Valorization of Wild-Type Cannabis indica by Supercritical CO2 Extraction and Insights into the Utilization of Raffinate Biomass
Abstract
:1. Introduction
2. Results and Discussion
2.1. Supercritical CO2 Extraction of Cannabis Oil
2.2. Statistical Assessment of SCCO2 Extraction Process through a Regression Model
2.3. Effects of Different Parameters on Cannabis Oil Yield
2.4. Water Extraction of Raffinate Cannabis Leaves
2.5. Characterization of Cannabis Oil and Water Extractive
3. Materials and Methods
3.1. Materials
3.2. Supercritical CO2 Extraction of Cannabis Oil
3.3. Solvent Extraction of Raffinate Biomass Obtained from SCCO2 Extraction
3.4. Characterization of Cannabis Oil and Cannabis Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.Y.; Caramelo, D.; Luís, Â.; Fernández, N.; Barroso, M.; Gallardo, E.; Duarte, A.P. Cannabis and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 2019, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizpurua-Olaizola, O.; Omar, J.; Navarro, P.; Olivares, M.; Etxebarria, N.; Usobiaga, A. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 7549–7560. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, F.; Nanda, S.; Mohanty, S.; Dalai, A.K.; Kumar, V.; Ponnusamy, S.K.; Naik, S. Cannabis: Chemistry, extraction and therapeutic applications. Chemosphere 2022, 289, 133012. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Gallo-Molina, A.C.; Castro-Vargas, H.I.; Garzón-Méndez, W.F.; Ramírez, J.A.; Monroy, Z.J.; King, J.W.; Parada-Alfonso, F. Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. J. Supercrit. Fluids 2019, 146, 208–216. [Google Scholar] [CrossRef]
- Zanelati, T.V.; Biojone, C.; Moreira, F.A.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effects of cannabidiol in mice: Possible involvement of 5-HT1A receptors. Br. J. Pharmacol. 2010, 159, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlebois, S.; Somogyi, S.; Sterling, B. Cannabis-infused food and Canadian consumers’ willingness to consider “recreational” cannabis as a food ingredient. Trends Food Sci. Technol. 2018, 74, 112–118. [Google Scholar] [CrossRef]
- King, J.W. The relationship between cannabis/hemp use in foods and processing methodology. Curr. Opin. Food Sci. 2019, 28, 32–40. [Google Scholar] [CrossRef]
- De Melo, M.M.; Silvestre, A.J.; Silva, C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar]
- Patra, B.R.; Borugadda, V.B.; Dalai, A.K. Microwave-assisted extraction of sea buckthorn pomace and seed extracts as a proactive antioxidant to stabilize edible oils. Bioresour. Technol. Rep. 2022, 17, 100970. [Google Scholar] [CrossRef]
- Rovetto, L.J.; Aieta, N.V. Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. J. Supercrit. Fluids 2017, 129, 16–27. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Advances in the Industrial Applications of Supercritical Carbon Dioxide. In Carbon Dioxide Capture and Conversion: Advanced Materials and Processes; Nanda, S., Vo, D.V.N., Nguyen, V.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 237–256. [Google Scholar]
- Kayathi, A.; Chakrabarti, P.P.; Bonfim-Rocha, L.; Cardozo-Filho, L.; Jegatheesan, V. Selective extraction of polar lipids of mango kernel using supercritical carbon dioxide (SC–CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639. [Google Scholar] [CrossRef] [PubMed]
- Kitrytė, V.; Bagdonaitė, D.; Venskutonis, P.R. Biorefining of industrial hemp (Cannabis sativa L.) threshing residues into cannabinoid and antioxidant fractions by supercritical carbon dioxide, pressurized liquid and enzyme-assisted extractions. Food Chem. 2018, 267, 420–429. [Google Scholar] [CrossRef]
- Naz, S.; Hanif, M.A.; Bhatti, H.N.; Ansari, T.M. Impact of supercritical fluid extraction and traditional distillation on the isolation of aromatic compounds from Cannabis indica and Cannabis sativa. J. Essent. Oil Bear. Plants 2017, 20, 175–184. [Google Scholar] [CrossRef]
- Jokić, S.; Jerković, I.; Pavić, V.; Aladić, K.; Molnar, M.; Kovač, M.J.; Vladimir-Knežević, S. Terpenes and cannabinoids in supercritical CO2 extracts of industrial hemp inflorescences: Optimization of extraction, antiradical and antibacterial activity. Pharmaceuticals 2022, 15, 1117. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Derrien, M.; Aghabararnejad, M.; Gosselin, A.; Desjardins, Y.; Angers, P.; Boumghar, Y. Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. Lwt 2018, 93, 79–87. [Google Scholar] [CrossRef]
- Swamy, G.J.; Sangamithra, A.; Chandrasekar, V. Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box–Behnken design of experiments. Dye. Pigment. 2014, 111, 64–74. [Google Scholar] [CrossRef]
- Mohan, M.; Timung, R.; Deshavath, N.N.; Banerjee, T.; Goud, V.V.; Dasu, V.V. Optimization and hydrolysis of cellulose under subcritical water treatment for the production of total reducing sugars. RSC Adv. 2015, 5, 103265–103275. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int. J. Hydrogen Energy 2020, 45, 18275–18288. [Google Scholar] [CrossRef]
- Pattnaik, F.; Nanda, S.; Kumar, V.; Naik, S.; Dalai, A.K. Subcritical water hydrolysis of Phragmites for sugar extraction and catalytic conversion to platform chemicals. Biomass Bioenergy 2021, 145, 105965. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling. Energy Convers. Manag. 2020, 208, 112545. [Google Scholar] [CrossRef]
- Pattnaik, F.; Nanda, S.; Kumar, V.; Naik, S.; Dalai, A.K.; Mohanty, M.K. Extraction of sugars and cellulose fibers from Cannabis stems by hydrolysis, pulping and bleaching. Chem. Eng. Technol. 2022, 45, 962–970. [Google Scholar] [CrossRef]
- Purnomo, A.; Yudiantoro, Y.A.W.; Putro, J.N.; Nugraha, A.T.; Irawaty, W.; Ismadji, S. Subcritical water hydrolysis of durian seeds waste for bioethanol production. Int. J. Ind. Chem. 2016, 7, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Nikolai, P.; Rabiyat, B.; Aslan, A.; Ilmutdin, A. Supercritical CO2: Properties and technological applications-a review. J. Therm. Sci. 2019, 28, 394–430. [Google Scholar] [CrossRef]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Aviello, G.; Romano, B.; Borrelli, F.; Capasso, R.; Gallo, L.; Piscitelli, F.; Izzo, A.A. Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. J. Mol. Med. 2012, 90, 925–934. [Google Scholar] [CrossRef]
- Reznik, S.E.; Gardner, E.L.; Ashby, C.R., Jr. Cannabidiol: A potential treatment for post Ebola syndrome? Int. J. Infect. Dis. 2016, 52, 74–76. [Google Scholar] [CrossRef] [Green Version]
- Shannon, S.; Opila-Lehman, J. Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: A case report. Perm. J. 2016, 20, 16-005. [Google Scholar] [CrossRef] [Green Version]
- Maccarrone, M.; Maldonado, R.; Casas, M.; Henze, T.; Centonze, D. Cannabinoids therapeutic use: What is our current understanding following the introduction of THC, THC: CBD oromucosal spray and others? Exp. Rev. Clin. Pharm. 2017, 10, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Martínez, V.; De-Hond, A.I.; Borrelli, F.; Capasso, R.; del Castillo, M.D.; Abalo, R. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: Useful nutraceuticals? Int. J. Mol. Sci. 2020, 21, 3067. [Google Scholar] [CrossRef] [PubMed]
- Lingegowda, D.C.; Kumar, J.K.; Prasad, A.D.; Zarei, M.; Gopal, S. FTIR spectroscopic studies on Cleome gynandra–comparative analysis of functional group before and after extraction. Rom. J. Biophys. 2012, 22, 137–143. [Google Scholar]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Franceschi, F. Characterization of beeswax, candelilla wax and paraffin wax for coating cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Marzullo, P.; Foschi, F.; Coppini, D.A.; Fanchini, F.; Magnani, L.; Rusconi, S.; Passarella, D. Cannabidiol as the substrate in acid-catalyzed intramolecular cyclization. J. Nat. Prod. 2020, 83, 2894–2901. [Google Scholar] [CrossRef]
- Tambe, V.D.; Bhambar, R.S. Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus tiliaceus Linn. wood extracts. J. Pharmacogn. Phytochem. 2014, 2, 41–47. [Google Scholar]
Experimental Run | Process Parameters | Extractives Yield | |||
---|---|---|---|---|---|
CO2 Pressure (Bar) | Temperature (°C) | Time (h) | Total Yield (%) | Cannabis Oil (%) | |
1 | 150 | 50 | 2 | 5.9 | 3.4 |
2 | 250 | 30 | 2 | 7.3 | 4.9 |
3 | 250 | 40 | 1.5 | 7.1 | 4.8 |
4 | 150 | 30 | 1 | 3.6 | 2.2 |
5 | 200 | 40 | 1.5 | 6.1 | 3.7 |
6 | 200 | 40 | 1 | 5.6 | 3.5 |
7 | 250 | 30 | 1 | 7.2 | 4.8 |
8 | 150 | 40 | 1.5 | 5.4 | 3.1 |
9 | 200 | 30 | 1.5 | 5.9 | 3.6 |
10 | 200 | 50 | 1.5 | 6.2 | 3.9 |
11 | 200 | 40 | 1.5 | 6.1 | 3.8 |
12 | 150 | 50 | 1 | 3.5 | 2.9 |
13 | 150 | 30 | 2 | 5.8 | 2.7 |
14 | 200 | 40 | 1.5 | 6.2 | 3.9 |
15 | 200 | 40 | 2 | 6.1 | 3.7 |
16 | 250 | 50 | 1 | 6.7 | 4.4 |
17 | 250 | 50 | 2 | 7.3 | 4.7 |
18 | 200 | 40 | 1.5 | 6.2 | 3.9 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Mean versus Total | 253.88 | 1 | 253.88 | - | - | - |
Linear versus Mean | 8.83 | 3 | 2.94 | 53.30 | <0.0001 | |
2FI versus Linear | 0.51 | 3 | 0.17 | 7.32 | 0.0057 | |
Quadratic versus 2FI | 0.19 | 3 | 0.06 | 8.36 | 0.0076 | Suggested |
Cubic versus Quadratic | 0.03 | 4 | 0.0084 | 1.16 | 0.44 | Aliased |
Residual | 0.03 | 4 | 0.0072 | - | - | - |
Total | 263.48 | 18 | 14.64 | - | - | - |
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | Remarks |
---|---|---|---|---|---|
Linear | <0.0001 | 0.06 | 0.90 | 0.83 | - |
2FI | 0.006 | 0.19 | 0.96 | 0.94 | - |
Quadratic | 0.008 | 0.63 | 0.98 | 0.95 | Suggested |
Cubic | 0.44 | 0.72 | 0.98 | 0.80 | Aliased |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 9.54 | 9 | 1.06 | 136 | <0.0001 | Significant |
CO2 pressure (A) | 8.46 | 1 | 8.46 | 1085.63 | <0.0001 | - |
Temperature (B) | 0.14 | 1 | 0.14 | 17.56 | 0.003 | - |
Extraction time (C) | 0.23 | 1 | 0.23 | 29.25 | 0.0006 | - |
AB | 0.48 | 1 | 0.48 | 61.59 | <0.0001 | - |
AC | 0.03 | 1 | 0.03 | 3.39 | 0.10 | - |
BC | 0.09 | 1 | 0.008 | 1.08 | 0.33 | - |
A2 | 0.08 | 1 | 0.08 | 11 | 0.01 | - |
B2 | 0.002 | 1 | 0.002 | 0.25 | 0.63 | - |
C2 | 0.15 | 1 | 0.15 | 19.55 | 0.002 | - |
Residual | 0.06 | 8 | 0.008 | - | ||
Lack of fit | 0.03 | 5 | 0.007 | 0.7608 | 0.63 | Not significant |
Pure error | 0.03 | 3 | 0.009 | - | ||
Corrected total | 9.60 | 17 | - |
Retention Time (min) | Area Percentage (%) | Molecules Detected | Molecular Structure |
---|---|---|---|
22.2 | 5 | cis-caryophyllene | |
23.6 | 3 | α-humulene | |
51.8 | 8 | ∆9-THCV | |
54.5 | 29 | CBD | |
57.0 | 35 | ∆9-THC and ∆8-THC | ∆9-THC ∆8-THC |
Cannabis Leaves | Cannabis Oil | Cannabis Wax | Water Extractive |
---|---|---|---|
|
|
|
|
Chemical Shift (δH, ppm) | Assignments |
---|---|
0.85 | Aliphatic –CH3 (position 5) of CBD, position 5 of Δ8-THC or Δ9-THC and position 3 of THCV |
1.25 | Aliphatic –CH2 |
1.6 | –CH group |
1.7 | –CH group |
2.1 | Cyclic –CH2 group (non-aromatic) |
2.8 | Δ8-THC |
3.2 | Δ8-THC (–CH2; position 2) or Δ9-THC (–CH; position 2) |
3.75 | CBD (–CH; position 2) |
3.85 | THCV (–CH; position 3) |
4.5–5 | –OH group present in detected cannabinoids |
5.1 | =CH2 group of CBD |
5.35 | Δ8-THC |
5.6 | –CBD |
6.15 | Δ8-THC and Δ9-THC (–CH group; Position 5) |
6.3 | Δ8-THC and Δ9-THC (–CH group; Position 6) |
7.25 | CDCl3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattnaik, F.; Hans, N.; Patra, B.R.; Nanda, S.; Kumar, V.; Naik, S.N.; Dalai, A.K. Valorization of Wild-Type Cannabis indica by Supercritical CO2 Extraction and Insights into the Utilization of Raffinate Biomass. Molecules 2023, 28, 207. https://doi.org/10.3390/molecules28010207
Pattnaik F, Hans N, Patra BR, Nanda S, Kumar V, Naik SN, Dalai AK. Valorization of Wild-Type Cannabis indica by Supercritical CO2 Extraction and Insights into the Utilization of Raffinate Biomass. Molecules. 2023; 28(1):207. https://doi.org/10.3390/molecules28010207
Chicago/Turabian StylePattnaik, Falguni, Nidhi Hans, Biswa R. Patra, Sonil Nanda, Vivek Kumar, Satya Narayan Naik, and Ajay K. Dalai. 2023. "Valorization of Wild-Type Cannabis indica by Supercritical CO2 Extraction and Insights into the Utilization of Raffinate Biomass" Molecules 28, no. 1: 207. https://doi.org/10.3390/molecules28010207
APA StylePattnaik, F., Hans, N., Patra, B. R., Nanda, S., Kumar, V., Naik, S. N., & Dalai, A. K. (2023). Valorization of Wild-Type Cannabis indica by Supercritical CO2 Extraction and Insights into the Utilization of Raffinate Biomass. Molecules, 28(1), 207. https://doi.org/10.3390/molecules28010207