The Development of an Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Biogenic Amines in Fish Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the LC–MS/MS Conditions
2.2. Optimization of the Sample Preparation
2.3. Optimization of the Derivation Conditions
2.4. Validation of the Proposed Method
2.5. Applications
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Derivatization
3.3. Sample Information and Sample Preparation
3.4. UPLC–MS/MS Analysis
3.5. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- ten Brink, B.; Damink, C.; Joosten, H.M.L.J.; Huis in ’t Veld, J.H.J. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 1990, 11, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M.; de las Rivas, B.; Marcobal, A.; Munoz, R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol. 2007, 117, 258–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, G.I.; Bashammakh, A.S.; Alsibaai, A.A.; Alwael, H.; El-Shahawi, M.S. A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs. Trac.-Trends Anal. Chem. 2016, 78, 84–94. [Google Scholar] [CrossRef]
- Daniel, D.; dos Santos, V.B.; Rajh Vidal, D.T.; do Lago, C.L. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. J. Chromatogr. A 2015, 1416, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Faria, M.A.; Fernandes, J.O. Gas Chromatography-Mass Spectrometry Assessment of Amines in Port Wine and Grape Juice after Fast Chloroformate Extraction/Derivatization. J. Agric. Food Chem. 2011, 59, 8742–8753. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Fernandes, J.O.; Cunha, S.C. A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC-MS) method for the determination of eighteen biogenic amines in beer. Food Control 2012, 25, 380–388. [Google Scholar] [CrossRef]
- Bomke, S.; Seiwert, B.; Dudek, L.; Effkemann, S.; Karst, U. Determination of biogenic amines in food samples using derivatization followed by liquid chromatography/mass spectrometry. Anal. Bioanal. Chem. 2009, 393, 247–256. [Google Scholar] [CrossRef]
- Landete, J.M.; de las Rivas, B.; Marcobal, A.; Munoz, R. PCR methods for the detection of biogenic amine-producing bacteria on wine. Ann. Microbiol. 2011, 61, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Plenis, A.; Oledzka, I.; Kowalski, P.; Miekus, N.; Baczek, T. Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. J. Clin. Med. 2019, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-j.; Zhang, Y.; Zhou, Y.; Li, G.-h.; Yang, W.-z.; Feng, X.-s. A review of pretreatment and analytical methods of biogenic amines in food and biological samples since 2010. J. Chromatogr. A 2019, 1605, 360361. [Google Scholar] [CrossRef]
- Sentellas, S.; Nunez, O.; Saurina, J. Recent Advances in the Determination of Biogenic Amines in Food Samples by (U)HPLC. J. Agric. Food Chem. 2016, 64, 7667–7678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Kang, A.; Dai, C.; Liang, Y.; Xie, T.; Xie, L.; Peng, Y.; Wang, G.; Hao, H. Quantitative Analysis of Neurochemical Panel in Rat Brain and Plasma by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2012, 84, 10044–10051. [Google Scholar] [CrossRef] [PubMed]
- Kovac, A.; Somikova, Z.; Zilka, N.; Novak, M. Liquid chromatography-tandem mass spectrometry method for determination of panel of neurotransmitters in cerebrospinal fluid from the rat model for tauopathy. Talanta 2014, 119, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Xu, X.; Feng, X.; Zhang, L. Designed multifunctional visual observation of magnetic ionic liquid coupling with microwave-assisted derivatization for determination of biogenic amines. Food Chem. 2020, 333, 127518. [Google Scholar] [CrossRef] [PubMed]
- Shiono, K.; Tsutsumi, T.; Nabeshi, H.; Ikeda, A.; Yokoyama, J.; Akiyama, H. Simple and rapid determination of biogenic amines in fish and fish products by liquid chromatography-tandem mass spectrometry using 2,4,6-triethyl-3,5-dimethyl pyrylium trifluoromethanesulfonate as a derivatization reagent. J. Chromatogr. A 2021, 1643, 462046. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ai, Y.; Yao, F.; Mao, F.; Wang, X.; Zhang, Y.; Guo, F.; He, Y.; Liu, J.; Zhang, N. Characterization of Biogenic Amines in Seven Kinds of Traditional Chinese Animal Medicines by High Performance Liquid Chromatography with Precolumn Derivatization. J. Anal. Chem. 2022, 77, 81–86. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Chen, K.-R.; Liao, F.-Y.; Weng, J.-R.; Feng, C.-H. Simultaneous derivatization and liquid-solid phase transition microextraction of six biogenic amines in foods followed by narrowbore liquid chromatography-ultraviolet detection. J. Chromatogr. A 2021, 1659, 462629. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, C.; Huang, D.; Yang, G.; Tang, Y.; Shi, Y.; Kong, C.; Cao, P.; Cai, Y. Determination of 8 biogenic amines in aquatic products and their derived products by high-performance liquid chromatography-tandem mass spectrometry without derivatization. Food Chem. 2021, 361, 130044. [Google Scholar] [CrossRef]
- Castillo, M.A.; Castells, R.C. Procedure for the determination of biogenic amines by derivatization with dabsyl chloride and reversed phase liquid chromatography. Chromatographia 2001, 54, 711–716. [Google Scholar] [CrossRef]
- Yue, C.S.; Selvi, C.; Tang, A.N.; Chee, K.N.; Ng, H.Y. Determination of Biogenic Amines in Malaysian Traditional Wine by High-Performance Liquid Chromatography (HPLC). Anal. Lett. 2021, 54, 1968–1994. [Google Scholar] [CrossRef]
- Sampaio Rigueira, J.C.; Rodrigues, M.I.; Abreu Gloria, M.B. Optimization of the analytical extraction of polyamines from milk. Talanta 2011, 86, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwakalapa, E.B.; Mmochi, A.J.; Muller, M.H.B.; Mdegela, R.H.; Lyche, J.L.; Polder, A. Occurrence and levels of persistent organic pollutants (POPs) in farmed and wild marine fish from Tanzania. A pilot study. Chemosphere 2018, 191, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, S.; Babut, M.; Mazzoni, M.; Pascariello, S.; Ferrario, C.; De Felice, B.; Bettinetti, R.; Veyrand, B.; Marchand, P.; Polesello, S. Per- and Polyfluoroalkyl Substances (PFAS) in Fish from European Lakes: Current Contamination Status, Sources, and Perspectives for Monitoring. Environ. Toxicol. Chem. 2021, 40, 658–676. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Cassou, S.; Saurina, J. Derivatization strategies for the determination of biogenic amines in wines by chromatographic and electrophoretic techniques. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2011, 879, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Luis Ordonez, J.; Maria Troncoso, A.; Garcia-Parrilla, M.C.; Maria Callejon, R. Recent trends in the determination of biogenic amines in fermented beverages—A review. Anal. Chim. Acta 2016, 939, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Tiris, G.; Sare Yanikoglu, R.; Ceylan, B.; Egeli, D.; Kepekci Tekkeli, E.; Onal, A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2023, 398, 133919. [Google Scholar] [CrossRef]
- Redruello, B.; Ladero, V.; Cuesta, I.; Alvarez-Buylla, J.R.; Cruz Martin, M.; Fernandez, M.; Alvarez, M.A. A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chem. 2013, 139, 1029–1035. [Google Scholar] [CrossRef]
- Jia, S.; Kang, Y.P.; Park, J.H.; Lee, J.; Kwon, S.W. Determination of biogenic amines in Bokbunja (Rubus coreanus Miq.) wines using a novel ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Food Chem. 2012, 132, 1185–1190. [Google Scholar] [CrossRef]
- Lee, S.; Eom, H.-S.; Yoo, M.; Cho, Y.; Shin, D. Determination of Biogenic Amines in Cheonggukjang Using Ultra High Pressure Liquid Chromatography Coupled with Mass Spectrometry. Food Sci. Biotechnol. 2011, 20, 123–129. [Google Scholar] [CrossRef]
- Afe, O.H.I.; Saegerman, C.; Kpoclou, Y.E.; Douny, C.; Igout, A.; Mahillon, J.; Anihouvi, V.B.; Hounhouigan, D.J.; Scippo, M.-L. Contamination of smoked fish and smoked-dried fish with polycyclic aromatic hydrocarbons and biogenic amines and risk assessment for the Beninese consumers. Food Control 2021, 126, 108089. [Google Scholar] [CrossRef]
Name | Precursor Ions | Product Ions (1) | Collision Energy (eV) | Product Ions (2) | Collision Energy (eV) | Retention Time (min) |
---|---|---|---|---|---|---|
Histamine | 216 | 105 * | 40 | 77 | 40 | 3.90 |
Tyramine | 346 | 105 * | 20 | 77 | 45 | 8.61 |
Dopamine | 466 | 105 * | 30 | 77 | 40 | 9.52 |
Tryptamine | 265 | 144 | 35 | 105 * | 45 | 6.95 |
Serotonin | 385 | 264 | 25 | 105 * | 40 | 8.42 |
Putrescine | 297 | 105 * | 20 | 77 | 40 | 6.03 |
Spermine | 619.6 | 497 * | 20 | 105 | 35 | 7.21 |
Spermidine | 458 | 162 * | 20 | 105 | 40 | 6.79 |
Octopamine | 344 | 105 * | 25 | 77 | 40 | 7.40 |
Benzylamine | 212.1 | 91 * | 20 | 77 | 40 | 6.83 |
1-Phenylethanamine | 226.2 | 122 * | 25 | 105 | 40 | 7.15 |
Cadaverine | 311.2 | 105 * | 20 | 77 | 40 | 6.22 |
2-Phenethylamine | 226.2 | 105 * | 20 | 77 | 40 | 7.02 |
Agmatine | 235 | 176 | 20 | 105 * | 40 | 4.11 |
Name | Linear Range (nmol/L) | LOD (nmol/L) | LOQ (nmol/L) | R2 | Matrix Effect (%) |
---|---|---|---|---|---|
Histamine | 10–10,000 | 8.72 | 28.77 | 0.9989 | −1.36 |
Tyramine | 2–8000 | 0.55 | 1.80 | 0.9988 | 2.71 |
Dopamine | 8–10,000 | 4.36 | 14.39 | 0.9994 | −4.87 |
Tryptamine | 20–50,000 | 19.90 | 65.67 | 0.9998 | −5.90 |
Serotonin | 20–50,000 | 17.44 | 57.55 | 0.9996 | −10.32 |
Putrescine | 20–50,000 | 16.44 | 54.25 | 0.9995 | −8.76 |
Spermine | 2–8000 | 1.09 | 3.60 | 0.9998 | −11.9 |
Spermidine | 2–8000 | 2.18 | 7.19 | 0.9996 | 3.76 |
Octopamine | 2–8000 | 0.44 | 1.44 | 0.9998 | −8.16 |
Benzylamine | 2–8000 | 0.27 | 0.90 | 0.9999 | −14.21 |
1-Phenylethanamine | 2–8000 | 0.13 | 0.44 | 0.9998 | −6.20 |
Cadaverine | 2–8000 | 0.14 | 0.45 | 0.9998 | −9.04 |
2-Phenethylamine | 2–8000 | 1.08 | 3.56 | 0.9994 | −4.92 |
Agmatine | 2–8000 | 1.09 | 3.60 | 0.9961 | −6.37 |
Name | Recoveries | RSDs | ||||
---|---|---|---|---|---|---|
10 nM | 50 nM | 1000 nM | 1 nM | 50 nM | 1000 nM | |
Histamine | 103.7% | 115.4% | 92.1% | 7.9% | 8.9% | 7.4% |
Tyramine | 102.2% | 84.6% | 88.2% | 10.0% | 5.4% | 8.4% |
Dopamine | 105.1% | 99.2% | 92.6% | 9.6% | 3.3% | 4.8% |
Tryptamine | 119.3% | 88.5% | 88.9% | 9.3% | 5.4% | 3.0% |
Serotonin | 104.1% | 86.3% | 74.9% | 8.4% | 6.3% | 4.5% |
Putrescine | 90.5% | 88.1% | 80.5% | 8.7% | 6.2% | 3.9% |
Spermine | 99.7% | 92.5% | 81.2% | 7.8% | 6.7% | 5.1% |
Spermidine | 100.5% | 95.4% | 79.2% | 5.6% | 5.3% | 6.2% |
Octopamine | 97.6% | 90.4% | 77.2% | 7.2% | 9.3% | 7.9% |
Benzylamine | 100.5% | 104.5% | 79.9% | 5.4% | 8.7% | 9.3% |
1-Phenylethanamine | 99.8% | 105.9% | 108.1% | 6.6% | 9.6% | 9.5% |
Cadaverine | 98.4% | 101.2% | 105.6% | 6.0% | 6.2% | 9.4% |
2-Phenethylamine | 101.7% | 92.0% | 82.2% | 7.1% | 6.7% | 8.3% |
Agmatine | 104.9% | 99.2% | 86.1% | 5.9% | 8.4% | 8.4% |
BAs (nmol/kg) | Mackerel | Tuna | ||
---|---|---|---|---|
Supermarket (n = 5) | Morning Market (n = 5) | Supermarket (n = 5) | Morning Market (n = 5) | |
Histamine | 3087.21 ± 196.35 | 1872.73 ± 283.72 | 34.42 ± 8.3 | 10.76 ± 2.26 |
Tyramine | 1499.73 ± 172.71 | 446.62 ± 53.66 | 43.82 ± 4.23 | 15.92 ± 4.12 |
Dopamine | - | - | - | - |
Tryptamine | 260.64 ± 12.59 | 134.34 ± 16.29 | 184.79 ± 2.07 | 186.07 ± 1.21 |
Serotonin | 23.82 ± 0.82 | 22.87 ± 2.09 | 23.6 ± 0.66 | 24.21 ± 0.64 |
Putrescine | - | - | 256.93 ± 61.95 | 59.07 ± 9.06 |
Spermine | - | - | 5.52 ± 2.01 | 0 ± 0 |
Spermidine | - | - | 70.56 ± 22.85 | 26.19 ± 13.36 |
Octopamine | - | - | - | - |
Benzylamine | 1.55 ± 0.77 | 1.16 ± 0.32 | 0.76 ± 0.36 | 0.9 ± 0.49 |
1-Phenylethanamine | 8.37 ± 3.11 | - | - | - |
Cadaverine | 106.49 ± 6.63 | 103.59 ± 8.01 | 2.07 ± 0.94 | 2.51 ± 0.85 |
2-Phenethylamine | 1062.8 ± 112.35 | 813 ± 74.49 | 4.08 ± 2.5 | 3.09 ± 1.32 |
Agmatine | 13.02 ± 1.28 | 16.17 ± 3.45 | 2.16 ± 0.72 | 8.48 ± 3.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wang, R.; Wang, P. The Development of an Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Biogenic Amines in Fish Samples. Molecules 2023, 28, 184. https://doi.org/10.3390/molecules28010184
Li T, Wang R, Wang P. The Development of an Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Biogenic Amines in Fish Samples. Molecules. 2023; 28(1):184. https://doi.org/10.3390/molecules28010184
Chicago/Turabian StyleLi, Tong, Ruiguo Wang, and Peilong Wang. 2023. "The Development of an Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Biogenic Amines in Fish Samples" Molecules 28, no. 1: 184. https://doi.org/10.3390/molecules28010184
APA StyleLi, T., Wang, R., & Wang, P. (2023). The Development of an Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Biogenic Amines in Fish Samples. Molecules, 28(1), 184. https://doi.org/10.3390/molecules28010184