.87 | genkwanine F | C37H50O10 | 699.3366 | [M−H+HCOOH]− | −2.9 | 299.0557 |
60 | 31.98 | daphgenkin A | C37H46O11 | 279.2331 | [M−H]− | 0.4 | 183.0124; 116.9284 |
61 | 32.18 | linoleic acid | C18H32O2 | 279.2331 | [M−H]− | 0.4 | 183.0115; 116.9274 |
62 | 32.31 | neogenkwanineE/neogenkwanineF | C37H50O10 | 653.3326 | [M−H]− | −0.8 | 167.1072; 121.0297 |
63 | 32.43 | acutilonine F | C37H46O9 | 633.3064 | [M−H]− | −0.8 | 467.2066; 325.1841; 165.0921 |
64 | 32.94 | wikstroemia factor M1 | C37H46O10 | 635.3226 | [M−H]− | 0.1 | 167.1067 |
65 | 33.05 | palmitic acid | C16H32O2 | 255.2333 | [M−H]− | 1.4 | 183.0124; 116.9287 |
66 | 33.29 | oleic acid | C18H34O2 | 281.2488 | [M−H]− | 0.7 | 183.0121 |
67 | 37.11 | eleutheroside A | C35H60O6 | 621.4369 | [M−H]− | −0.5 | 183.0114; 130.9430 |
Peak No. | RT (min) | HR-Mass (m/z) | Assigned Identity | VIP Value | p-Value |
---|---|---|---|---|---|
a | 5.57 | 505.0988 | apigenin-7-O-β-d-methylglucuronate | 1.3322 | 0.0005 |
b | 13.82 | 299.0562 | hydroxygenkwanin | 1.8095 | 0.0361 |
c | 25.33 | 503.2287 | genkwanines O | 10.5276 | 0.0029 |
d | 25.53 | 485.2180 | orthobenzoate 2 | 18.576 | 8 × 10−5 |
e | 8.90 | 593.1298 | tiliroside | 14.9209 | 0.0173 |
f | 6.28 | 301.0355 | quercetin | 3.6803 | 0.0074 |
g | 3.37 | 179.0354 | caffeic acid | 1.7246 | 0.0256 |
h | 9.69 | 271.0611 | naringenin | 3.2516 | 0.0079 |
Sample No. | Batch No. | Sample | Batch No. | Source |
---|---|---|---|---|
CHDG01-1 | Self-collection-1 | VPDG 01-2 | / | Wugang, Henan province |
Self-collection-1 | VPDG 01-3 | / | Anhui province | |
CHDG02-1 | Self-collection-1 | VPDG 02-2 | / | Henan province |
VPDG 02-3 | / | Anhui province | ||
CHDG03-1 | Self-collection-2 | VPDG 03-2 | / | Anhui province |
Self-collection-3 | VPDG 03-3 | / | Anhui province | |
CHDG04-1 | Self-collection-4 | VPDG 04-2 | / | Anhui province |
CHDG05-1 | Self-collection-5 | VPDG 05-2 | / | Henan province |
CHDG06-1 | Self-collection-6 | VPDG 06-2 | / | Henan province |
CHDG07-1 | Self-collection-7 | VPDG 07-2 | / | Henan province |
CHDG08-1 | Self-collection-8 | VPDG 08-2 | / | Hubei province |
CHDG09-1 | Self-collection-9 | VPDG 09-2 | / | Hubei province |
CHDG010-1 | Self-collection-10 | VPDG 010-2 | / | Hubei province |
CHDG011-1 | Self-collection-11 | VPDG 011-2 | / | Hubei province |
CHDG012-1 | Self-collection-12 | VPDG 012-2 | / | Hubei province |
CHDG013-1 | H1901290 | VPDG 013-2 | H190129001-3 | Luotian, Hunan province |
CHDG014-1 | H1901300 | VPDG 014-2 | H190130001-3 | Zhangshu, Jiangxi province |
CHDG015-1 | H1901310 | VPDG 015-2 | H190131001-3 | Deqing, Zhejiang province |
CHDG016-1 | H1901320 | VPDG 016-2 | H190132001-3 | Dawu, Hubei province |
CHDG017-1 | H1901330 | VPDG 017-2 | H190133001-3 | Jingzhai, Anhui province |
CHDG018-1 | H1901340 | VPDG 018-2 | H190134001-3 | Xiaogan, Hubei province |
CHDG019-1 | H1901350 | VPDG 019-2 | H190135001-3 | Nanyang, Henan province |
CHDG020-1 | H1901360 | VPDG 020-2 | H190136001-3 | Dawu, Hubei province |
CHDG021-1 | H1901370 | VPDG 021-2 | H190137001-3 | Zhengyang, Henan province |
CHDG022-1 | H1901380 | VPDG 022-2 | H190138001-3 | Zaoyang, Hubei province |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, H.; Zhang, P.; Yao, L.; Gao, H.; Wei, F.; Lu, T.; Ma, S. Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics. Molecules 2023, 28, 3990. https://doi.org/10.3390/molecules28103990
Mi H, Zhang P, Yao L, Gao H, Wei F, Lu T, Ma S. Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics. Molecules. 2023; 28(10):3990. https://doi.org/10.3390/molecules28103990
Chicago/Turabian StyleMi, Hongying, Ping Zhang, Lingwen Yao, Huiyuan Gao, Feng Wei, Tulin Lu, and Shuangcheng Ma. 2023. "Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics" Molecules 28, no. 10: 3990. https://doi.org/10.3390/molecules28103990
APA StyleMi, H., Zhang, P., Yao, L., Gao, H., Wei, F., Lu, T., & Ma, S. (2023). Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics. Molecules, 28(10), 3990. https://doi.org/10.3390/molecules28103990