The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Morphology
2.2. Surface Hardness
2.3. Optical Properties
2.4. Processability
2.5. Toughness
3. Experimental
3.1. Main Materials
3.2. Fabrication of SiO2/PMMA Composites
3.3. Analysis and Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Yoon, M.-H.; Lu, G.; Yang, Y.; Facchetti, A.; Marks, T.J. High-Performance Transparent Inorganic–Organic Hybrid Thin-Film n-Type Transistors. Nat. Mater. 2006, 5, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Lü, C.; Yang, B. High Refractive Index Organic–Inorganic Nanocomposites: Design, Synthesis and Application. J. Mater. Chem. 2009, 19, 2884–2901. [Google Scholar] [CrossRef]
- Maeda, S.; Fujita, M.; Idota, N.; Matsukawa, K.; Sugahara, Y. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices Via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization. ACS Appl. Mater. Interfaces 2016, 8, 34762–34769. [Google Scholar] [CrossRef] [PubMed]
- Almaral-Sánchez, J.L.; Rubio, E.; Mendoza-Galván, A.; Ramirez-Bon, R. Red Colored Transparent PMMA–SiO2 Hybrid Films. J. Phys. Chem. Solids 2005, 66, 1660–1667. [Google Scholar] [CrossRef]
- Palkovits, R.; Althues, H.; Rumplecker, A.; Tesche, B.; Dreier, A.; Holle, U.; Fink, G.; Cheng, C.H.; Shantz, D.F.; Kaskel, S. Polymerization of w/o Microemulsions for the Preparation of Transparent SiO2/PMMA Nanocomposites. Langmuir 2005, 21, 6048–6053. [Google Scholar] [CrossRef]
- Sugimoto, H.; Daimatsu, K.; Nakanishi, E.; Ogasawara, Y.; Yasumura, T.; Inomata, K. Preparation and Properties of Poly (Methylmethacrylate)–Silica Hybrid Materials Incorporating Reactive Silica Nanoparticles. Polymer 2006, 47, 3754–3759. [Google Scholar] [CrossRef]
- Tadano, T.; Zhu, R.; Suzuki, S.; Hoshi, T.; Sasaki, D.; Hagiwara, T.; Sawaguchi, T. Thermal Degradation of Transparent Poly(Methyl Methacrylate)/Silica Nanoparticle Hybrid Films. Polym. Degrad. Stabil. 2014, 109, 7–12. [Google Scholar] [CrossRef]
- Fabre-Francke, I.; Berrebi, M.; Lavédrine, B.; Fichet, O. Hybrid PMMA Combined with Polycarbonate inside Interpenetrating Polymer Network Architecture for Development of New Anti-Scratch Glass. Mater. Today Commun. 2019, 21, 100582. [Google Scholar] [CrossRef]
- Melgoza-Ramírez, M.L.; Ramírez-Bon, R. Microstructural Comparison between PMMA-SiO2 and PMMA-TiO2 Hybrid Systems Using Eu3+ as Ion-Probe Luminescence. J. Non-Cryst. Solids. 2020, 544, 120167. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, X.Y.; Zhu, B.S.; Qian, C. Effect of Nano ZrO2 on Flexural Strength and Surface Hardness of Polymethylmethacrylate. Shanghai J. Stomatol. 2011, 20, 358–363. [Google Scholar]
- Asgharzadeh Shirazi, H.; Ayatollahi, M.; Navidbakhsh, M.; Asnafi, A. New Insights into the Role of Al2O3 Nano-Supplements in Mechanical Performance of PMMA and PMMA/HA Bone Cements Using Nanoindentation and Nanoscratch Measurements. Mater. Technol. 2021, 36, 212–220. [Google Scholar] [CrossRef]
- Chen, X.; Xu, T.; Lei, H.; Tan, L.; Yang, L. Multifunctional Nano-ZnO/PMMA Composites with High Transparency Prepared by One-Step in Situ Polymerization. Polym. Compos. 2019, 40, 657–663. [Google Scholar] [CrossRef]
- Cao, B.; Zhou, Y.; Wu, Y.; Cai, J.; Guan, X.; Liu, S.; Zhao, J.; Zhang, M. Simultaneous Improvement of Processability and Toughness of Highly Filled MH/LLDPE Composites by Using Fluorine-Containing Flow Modifiers. Compos. Part A-Appl. Sci. 2020, 134, 105900. [Google Scholar] [CrossRef]
- Li, B.; Yuan, H.; Zhang, Y. Transparent PMMA-Based Nanocomposite Using Electrospun Graphene-Incorporated PA-6 Nanofibers as the Reinforcement. Compos. Sci. Technol. 2013, 89, 134–141. [Google Scholar] [CrossRef]
- Tian, Z.R.; Voigt, J.A.; Liu, J.; McKenzie, B.; McDermott, M.J.; Rodriguez, M.A.; Konishi, H.; Xu, H. Complex and Oriented ZnO Nanostructures. Nat. Mater. 2003, 2, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Djurišić, A.B.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Jang, S.-H.; Shchegolkov, A.V.; Rodionov, Y.V.; Glivenkova, O.A. Multistage Mechanical Activation of Multilayer Carbon Nanotubes in Creation of Electric Heaters with Self-Regulating Temperature. Materials 2021, 14, 4654. [Google Scholar] [CrossRef]
- Göldel, A.; Marmur, A.; Kasaliwal, G.R.; Pötschke, P.; Heinrich, G. Shape-Dependent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend During Melt Mixing. Macromolecules 2011, 44, 6094–6102. [Google Scholar] [CrossRef]
- Yu, S.; Oh, K.H.; Hong, S.H. Effects of Silanization and Modification Treatments on the Stiffness and Toughness of BF/SEBS/PA6, 6 Hybrid Composites. Compos. Part B Eng. 2019, 173, 106922. [Google Scholar] [CrossRef]
- Cao, B.; Wang, O.; Cai, J.; Xie, W.; Liu, S.; Zhao, J. Silicone/Fluorine-Functionalized Flow Modifier with Low Surface Energy for Improving Interfaces in Highly Filled Composites. Compos. Sci. Technol. 2021, 214, 108994. [Google Scholar] [CrossRef]
- Lü, C.; Cheng, Y.; Liu, Y.; Liu, F.; Yang, B. A Facile Route to ZnS–Polymer Nanocomposite Optical Materials with High Nanophase Content Via γ-Ray Irradiation Initiated Bulk Polymerization. Adv. Mater. 2006, 18, 1188–1192. [Google Scholar] [CrossRef]
- Rueda, M.M.; Auscher, M.-C.; Fulchiron, R.; Perie, T.; Martin, G.; Sonntag, P.; Cassagnau, P. Rheology and Applications of Highly Filled Polymers: A Review of Current Understanding. Prog. Polym. Sci. 2017, 66, 22–53. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y.; Liu, H.; Ying, J.; Liu, C.; Shen, C. Effects of Interface Interaction and Microphase Dispersion on the Mechanical Properties of PCL/PLA/MMT Nanocomposites Visualized by Nanomechanical Mapping. Compos. Sci. Technol. 2020, 190, 108048. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Y.; Xie, Q.; Chen, Z.; Ma, C.; Zhang, G. Transparent Polymer-Ceramic Hybrid Antifouling Coating with Superior Mechanical Properties. Adv. Funct. Mater. 2021, 31, 2011145. [Google Scholar] [CrossRef]
- Jamaluddin, N.; Hsu, Y.-I.; Asoh, T.-A.; Uyama, H. Optically Transparent and Toughened Poly (Methyl Methacrylate) Composite Films with Acylated Cellulose Nanofibers. ACS Omega 2021, 6, 10752–10758. [Google Scholar] [CrossRef]
- Wildner, W.; Drummer, D. The Mechanical and Optical Properties of Injection-Moulded PMMA, Filled with Glass Particles of a Matching Refractive Index. Polym. Polym. Compos. 2017, 25, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Gou, T.; Feng, C.; Li, J.; Li, Y.; Huang, J.; Li, R.; Zhang, Z.; Gao, X. Facile Fabrication of Biomimetic Films with the Microdome and Tapered Nanonipple Hierarchical Structure Possessing High Haze, High Transmittance, Anti-Fouling and Moisture Self-Cleaning Functions. Chem. Eng. J. 2021, 404, 127101. [Google Scholar] [CrossRef]
- Kim, D.H.; Dudem, B.; Jung, J.W.; Yu, J.S. Boosting Light Harvesting in Perovskite Solar Cells by Biomimetic Inverted Hemispherical Architectured Polymer Layer with High Haze Factor as an Antireflective Layer. ACS Appl. Mater. Inter. 2018, 10, 13113–13123. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, H.; Yuan, Y.; Ha, D.; Zhu, S.; Preston, C.; Chen, Q.; Li, Y.; Han, X.; Lee, S. Novel Nanostructured Paper with Ultrahigh Transparency and Ultrahigh Haze for Solar Cells. Nano Lett. 2014, 14, 765–773. [Google Scholar] [CrossRef]
- Wu, G.; Guo, S.; Yin, Y.; Sun, G.; Zhong, Y.; You, B. Hollow Microspheres of SiO2/PMMA Nanocomposites: Preparation and Their Application in Light Diffusing Films. J. Inorg. Organomet. Polym. 2018, 28, 2701–2713. [Google Scholar] [CrossRef]
Samples | Strategy | Filler Loading [wt%] | Transmittance [%, 760 nm] | Surface Hardness Enhancement [%] | Year [Ref] |
---|---|---|---|---|---|
SiO2/PMMA | In situ polymerization | 37.5 | 90 | 80.0 | 2005 [4] |
SiO2/PMMA | 4 | 78 | - | 2005 [5] | |
ZnO/PMMA | 5 | 65 | - | 2018 [12] | |
SiO2/PMMA | ≈3 | 88 | - | 2020 [9] | |
TiO2/PMMA | ≈3 | 87 | - | 2020 [9] | |
SiO2/PMMA | Modified polymerization | 50 | 89.5 | 85.2 | 2006 [6] |
SiO2/PMMA | 13.5 | 90 | - | 2019 [8] | |
ZrO2/PMMA | Hot compression | 1.5 | - | 12.3 | 2011 [10] |
Al2O3/PMMA | 3 | - | 29.8 | 2020 [11] | |
SiO2/PMMA | Solution blending | 9.1 | 72 | - | 2014 [7] |
SiO2/PMMA | Melt blending | 30 | 87.2 | 95.5 | This work |
Samples | SiO2 (g) | PMMA (g) | Si-DPF (g) |
---|---|---|---|
SiO2/PMMA (10/90) | 10 | 90 | - |
SiO2/PMMA/Si-DPF (10/85/5) | 10 | 85 | 5 |
SiO2/PMMA (20/80) | 20 | 80 | - |
SiO2/PMMA/Si-DPF (20/75/5) | 20 | 75 | 5 |
SiO2/PMMA (30/70) | 30 | 70 | - |
SiO2/PMMA/Si-DPF (30/65/5) | 30 | 65 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, B.; Wu, P.; Zhang, W.; Liu, S.; Zhao, J. The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy. Molecules 2023, 28, 304. https://doi.org/10.3390/molecules28010304
Cao B, Wu P, Zhang W, Liu S, Zhao J. The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy. Molecules. 2023; 28(1):304. https://doi.org/10.3390/molecules28010304
Chicago/Turabian StyleCao, Bo, Peng Wu, Wenxiang Zhang, Shumei Liu, and Jianqing Zhao. 2023. "The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy" Molecules 28, no. 1: 304. https://doi.org/10.3390/molecules28010304
APA StyleCao, B., Wu, P., Zhang, W., Liu, S., & Zhao, J. (2023). The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy. Molecules, 28(1), 304. https://doi.org/10.3390/molecules28010304