The Inhibitory Mechanism of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Acquisition of PAK4 Protein and Inhibitor Structures Figures
2.2. Molecular Docking Results
2.3. Molecular Dynamics Simulations, Stability Analysis and Protein Flexibility Analysis
2.4. Free Energy Landscape and Sampling
2.5. Conformational Analysis of Samples
2.6. Secondary Structure Analysis
2.7. Hydrogen Bonding Analysis
2.8. Binding Free Energy Analysis
2.9. The Factors Affecting the Inhibitory Capacity of Different Inhibitors
3. Materials and Methods
3.1. Molecular Docking Calculations
3.2. Molecular Dynamics Simulations
3.3. Bonding Free Energy Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhao, Z.S.; Manser, E. PAK family kinases: Physiological roles and regulation. Cell Logist. 2012, 2, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Luo, M.; Tu, Z.; Lv, S.; Liu, J.; Gong, C.; Ye, M.; Wu, M.; Sheng, Y.; Long, X.; et al. Comprehensive analysis of the prognostic implications and functional exploration of PAK gene family in human cancer. Cancer Cell Int. 2022, 22, 275. [Google Scholar] [CrossRef] [PubMed]
- Rane, C.K.; Minden, A. P21 activated kinases: Structure, regulation, and functions. Small GTPases 2014, 5, e28003. [Google Scholar] [CrossRef] [Green Version]
- Thillai, K.; Sarker, D.; Wells, C. PAK4 pathway as a potential therapeutic target in pancreatic cancer. Future Oncol. 2018, 14, 579–582. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.-G.; Ning, K.; Li, F. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World J. Gastroenterol. 2016, 22, 1224–1235. [Google Scholar] [CrossRef]
- Bi, Y.; Tian, M.; Le, J.; Wang, L.; Liu, X.; Qu, J.; Hao, M. Study on the expression of PAK4 and P54 protein in breast cancer. World J. Surg. Oncol. 2016, 14, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Dumesny, C.; Ang, C.-S.; Dong, L.; Ma, Y.; Zeng, J.; Nikfarjam, M. A novel PAK4 inhibitor suppresses pancreatic cancer growth and enhances the inhibitory effect of gemcitabine. Transl. Oncol. 2022, 16, 101329. [Google Scholar] [CrossRef]
- Kim, J.H.; Na Kim, H.; Lee, K.T.; Lee, J.K.; Choi, S.-H.; Paik, S.W.; Rhee, J.C.; Lowe, A.W. Gene expression profiles in gallbladder cancer: The close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis. Tumour Biol. 2008, 29, 41–49. [Google Scholar] [CrossRef]
- Ahn, H.K.; Jang, J.; Lee, J.; Se, H.P.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Kim, K.-M.; Kang, W.K. P21-activated kinase 4 overexpression in metastatic gastric cancer patients. Transl. Oncol. 2011, 4, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Chen, L.-Z.; Li-Zhang, C.; Hu, Y.-Y.; Yan, S.-P.; Liu, L.-Y. MicroRNA-433 inhibits cell proliferation in hepatocellular carcinoma by targeting p21 activated kinase (PAK4). Mol. Cell Biochem. 2015, 399, 77–86. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Tian, Y.; Nekrasova, T.; Hao, X.; Lee, H.J.; Suh, N.; Yang, C.S.; Minden, A. The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol. Cancer Res. 2008, 6, 1215–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, M.; Fakhar, M.; Najumuddin; Rashid, S. Phosphorylation-dependent activity-based conformational changes in P21-activated kinase family members and screening of novel ATP competitive inhibitors. PLoS ONE 2019, 14, e0225132. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Zhao, F.; Song, H.; Guo, J.; Li, X.; Jiang, X.; Huan, R.; Song, S.; Zhang, Q.; Wang, R.; et al. Structure-Based Design of 6-Chloro-4-aminoquinazoline-2-carboxamide Derivatives as Potent and Selective p21-Activated Kinase 4 (PAK4) Inhibitors. J. Med. Chem. 2018, 61, 265–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eswaran, J.; Lee, W.H.; Debreczeni, J.; Filippakopoulos, P.; Turnbull, A.; Fedorov, O.; Deacon, S.W.; Peterson, J.; Knapp, S. Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure 2007, 15, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.Y.; Ha, B.H.; Boggon, T.J. PAK4 crystal structures suggest unusual kinase conformational movements. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 356–365. [Google Scholar] [CrossRef]
- Baskaran, Y.; Ang, K.C.; Anekal, P.V.; Chan, W.L.; Grimes, J.M.; Manser, E.; Robinson, R. An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat. Commun. 2015, 6, 8681. [Google Scholar] [CrossRef] [Green Version]
- Costa, T.D.F.; Stromblad, S. Why is PAK4 overexpressed in cancer? Int. J. Biochem. Cell Biol. 2021, 138, 106041. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Q.; Xie, C.; Yu, Y.; Zhang, A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front. Pharmacol. 2022, 13, 956220. [Google Scholar] [CrossRef]
- Murray, B.W.; Guo, C.; Piraino, J.; Westwick, J.K.; Zhang, C.; Lamerdin, J.; Dagostino, E.; Knighton, D.; Loi, C.-M.; Zager, M.; et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc. Natl. Acad. Sci. USA 2010, 107, 9446–9451. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, J.; Crawford, J.J.; Hoeflich, K.P.; Chernoff, J. p21-activated kinase inhibitors. Enzymes 2013, 34 Pt B, 157–180. [Google Scholar]
- Aboud, A.O.; Chen, C.-H.; Senapedis, W.; Baloglu, E.; Argueta, C.; Weiss, R.H. Dual and Specific Inhibition of NAMPT and PAK4 By KPT-9274 Decreases Kidney Cancer Growth. Mol. Cancer Ther. 2016, 15, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuyzen, A.E.; Frolova, L.V.; Kornienko, A.; van Otterlo, W.A.L. The Rigidins: Isolation, Bioactivity, and Total Synthesis-Novel Pyrrolo[2,3-d]Pyrimidine Analogues Using Multicomponent Reactions. Alkaloids Chem. Biol. 2018, 79, 191–220. [Google Scholar] [PubMed]
- Tangeda, S.J.; Garlapati, A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives and evaluation of their activities against human colon cancer cell lines. Eur. J. Med. Chem. 2010, 45, 1453–1458. [Google Scholar] [CrossRef] [PubMed]
- KKrawczyk, S.H.; Nassiri, M.R.; Kucera, L.S.; Kern, E.R.; Ptak, R.G.; Wotring, L.L.; Drach, J.C.; Townsend, L.B. Synthesis and Antiproliferative and Antiviral Activity of 2‘-Deoxy-2’-fluoroarabinofuranosyl Analogs of the Nucleoside Antibiotics Toyocamycin and Sangivamycin. J. Med. Chem. 1995, 38, 4106–4114. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Kamel, R.; Fatahala, S.S. Synthesis and biological evaluation of some thio containing pyrrolo 2,3-d Pyrimidine derivatives for their anti-inflammatory and anti-microbial activities. Eur. J. Med. Chem. 2010, 45, 2994–3004. [Google Scholar] [CrossRef]
- Wang, C.; Xia, J.; Lei, Y.; Lu, R.; Zhang, M.; Lv, H.; Hong, Q.; Lu, T.; Chen, Y.; Li, H. Synthesis and biological evaluation of 7H-pyrrolo [2,3-d] pyrimidine derivatives as potential p21-activated kinase 4 (PAK4) inhibitors. Bioorg. Med. Chem. 2022, 60, 116700. [Google Scholar] [CrossRef]
- Chen, X.-Z.; Dai, C.; Shen, Y.; Wang, J.; Hu, Y.; Wang, Y.Q.; Lin, Z.H. 3D-QSAR, Docking, and Molecular Dynamics Simulations Studies on Quinazoline Derivatives as PAK4 Inhibitors. Lett. Drug Des. Discov. 2021, 18, 1025–1038. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, M.; Wu, T.; Hao, C.; Wang, K.; Yan, Z.; Huang, W.; Wang, J.; Zhao, D.; Cheng, M. Discovery of indolin-2-one derivatives as potent PAK4 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study. Bioorg. Med. Chem. 2017, 25, 3500–3511. [Google Scholar] [CrossRef]
- Su, Y.; Song, P.; Wang, H.; Hu, B.; Wang, J.; Cheng, M.S. Precise design of highly isoform-selective p21-activated kinase 4 inhibitors: Computational insights into the selectivity mechanism through molecular dynamics simulation and binding free energy calculation. J. Biomol. Struct. Dyn. 2020, 38, 3825–3837. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar]
- Tanchuk, V.Y.; Tanin, V.O.; Vovk, A.I.; Poda, G. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina. Chem. Biol. Drug Des. 2016, 87, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016, 18, 12964–12975. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B.L.; Grubmüller, H. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. J. Comput. Chem. 2015, 36, 1990–2008. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, E.; Grubmuller, H.; Hess, B.; van der Spoel, D. GROMACS 2019.6 Source Code. Available online: https://zenodo.org/record/3685922#.Y7O5ERVBxPY (accessed on 15 December 2021).
- Benkovic, S.J.; Hammes, G.G.; Hammes-Schiffer, S. Free-energy landscape of enzyme catalysis. Biochemistry 2008, 47, 3317–3321. [Google Scholar] [CrossRef]
- Papaleo, E.; Mereghetti, P.; Fantucci, P.; Grandori, R.; De Gioia, L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. J. Mol. Graph. Model. 2009, 27, 889–899. [Google Scholar] [CrossRef]
- Guo, J.; Wang, T.; Wu, T.; Zhang, K.; Yin, W.; Zhu, M.; Pang, Y.; Hao, C.; He, Z.; Cheng, M.; et al. Synthesis, bioconversion, pharmacokinetic and pharmacodynamic evaluation of N-isopropyl-oxy-carbonyloxymethyl prodrugs of CZh-226, a potent and selective PAK4 inhibitor. Eur. J. Med. Chem. 2020, 186, 111878. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, C.J.; Rosso, L.; Betz, R.M.; Walker, R.C.; Gould, I.R. GAFFlipid: A General Amber Force Field for the accurate molecular dynamics simulation of phospholipid. Soft Matter 2012, 8, 9617–9627. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Aldeghi, M.; Bodkin, M.J.; Knapp, S.; Biggin, P.C. Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study. J. Chem Inf. Model. 2017, 57, 2203–2221. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Nguyen, P.H.; Pham, K.; Huynh, D.; Le, T.B.N.; Wang, H.L.; Ren, P.Y.; Luo, R. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis. J. Comput. Chem. 2016, 37, 2436–2446. [Google Scholar] [CrossRef] [Green Version]
- Valdes-Tresanco Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291.
- Kumari, R.; Kumar, R.; Lynn, A. Open Source Drug Discovery, C., g_mmpbsa-A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
Residue | Complex 5n | Complex 5h | Complex 5g | Complex 5e |
---|---|---|---|---|
Glu396 Phe397 Leu398 Gly401 | −17.0917 −13.9827 −21.0516 −8.1326 | −18.4948 −14.1506 −21.0612 −7.7494 | −18.2980 −13.7404 −20.2117 −4.0624 | −14.6707 −13.3797 −19.1500 −7.6172 |
Ile327 Val335 Ile337 Ala348 Leu447 | −10.8861 −4.0020 −2.2354 −3.3588 −9.1495 | −8.6148 −3.4731 −2.0533 −4.0180 −8.9728 | −7.6158 −3.0272 −6.4054 −4.0549 −6.8793 | −8.2873 −4.4933 −2.4832 −3.6271 −7.4401 |
Lys350 Glu366 Asp405 Asp444 Asp458 Arg589 Arg591 | 3.6187 −3.8704 3.0469 −7.8068 −5.5331 −0.1275 −0.0779 | 6.8103 −6.0667 6.3600 −1.3075 −6.7903 −4.2941 −5.0457 | 4.7075 −3.7092 1.9215 −5.3929 −8.6775 0.0255 0.0685 | 4.9280 −3.9110 2.7995 −1.4685 −6.8339 −0.4139 −0.3159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Wang, S.; Zhang, X.; Liu, C.; Zhang, Y.; Zhang, H. The Inhibitory Mechanism of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation. Molecules 2023, 28, 413. https://doi.org/10.3390/molecules28010413
Du J, Wang S, Zhang X, Liu C, Zhang Y, Zhang H. The Inhibitory Mechanism of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation. Molecules. 2023; 28(1):413. https://doi.org/10.3390/molecules28010413
Chicago/Turabian StyleDu, Juan, Song Wang, Xinyue Zhang, Chang Liu, Yurou Zhang, and Hao Zhang. 2023. "The Inhibitory Mechanism of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation" Molecules 28, no. 1: 413. https://doi.org/10.3390/molecules28010413
APA StyleDu, J., Wang, S., Zhang, X., Liu, C., Zhang, Y., & Zhang, H. (2023). The Inhibitory Mechanism of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation. Molecules, 28(1), 413. https://doi.org/10.3390/molecules28010413