The Synthesis, Characterization and Anti-Tumor Activity of a Cu-MOF Based on Flavone-6,2′-dicarboxylic Acid
Abstract
:1. Introduction
2. Results
2.1. Structural Description
2.2. Morphology, Stability, Phase Purity and FT-IR Spectrum
2.3. In Vitro Antitumor Activity
3. Discussion
4. Materials and Methods
4.1. Materials and Methods
4.2. Synthesis of Flavone-6,2′-dicarboxylic Acid (H2L)
4.3. Synthesis of LDU-1
4.4. X-ray Crystallography
4.5. Test for Antitumor Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Xu, P.; Marsafari, M.; Zha, J.; Koffas, M. Microbial coculture for flavonoid synthesis. Trends Biotechnol. 2020, 38, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.B. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef] [PubMed]
- Dobrzynska, M.; Napierala, M.; Florek, E. Flavonoid nanoparticles: A promising approach for cancer therapy. Biomolecules 2020, 10, 1268. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Flavonoid–metal ion complexes: A novel class of therapeutic agents. Med. Res. Rev. 2014, 34, 677–702. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 30, 125124. [Google Scholar] [CrossRef]
- Kumar, T.; Sharma, M.; Rana, A.; Lingaraju, M.C.; Parida, S.; Kumar, D.; Singh, T.U. Biochanin-A elicits relaxation in coronary artery of goat through different mechanisms. Res. Vet. Sci. 2020, 131, 206–214. [Google Scholar] [CrossRef]
- Saraei, R.; Marofi, F.; Naimi, A.; Talebi, M.; Ghaebi, M.; Javan, N.; Salimi, O.; Hassanzadeh, A. Leukemia therapy by flavonoids: Future and involved mechanisms. J. Cell Physiol. 2019, 234, 8203–8220. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Ichimura, A.; Sato, S.; Fujii, T.; Oishi, S.; Sakai, H.; Takeshima, H. The natural flavonoid myricetin inhibits gastric H+, K+-ATPase. Eur. J. Pharmacol. 2018, 820, 217–221. [Google Scholar] [CrossRef]
- Pfister, J.R.; Wymann, W.E.; Schuler, M.E.; Roszkowski, A.P. Inhibition of histamine-induced gastric secretion by flavone-6-carboxylic acids. J. Med. Chem. 1980, 23, 335–338. [Google Scholar] [CrossRef]
- Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol. 2017, 162, 2539–2551. [Google Scholar] [CrossRef]
- Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact. 2020, 328, 109211. [Google Scholar] [CrossRef] [PubMed]
- Línzembold, I.; Czett, D.; Böddi, K.; Kurtán, T.; Király, S.B.; Gulyás-Fekete, G.; Takátsy, A.; Lóránd, T.; Deli, J.; Agócs, A.; et al. Study on the synthesis, antioxidant properties, and self-assembly of carotenoid-flavonoid conjugates. Molecules 2020, 25, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules 2019, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Zhang, P.; Wu, H.G.; Wang, J.; Liu, F.; Wang, W.L. Natural flavonoids function as chemopreventive agents from Gancao (Glycyrrhiza inflata Batal). J. Funct. Foods 2015, 19, 563–574. [Google Scholar] [CrossRef]
- Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol. Nutr. Food Res. 2016, 60, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.J.; EI-Kabbani, F.M.; Keane, C.; Fisher-Shore, S.L.; McCabe, F.L.; Johnson, R.K.; DeWitt Blanton, C., Jr. Synthesis of flavone-8-carboxylic acid analogues as potential antitumor agents. Eur. J. Med. Chem. 1993, 28, 407–414. [Google Scholar] [CrossRef]
- Zwaagstra, M.E.; Korthouwer, R.E.M.; Timmerman, H.; Zhang, M.Q. Synthesis of 3- and 5’-substituted flavone-8-carboxylic acids as ‘three-armed’ leukotriene CysLTI receptor antagonists. Eur. J. Med. Chem. 1998, 33, 95–102. [Google Scholar] [CrossRef]
- Zwaagstra, M.E.; Timmerman, H.; Abdoelgafoer, R.S.; Zhang, M.Q. Synthesis of carboxylated flavonoids as new leads for LTD4 antagonists. Eur. J. Med. Chem. 1996, 31, 861–874. [Google Scholar] [CrossRef]
- Wen, H.L.; Lai, B.W.; Liu, C.B.; Gong, Y.N.; Chen, Y.H. Synthesis, characterization and antibacterial activity of six flavone-6-carboxylic acids. Chin. J. Org. Chem. 2011, 31, 684–689. [Google Scholar]
- Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Panhwar, Q.K.; Memon, S. Synthesis of Cr(Ⅲ)-morin complex: Characterization and antioxidant study. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, S.; Krishnan, U.M. Vanadium-flavonoid complexes: A promising class of molecules for therapeutic applications. J. Med. Chem. 2021, 64, 12435–12452. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, T. Deciphering the molecular mechanism and apoptosis underlying the in-vitro and in-vivo chemotherapeutic efficacy of vanadium luteolin complex in colon cancer. Cell Biochem. Funct. 2018, 36, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, N.E.; Novak, E.M.; Maria, D.A.; Velosa, A.S.; Pereira, R.M. Synthesis, characterization and biological evaluation of rutin–zinc(II) flavonoid- metal complex. Chem. Biol. Interact. 2015, 239, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Spoerlein, C.; Mahal, K.; Schmidt, H.; Schobert, R. Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J. Inorg. Biochem. 2013, 127, 107–115. [Google Scholar] [CrossRef]
- Kong, Y.Y.; Fan, H.; Wei, X.Y.; Cai, S.L.; Chen, Y. Synthesis, crystal structure and spectral property of a water-bridged Co(II) coordination polymer with 3-flavonoxylacetic acid ligand. Chin. J. Struct. Chem. 2019, 38, 369–375. [Google Scholar]
- Cun, J.-E.; Fan, X.; Pan, Q.Q.; Gao, W.X.; Luo, K.; He, B.; Pu, Y.J. Copper-based metal-organic frameworks for biomedical applications. Adv. Colloid Interface Sci. 2022, 305, 102686. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, Z.Z.; Li, J.; Cun, J.-E.; Pan, Q.Q.; Gao, W.X.; Luo, K.; He, B.; Gu, Z.W.; Pu, Y.J. Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater. 2022, 152, 495–506. [Google Scholar] [CrossRef]
- Chen, H.; Ma, C.B.; Chen, C.N. Synthesis and crystal structure of a 2D Cu framework constructed from dinuclear building units. Chin. J. Struct. Chem. 2014, 33, 1807–1812. [Google Scholar]
- Brewster, J.T.; Root, H.D.; Zafar, H.; Thiabaud, G.D.; Sedgwick, A.C.; He, J.; Lynch, V.M.; Sessler, J.L. Synthesis and characterization of a binuclear copper(II)-dipyriamethyrin complex: [Cu2 (dipyriamethyrin) (2-1,1-acetato)2]. Molecules 2020, 25, 1446. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXL-97; Program for X-ray Crystal Structure Refinement; University of Gottingen: Göttingen, Germany, 1997. [Google Scholar]
- Spek, A.L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2002. [Google Scholar]
Empirical Formula | C44H34Cu2N2O14 |
---|---|
Formula weight | 941.81 |
Temperature/K | 293(2) |
Crystal system | triclinic |
Space group | P-1 |
a/Å | 12.6574(6) |
b/Å | 13.5753(6) |
c/Å | 16.6210(6) |
α/◦ | 72.875(4) |
β/◦ | 89.920(3) |
γ/◦ | 65.066(5) |
Volume/Å3 | 2450.02 |
Z | 2 |
ρcalc mg/mm3 | 1.277 |
m/mm−1 | 1.593 |
F(000) | 964 |
Index ranges | −9 ≤ h ≤ 15, −12 ≤ k ≤ 16, −19 ≤ l ≤ 19 |
Reflections collected | 17373 |
Independent reflections | 8663[R(int) = 0.0228] |
Data/restraints/parameters | 8663/292/561 |
Goodness-of-fit on F2 | 1.053 |
Final R indexes [I >= 2σ (I)] | R1 = 0.081, wR2 = 0.2351 |
Final R indexes [all data] | R1 = 0.0937, wR2 = 0.2531 |
Largest diff.peak/hole/eÅ−3 | 1.630/−1.149 |
Bond | Dist. | Angle | (°) |
---|---|---|---|
Cu(2)–O(14) | 2.107(5) | O(6)–Cu(2)–O(14) | 97.7(2) |
Cu(2)–O(6) | 1.958(3) | O(6)–Cu(2)–O(7) | 90.07(16) |
Cu(2)–O(7) | 1.969(3) | O(7)–Cu(2)–O(14) | 87.50(17) |
Cu(2)–O(5) | 1.958(3) | O(7)–Cu(2)–O(8) | 167.18(15) |
Cu(2)–O(8) | 1.971(3) | O(5)–Cu(2)–O(14) | 94.9(2) |
Cu(1)–O(13) | 2.098(5) | O(8)–Cu(2)–O(14) | 93.6(2) |
Cu(1)–O(3) | 1.956(4) | O(3)–Cu(1)–O(13) | 94.8(2) |
Cu(1)–O(4) | 1.961(4) | O(4)–Cu(1)–O(1) | 88.29(19) |
Cu(1)–O(1) | 1.985(4) | O(1)–Cu(1)–O(13) | 95.2(2) |
Cu(1)–O(2) | 1.975(4) | O(2)–Cu(1)–O(13) | 97.5(2) |
Compound | K562 | A549 | MCF-7 | B16F10 | NIH3T3 |
---|---|---|---|---|---|
H2L | 132.51 ± 0.20 | 102.71 ± 0.29 | 159.32 ± 0.45 | 118.64 ± 0.67 | 596.08 ± 0.44 |
Cu(NO3)2 | 38.65 ± 0.16 | 63.89 ± 0.35 | 61.04 ± 0.27 | 56.45 ± 0.22 | 30.09 ± 0.54 |
LDU-1 | 14.53 ± 0.32 | 32.47 ± 0.18 | 25.86 ± 0.36 | 32.31 ± 0.55 | 179.42 ± 0.18 |
cisplatin | 13.45 ± 0.21 | 14.52 ± 0.5 | 10.25 ± 0.32 | 18.37 ± 0.33 | 80.51 ± 0.72 |
Compound | G1 | S | G2/M |
---|---|---|---|
PBS | 59.38 | 21.91 | 13.9 |
cisplatin | 55.38 | 27.85 | 10.68 |
H2L | 64.23 | 24.38 | 11.6 |
LDU-1 | 62.2 | 37.97 | 4.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Jiang, T.; Song, X.; Li, Q.; Liu, Y.; Wang, Y.; Chi, X.; Sun, J.; Zhang, L. The Synthesis, Characterization and Anti-Tumor Activity of a Cu-MOF Based on Flavone-6,2′-dicarboxylic Acid. Molecules 2023, 28, 129. https://doi.org/10.3390/molecules28010129
Zhang J, Jiang T, Song X, Li Q, Liu Y, Wang Y, Chi X, Sun J, Zhang L. The Synthesis, Characterization and Anti-Tumor Activity of a Cu-MOF Based on Flavone-6,2′-dicarboxylic Acid. Molecules. 2023; 28(1):129. https://doi.org/10.3390/molecules28010129
Chicago/Turabian StyleZhang, Jie, Tingting Jiang, Xinyu Song, Qing Li, Yang Liu, Yanhua Wang, Xiaoyan Chi, Jie Sun, and Liangliang Zhang. 2023. "The Synthesis, Characterization and Anti-Tumor Activity of a Cu-MOF Based on Flavone-6,2′-dicarboxylic Acid" Molecules 28, no. 1: 129. https://doi.org/10.3390/molecules28010129
APA StyleZhang, J., Jiang, T., Song, X., Li, Q., Liu, Y., Wang, Y., Chi, X., Sun, J., & Zhang, L. (2023). The Synthesis, Characterization and Anti-Tumor Activity of a Cu-MOF Based on Flavone-6,2′-dicarboxylic Acid. Molecules, 28(1), 129. https://doi.org/10.3390/molecules28010129